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Assessment of Cancer Risks Due to Ionizing Radiations 
A . M . KELLERER 

Introduction 

The enduring controversy on nuclear energy and the recent reactor accident have 
made ionizing radiation one of the most widely discussed tumor-inducing agents, al
though compared with major contributors, such as tobacco, its role appears to be 
minor. There is also little doubt that ionizing radiation is probably the one carcino
gen which has been most extensively studied. X-rays were discovered in 1895, and 17 
years passed before physicists began to understand their nature. But it took merely 
a few weeks before the first skin lesions were seen, and only 7 years before an X-ray 
induced skin cancer was recognized (Frieben 1902). In 1911 when Max von Laue ob
tained the first X-ray diffraction patterns in Munich, von Jagie et al. (1911) in Berlin 
reported a cluster of five leukemias in radiologists. The lesson was learned slowly. 
The hands of radiologists were less widely used as routine test objects for focusing 
the X-ray equipment, but scattered radiation or even the primary beam were not 
generally avoided, and before long leukemia became the professional affliction of 
radiologists. 

A first dose limit was set in 1921 in terms of an observable skin reaction, a level 
100 times the present limits. In 1928 the International Commission for Radiological 
Protection (ICRP) was founded, just 1 year after H. J.Muller (1927) had shown the 
mutagenic potential of X-rays and the apparent absence of a threshold. At the time 
the limit for radiation workers was set at 6 roentgen per month, a dose roughly com
parable to 0.06Sv per month, in today's units. The value was about 15 times higher 
than present limits, and adherence to the regulations may then have been far below 
present standards. The prevailing philosophy was still, that tumors could be induced 
by radiation only after a persistent accumulation of high radiation doses. 

As a little-known aside of some historical interest one may note that Giachino 
Failla, the distinguished radiologist and physicist, had recommended at the time a 
"tolerance dose rate" of 0.6 roentgen per month, a value nearly equal to today's 
limit. The proposal was based on animal and human data (Failla 1932). He "had at 
the hospital a canary which has been continuously (day and night) in a beam of X-
rays for about five months... In this time the bird has received about 6000 roentgen 
of hard X-rays without apparent deleterious effects." However, Failla was also 
aware of effects that may develop later, hence the need for an epidemiological study 
- also of modest proportions. Three of his technicians were in charge of administer
ing the 4g radium pack at Memorial Hospital. Averaging over several years a dose 
of roughly 0.6 roentgen per month, they exhibited no substantial depression of white 
blood counts and no degree of lowered vitality. Thus, the limit seemed appropriate. 
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Between 1920 and 1930, and even later, appalling misuses of X-rays - even their 
utilization to terminate pregnancies - were still common. Treatment of benign con
ditions with X-rays or radionuclides was fairly general, which led to a wide range of 
observations on radiation-induced tumors (UNSCEAR 1977; NAS/NRC 1980). 
Diagnostic application of X-rays and technical uses of radionuclides were other areas 
where little or no concern was given to radiation protection. 

Former Misuses of Radionuclides 

The tragic heritage of the misuses of ionizing radiation in three main fields of appli
cation can be seen in the fate of patients treated with the short-lived radium-224, of 
patients (mostly soldiers) subjected to angiography with the α-emitting contrast 
medium thorotrast, and in industrial workers (mostly young women) who incorporated 
large amounts of radium-226 and radium-228 when they painted luminous dials. A 
brief consideration of these experiences may help to put some of the present prob
lems and anxieties into perspective. 

The last-named example concerns the most disastrous industrial misuse of a 
radionuclide. There were nearly 2000 workers, in the United States alone, who 
painted luminous watch dials with the long-lived radium-226. These workers, mostly 
young girls, were paid by the piece, and consequently they used the quickest method 
to sharpen the tips of the brushes. Employing their lips to sharpen the brushes they 
ingested large amounts of the radium paint. The high doses of incorporated radium 
led to numerous osteosarcomas and carcinomas of the paranasal sinuses or mastoids. 
Up to 1983, these tumors had contributed 12% of all deaths that have occurred in 
those whose radium intake has been measured. The Center of Human Radiobiology 
at Argonne National Laboratory has been in charge of the epidemiological study 
(Rundo et al. 1986); it has recently been reduced to a size which will make it nearly 
impossible to continue a valid follow-up of the fate of the dial painters. The resulting 
loss of singular medical and scientific information will be irreversible as well as in
defensible. 

