CONCEPTUAL BASIS FOR CALCULATIONS OF ABSORBED-DOSE DISTRIBUTIONS

Recommendations of the NATIONAL COUNCIL ON RADIATION PROTECTION AND MEASUREMENTS

Issued March 31, 1991

National Council on Radiation Protection and Measurements 7910 WOODMONT AVENUE / Bethesda, MD 20814

Contents

1. Introduction 1
1.1 The Concept of Absorbed Dose 1
1.2 Dose Measurement and Dose Calculation 3
1.3 Elements of Dose Calculations 4
2. Transport Formalisms 6
2.1 Concepts in Dose Calculations 6
2.2 Transport Equation 8
3. Sources 14
3.1 Specification of Sources 14
3.2 Simplified Representations of Sources 15
4. Receptors 17
5. Cross Sections 20
5.1 Schematization 20
5.2 General Aspects of Required Cross Sections 22
6. Transport Theory-General Theorems and Properties 26
6.1 Integral Form of the Transport Equation 26
6.2 Iterative Solutions (Orders of Scattering) 27
6.3 Density Scaling Theorem 28
6.4 Fano's Theorem 29
6.5 Energy Conservation 29
6.6 Superposition 30
6.7 Adjoint Transport Equation 31
6.8 Reciprocity 33
6.9 Transport Equations in Commonly Used Coordinate Systems 34
7. Transport Theory-Methods of Solution 36
7.1 Introduction 36
7.2 Radiation Equilibrium and Space-Integrated Radiation Fields 38
7.3 Continuous Slowing-Down Approximation (CSDA) 40
7.4 Numerical Integration Over Energy 43
7.5 Elementary Problems Involving Particle Direction 45
7.5.1 Thin-Foil Charged Particle Problems 45
7.6 Penetration Studies 47
7.6.1 The Moment Method 47
7.6.2 Discrete-Ordinates Transport Codes 49
7.6.2.1 Neutron-Photon Transport 49
7.6.2.2 Dosimetry Calculations By the Method of Discrete Ordinates 50
7.7 Spectral Equilibrium and Related Concepts 51
7.7.1 Aspects Applicable to All Radiations 51
7.7.2 Electrons 52
7.7.3 Photons and Neutrons 54
7.8 Radiation Quasi-equilibrium 56
7.8.1 Transient Equilibrium 57
7.8.2 Non-uniform Sources 57
7.8.3 Non-uniformity in the Internal Dosimetry of Radionuclides 58
7.8.4 Non-uniform Media 60
8. Monte-Carlo Methods 61
8.1 Principles 61
8.2 Analog Monte-Carlo and Variance-Reduction Techniques 66
8.3 Transport Codes 67
8.3.1 Neutron-Photon Transport at Energies ≤ 20 MeV 67
8.3.2 Electron-Photon Cascades 68
8.3.3 Nucleon-Meson Transport at Energies >20 MeV 70
8.3.4 Dosimetric Calculations 72
9. Geometric Considerations 74
9.1 Absorbed Dose in Receptor Regions 74
9.2 Reciprocity Theorem 77
9.3 Isotropic Point-Source Kernels 78
9.4 Point-Pair Distance Distributions and Geometric Reduction Factors 81
10. Calculation of the Dose Equivalent 84
List of Symbols 87
Appendix A. Information about Cross Sections for Transport Calculations 93
A. 1 Photon Cross Sections 93
A.1.1 Photoelectric Effect 93
A.1.2 Fluorescence Radiation and Auger Electrons 97
A.1.3 Incoherent (Compton) Scattering 97
A.1.4 Pair Production 103
A.1.5 Coherent (Rayleigh) Scattering 106
A.1.6 Photonuclear Effect 107
A.1.7 Attenuation Coefficient 111
A.1.8 Energy-Absorption Coefficient 111
A.1.9 Photon Cross-Section Compilations 112
A. 2 Cross Sections for Charged Particles 113
A.2.1 Elastic Scattering of Electrons by Atoms 113
A.2.2 Elastic Scattering of Protons by Atoms 117
A.2.3 Scattering of Electrons by Atomic Electrons 119
A.2.4 Scattering of Protons by Atomic Electrons 120
A.2.5 Electron Bremsstrahlung 122
A.2.6 Continuous Slowing-Down Approximation 126
A.2.7 Stopping Power 128
A. 3 Neutron Cross Sections 139
A.3.1 Classification of Interactions 139
A.3.2 Data Compilations 143
A.3.3 Kerma Factors 145
A. 4 Nuclear Cross Sections for Charged Particles at High Energies 147
A.4.1 Interactions of Pions below 100 MeV 147
A.4.2 Nuclear Interactions of Hadrons above 100 MeV 153
Appendix B. Examples of Absorbed-Dose and Dose- Equivalent Calculations 167
B. 1 Absorbed Dose from Neutrons in Tissue-Equivalent Material 167
B. 2 Shielding of Manned Space Vehicles Against Galactic Cosmic-Ray Protons and Alpha Particles 172
B. 3 Skyshine for Neutron Energies $\leq 400 \mathrm{MeV}$ 178
Appendix C. A Compilation of Geometric Reduction Factors for Standard Geometries 185
C. 1 The Autologous Case ($\mathrm{A}=\mathrm{B}$) 185
C. 2 The Heterologous Case $(A \neq B)$ 188
References 197