The dentist of one of the dial painters first assumed red phosphorus to be a com
ponent of the luminous paint and blamed it for his patient's grave jaw damage. When 
this explanation failed, he continued to search for an explanation. Harrison Mart-
land, whom he had consulted, focused his suspicion on radium-226. When this be
came known, he received an angry letter from Mme Curie; herself a victim of radia
tion, she called him a charlatan for failing to acknowledge that radiation can do no 
harm except at very large doses (Merril Eisenbud, personal communication). Al
though the letter has been lost, it remains a telling sign of the lack of appreciation of 
radiation risks in the first half of this century. 

Decades later an equally tragic misuse of an α-emitting radionuclide occurred in 
Germany where, at a private clinic shortly after the Second World War, numerous 
children with bone tuberculosis were injected with large amounts of radium-224 and 
where the same treatment was given to adults with ankylosing spondylitis (Morbus 
Bechterew). The fate of the patients might never have become known, except for the 
actions of a young pediatrician who observed the treatment and spoke out against it. 
Heinz Spiess secured against the opposition of the director of the clinic the patient 
data and he has, jointly with Charles Mays, conducted one of the most important 
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studies of a group of patients subjected to the effects of ionizing radiations (Mays et 
al. 1986). Unlike the British ankylosing spondylitis patients who were treated with 
X-rays and developed, as Court Brown and Doll (1956) and Smith and Doll (1982) 
have demonstrated, an excess rate of leukemias and other tumors, the radium-224 
patients incurred a large number of osteosarcomas. There were more than 50 osteo
sarcomas in the group of roughly 800 patients who were followed. Among the chil
dren with the largest doses, the rate of osteosarcomas was extremely high. Radium-
224 has a short half-time of only 3.5 days, and the temporal pattern of the occurrence 
of osteosarcomas is, therefore, the undistorted response to irradiations fractionated 
over treatment periods of only several months. A maximum of the rate of osteo
sarcomas was found 5 to 10 years after the treatment, in later years the number of 
cases has declined. The quantitative analysis of the data has led to a linear-quadratic 
dose dependence with the risk estimate of 8.5 · 10~3 per gray of mean skeletal dose 
(Chmelevsky et al. 1986). The study has been extended now to include various other 
types of radiation damage, including radiation-induced cataracts. 

The observations on the radium-224 patients are directly relevant to a continuing 
medical practice. Treatment of ankylosing spondylitis with radium-224 is still prac
tised in Germany, but far lower doses are given which amount to a mean skeletal 
close of less than 1 gray. The osteosarcoma risk from this treatment would appear to 
be less than 1% according to the results of the Spiess study. The continued epidemio
logical investigation of the low dose treatment is consistent with this estimate (Wick 
et al. 1986). Despite the remaining hazard of osteosarcoma induction, there are valid 
arguments to defend the present-day radium-224 treatment of ankylosing spondylitis. 

The deplorable consequences of another major misuse of a radionuclide are 
being studied in Heidelberg by von Kaick and his colleagues (1986). Thorotrast was 
probably the best contrast medium ever available for angiography. However, it con
tained thorium-232, an α-emitter of extremely long life time. Although numerous 
lives were saved by the use of thorotrast, it is by now inconceivable that thorotrast 
was still utilized up to and even beyond 1950. A number of scientists in different 
countries have studied, and are still studying, the effects of thorotrast which stays in 
the tissue and blood vessels of the patients, and which has caused a large number of 
liver tumors. For the remaining patients, liver tumors are now responsible for 
roughly half of all deaths. 

Observation of the Atomic Bomb Survivors 
and the Estimation of Risk Coefficients 

The main source of knowledge on radiation-induced tumors has been and continues 
to be the fate of the survivors of the atomic bombings. Studies have been performed 
during the past 40 years, first by the Atomic Bomb Casuality Commission (ABCC) 
and later by the Radiation Effects Research Foundation ( R E R F ) in Hiroshima (see 
Yoshimoto et al. 1981; Ellett et al. 1985). The Life Span Study sample (LSS) con
tains about 60000 survivors of the bombing in Hiroshima and about 30000 survivors 
of the bombing in Nagasaki. When the bombs were used against Japan no radiation 
effects were foreseen, since those who would be highly exposed were expected not 
to survive the heat and the blast. 
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The diagrams of Fig. 1 show the positions of the survivors at the time of the 
bombing up to a distance of 2000 m from the hypocenters; they also show the extent 
of acute deaths at smaller distances and the number of cancer and leukemia deaths. 
Against expectation, and after merely a few years, leukemias appeared in excessive 
numbers among the survivors in Hiroshima and Nagasaki. The excess rates were so 
high that almost ail leukemias among the highly exposed and about half of all leuke
mias recorded in the diagrams are due to the irradiation. These observations, the 
earlier data on the British ankylosing spondylitis patients (Court Brown and Doll 
1956), and the leukemias in radiologists led E.B.Lewis to the hypothesis that leuke
mia could result from a radiation-induced mutation in a single blood-forming cell and 
to the assumption that the incidence of cancers might increase as a linear function of 
dose without threshold (Lewis 1957, 1963). At the time, this assumption was less 
controversial than it is nowadays, because it was still held that hereditary damage 
was the principle hazard of low doses of ionizing radiations. 

Subsequent studies, mainly on the survivors of the atomic bombings and among 
the British ankylosing spondylitis patients, have provided a wide range of data on 
various tumors produced by ionizing radiations in man. For solid tumors, the relative 
increase of the spontanous rates turned out to be much lower than for leukemia. But 
the total number of cases is sufficiently large to derive dose dependences for tumors 
of various organs. Although significant excesses have been seen only at doses of 
about IGy or more, risk coefficients have been derived which are now applied to 
very small doses. Table 1 contains risk coefficients presented by ICRP (1977), and a 
few essential observations must be made. 

First, the numerical values of the risk coefficients are such that the total risk for 
life-time cancer mortality exceeds the risk for hereditary damage, in fact, the com
parison can only be valid if a dose dependence without threshold is assumed for 
radiation-induced tumors. The ICRP has made this assumption, and has made it the 
basis of its radiation protection philosophy. 

In the present context it is interesting to note that hereditary damage due to 
ionizing radiation has never been demonstrated in man, not even in the descendants 
of the survivors from Hiroshima and Nagasaki. Great efforts have been made and 
are still being made to demonstrate the genetic effects. Plans are considered, at pre
sent, to supplement past work on protein analysis by an extensive program of DNA 
studies. That past efforts have failed to demonstrate genetic effects of the irradiation 
is due to the predominance of other factors which mask the small expected incre
ments. It is, nevertheless, agreed that hereditary effects are caused by ionizing radia
tions and that they are produced without a threshold of dose. One can, furthermore, 
assume that the numerical estimates of the risk coefficients are of the right order of 
magnitude. 

For radiation carcinogenesis the situation is reversed. There is a wealth of data, 
but the extrapolation to low doses remains a conjecture. The linear hypothesis can 
4 

F i g . l . Coordinate plots (Yoshimoto et al. 1981) of the persons in the LSS sample who were within 
2000 m of the hypocenters at the bombing of Hiroshima (left column) and Nagasaki (right column). 
Upper row, all persons in LSS sample; intermediate row, all leukemia deaths t i l l 1978, bottom row, 
all cancer deaths (except leukemia) t i l l 1978. 

Preliminary estimates (Ellett et al. 1985) of kerma in free air distances 1000 m, 1500m, 2000 m: 
Hiroshima, 5.3 Gy, 0.65 Gy, 0.07Gy; Nagasaki, 10Gy, 1.2 Gy, 0.16Gy 
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Table 1. Risk coefficients of ICRP (aver
aged over age and sex) 

Life-time mortality Per 
of cancer Sievert 

Leukemia 0.002 

Mammary tumors 0.0025 

Lung cancer 0.002 

Osteosarcoma 0.0005 

Thyroid tumors 0.0005 

Other organs 0.005 

0.0125 

Severe hereditary damage 
(2 generations) 

0.004 

neither be proved nor disproved at present, and it remains uncertain whether im
proved knowledge of the molecular mechanisms of cellular transformations will ever 
settle the question. 

Basic principles of microdosimetry permit the statement that radiation effects on 
individual cells can have no threshold in dose and that their probability must be 
proportional to dose at low doses (Kellerer and Rossi 1982). This is so because 
energy is transferred to the cells by individual charged particles. At sufficiently low 
doses — fractions of one milligray for sparsely ionizing radiations and several milli-
gray for densely ionizing radiations — only few cells are traversed by a charged par
ticle. The dose determines then merely the number of cells affected, but not the 
energy deposition to these cells. Effects on autonomous cells must therefore be 
proportional to the number of cells affected and thus to dose. The statement remains 
valid even if the possible, and still largely unknown, role of various intracellular 
DNA-repair systems is taken into account. Somatic mutations are, therefore, pro
duced without a threshold of dose. However, host factors, i.e., effects on the tissue 
level, may depend on dose in a way which can not be predicted. Their possible con
tribution to the progression of a transformed cell towards the growth of a tumor re
mains unknown. 

A second statement on risk factors must be added. Although the estimates are 
largely based on the observation of the survivors of the atomic bombings, they are 
consistent with a wide range of studies from the medical application of X-rays. If the 
atomic bombings had not taken place, there would still be risk estimates of the same 
order of magnitude. It is less certain whether there would be the I C R P philosophy of 
linearity for radiation-induced tumors. However, this is the prevailing philosophy in 
radiation protection, and it has important implications. 

Definition of the Effective Dose 

For the consideration of risk factors, a few technical notions are required. The first 
concept is that of dose equivalent which equals absorbed dose of radiation multiplied 
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Table 2. Weight factors 3 representing the 
contribution of each organ to the risk of 
hereditary damage or mortality from 
radiation-induced tumors 

/ Wj 

1 Gonads 0.25 

2 Breast 0.15 

3 Red bone marrow 0.12 

4 Lung 0.12 

5 Thyro id 0.03 

6 Bone surfaces 0.03 

7 Remaining organs 0.30 

a They equal the risk coefficients (see 
Table 1) normalized to their sum 

Defini t ion of effective dose: 

" e f f = Σ WiHi 

where Hi is the mean dose equivalent to 
the organ i, and w, is the weight factor for 
this organ 

by a quality factor. The quality factor is, by convention, defined as a function of the 
linear energy transfer of charged particles and it accounts for the assumed biological 
effectiveness of a radiation at small doses. It is set equal to unity for all sparsely 
ionizing radiations, i.e., for /-rays, X-rays, or electrons. Roughly speaking, it is 
equal to 10 for neutrons which transfer energy to the exposed material by releasing 
densely ionizing recoil nuclei. It is approximately 20 for α-particles which are also 
densely ionizing and produce thousands of ionizations while they traverse a cell 
nucleus. To avoid confusion, one has chosen the special name gray (Gy) for the unit 
J/kg when it is used with absorbed dose, while the special name sievert (Sv) is used 
when the unit is applied to dose equivalent.1 There are proposals, at present, to 
change the values of the quality factor ( ICRU 1986). This is likely to be a contro
versial topic in radiation protection in the years to come, and it is a question closely 
linked to the remaining uncertainties of risk assessment and to the lack of human 
data for the effects of neutrons. 

When the body is exposed uniformly, the meaning of the dose or the dose equiva
lent is clear. When the body is exposed nonuniformly, or when certain organs only 
are exposed, more complicated specifications of dose are required. To provide a 
single quantity which can adequately express the resulting overall level of exposure, 
one has introduced the effective dose equivalent (ICRP 1977), which is now usually 
called the effective dose. It is a weighted average of all the organ doses. The weight
ing factor for each organ represents its fractional contribution to the total somatic 
and genetic risk (see Table 2). The notion may appear artificial, but it is, in fact, a 

1 The former units rad (1 rad = 0.01 Gy) and rem (1 rem = 0.01 Sv) are still widely used 
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natural matter, if one assumes proportionality to dose at low doses for radiation-
induced tumors. 

For clarification and illustration one may use an example familiar from the dis
cussion after the reactor accident. The weighting factor for the thyroid is 0.03. If a 
child consumes a liter of milk contaminated with 1000 Bq of iodine-131, about half 
of the activity may be collected in the thyroid and it produces there a dose equivalent 
of roughly 3mSv. Multiplication by the weighting factor results in an effective dose 
of roughly 0.1 mSv. For the purposes of radiation protection it is assumed that the ex
posure of the thyroid to 3 mSv causes a risk of the same magnitude as a whole body 
exposure of 0.1 mSv which may be caused, for example, by external /-irradiation or 
by incorporation of cesium-137. 

Validity of the Risk Estimates 
and Applicability of the Assessment System 

One can ask two questions. First, how reliable are the risk coefficients? Second, how 
useful are they? An adequate answer to either question is outside the scope of the 
present survey. However, a brief summary can be given. 

There has been occasion, in recent years, to doubt the validity of the risk esti
mates. The reason is that the dosimetry for the atomic bomb explosions has turned 
out to be incorrect (Loewe and Mendelsohn 1981). Some years ago it was thought 
that the larger part of the radiation effects in Hiroshima were due to neutrons emit
ted by the uranium bomb (Rossi and Kellerer 1974; Rossi and Mays 1978). in 
Nagasaki there were hardly any neutrons, because the plutonium bomb was sur
rounded by tons of conventional explosives, which shielded the emitted neutrons ef
fectively. The revision of the dosimetry, while not finally concluded, has now led to 
the consensus that even in Hiroshima there were few neutrons. It was argued then, 
that effects earlier ascribed to neutrons must now be assigned to χ-rays, with a result
ing increase of the risk estimates. However, the revised dosimetry has led to in
creased χ-doses in Hiroshima (Ellett et al. 1985), and this balances largely the dis
appearance of neutrons. Any resulting change of the risk estimates due to the revi
sion of the Japanese dosimetry would appear to be less than a factor of 2. 

A more substantial change of the risk estimates may arise if the excess rates of 
mammary tumors, thyroid tumors, lung tumors, and of intestinal tumors persist, and 
if they follow the increases of the spontaneous rates in the aging collective of exposed 
persons. The term relative risk model refers to such a persistence and age-dependent 
increase of excess tumor rates. The Japanese data appear to be in line with a relative 
risk model, and this appearance is underscored by the occurrence of breast cancer in 
recent years in a number of women who were very young girls at the time of the 
bombing. However, recent data on the British ankylosing spondylitis patients 
(Darby et al. 1985) point in the opposite direction. It is therefore indicated to reserve 
judgement on the applicability of the relative risk model and to continue the two im
portant studies. Whatever the final conclusion may be, it is important to note, that 
present risk estimates are based on an observation period of about 30 years only and 
that an extension to longer times at risk could increase their values. 
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Are the risk estimates useful? They are hypothetical, because one can, at pre
sent, merely surmise but not prove that tumors are caused by small doses of ionizing 
radiations. In spite of this uncertainty, the risk estimates remain suitable for the 
pragmatic purposes of radiation protection. For hereditary damage and also for 
somatic mutations, the linear hypothesis is valid and it is therefore prudent and prac
ticable to make a corresponding assumption also for radiation-induced tumors. The 
important consequence for radiation protection is, to replace the former concept of 
dose limits by the principle to keep radiation doses as low as reasonably achievable 
( A L A R A ) . 

The International Commission for Radiological Protection has attempted to for
malize the A L A R A principle and to develop it into a cost-benefit assessment. Some 
have gone to the point of assigning a monetary cost to a man sie vert, which is the unit 
of collective dose, i.e., the sum of doses to individuals in a collective. In practice such 
formalistic approaches are likely to fail. The A L A R A principle itself has, however, 
become a useful tool to reduce undesirable exposures, both in nuclear technology 
and in medical applications. When exposure limits are considered as ultimate ceil
ings, not as permissible levels, and when unnecessary exposures are avoided, aver
age dose levels in controlled groups will stay far below the limits. This has, indeed, 
been achieved in nuclear industry. In medicine, similar efforts have been made, and 
data are now available which facilitate the optimization of diagnostic equipment and 
the cost-benefit assessment of diagnostic screening procedures. The controversy, in 
recent years, on mammography as a screening procedure exemplified the potential 
of the cost-benefit approach, and it has largely contributed to the reduction of the 
doses and to better definition of the indications for mammography. The prudent as
sumption of no dose threshold for somatic late effects has also helped to advance the 
use of modalities other than ionizing radiations. 

Need for a Balanced View of Risks 

The merits of the assessment system are less obvious, when it is misused, and when 
a philosophy is embraced which aims at total avoidance of radiation exposures or, at 
any rate, the complete avoidance of any "nonnatural" radiation exposure. The com
putation of hypothetical numbers of cancer deaths, usually in large collectives but 
without reference to their size, is then an effective means to generate confusion and 
even panic. 

These problems became evident when the recent reactor accident produced con
taminations in several European countries which exceeded levels legally set for the 
routine practice of radiation protection. Limits or derived limits were then errone
ously interpreted as thresholds that separate harmless exposures from dangerous 
doses. On the other hand, the assumption of linearity and the risk coefficients were 
used to compute absolute numbers of expected cancer deaths. Even if they are for
mally correct, such computations can be highly misleading, when they are not related 
to spontaneous rates and their fluctuations due to various other factors. 

For example, in a recent discussion, the claim was made that about 1000 cancer 
deaths would result from the collective dose of 75000 man sievert which results from 
the emission of 5.3 · 1014 Bq of 1 4 C during the 40 years of projected operation of a 
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reprocessing plant. The computation of the collective dose is correct. However, the 
statement omits the fact that more than 99.9% of this collective dose is caused after 
the global dispersion of 1 4 C , and over a period of several thousand years. In fact, the 
computed number of deaths relates to 200 generations of all of mankind. It is there
fore hardly conceivable how the number 1000 could be meaningful. 

Computations of assumed numbers of cancer deaths may be less widely removed 
from reality when applied to the consequences of large-scale radioactive contamina
tions from the reactor catastrophe. But they are grossly misleading when employed 
to induce personal anxieties. Possible increases of tumor rates in Western Europe 
are far smaller than the existing rates and than their fluctuations due to various con
trollable and uncontrollable factors. The absence of a personal thread is due to the 
dilution of the risk within a population of many millions. On the other hand, such 
dilution is no reason to disregard the possible detriments and to omit suitable mea
sures. It is essential to distinguish between a tangible personal threat and an undesir
able addition to the pool of existing detriments. To neglect risks to large populations, 
unless they break through the threshold of epidemiological ascertainment, would be 
a fatal counterposition against unfounded anxieties. Reasonable administrative mea
sures to reduce doses, for example, from iodine-131 in milk, were therefore justified 
and were in line with the A L A R A principle. 

A more balanced view of risks and their numerical values is required. Further ef
forts will be needed to achieve such a view, and to have it take the place of prevailing 
misconceptions and collective anxieties. 
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