Appendix C
 A Compilation of Geometric Reduction Factors for Standard Geometries

In the following, typical geometries are considered and the resulting geometric-reduction factors are given. The point-pair distance distributions are not listed but can readily be obtained from the geometric-reduction factor:

$$
\begin{equation*}
\mathrm{p}_{\mathrm{AB}}(x)=4 \pi x^{2} \mathrm{U}_{\mathrm{AB}}(x) / V_{\mathrm{B}} . \tag{C.1}
\end{equation*}
$$

C. 1 The Autologous Case ($\mathbf{A}=\mathbf{B}$)

As source region A and receptor B coincide in the autologous case, the simplified notation $\mathrm{U}(x)$ can be used instead of $\mathrm{U}_{\mathrm{AB}}(x)$. Outside the specified intervals for x, all functions $\mathrm{U}(x)$ or $\mathrm{U}_{\mathrm{AB}}(x)$ are zero.
a) Infinite slab of height h :

$$
\mathrm{U}(x)=\left\{\begin{align*}
1-\frac{x}{2 h}, & 0 \leq x \leq h \tag{C.2}\\
\frac{h}{2 x}, & x \geq h
\end{align*}\right.
$$

b) Sphere of radius r :

$$
\begin{equation*}
\mathrm{U}(x)=1-\frac{3 x}{4 r}+\frac{x^{3}}{16 r^{3}}, 0 \leq x \leq 2 r . \tag{C.3}
\end{equation*}
$$

c) Spherical shell with outer radius R and inner radius r :

For $r \leq R / 3$:
$\mathrm{U}(x)=\frac{1}{R^{3}-r^{3}} \begin{cases}R^{3}-r^{3}-3\left(R^{2}+r^{2}\right) x / 4+x^{3} / 8, & 0 \leq x \leq 2 r \\ R^{3}-2 r^{3}-3 R^{2} x / 4+x^{3} / 16, & 2 \mathrm{r} \leq x \leq R-r \\ -r^{3}+3\left(R^{2}-r^{2}\right)^{2} / 8 x+3 r^{2} x / 4-x^{3} / 16, & R-r<\mathrm{x} \leq R+r \\ R^{3}-3 R^{2} x / 4+x^{3} / 16, & R+r<\mathrm{x} \leq 2 R .\end{cases}$
For $r \geq R / 3:$
$\mathrm{U}(x)=\frac{1}{R^{3}-r^{3}} \begin{cases}R^{3}-r^{3}-3\left(R^{2}+r^{2}\right) x / 4+x^{3} / 8, & 0 \leq x \leq R-r \\ 3\left(R^{2}-r^{2}\right)^{2} / 8 x, & R-r \leq x \leq 2 r \\ -r^{3}+3\left(R^{2}-r^{2}\right)^{2} / 8 x+3 r^{2} x / 4-x^{3} / 16, & 2 r \leq x \leq R+r \\ R^{3}-3 R^{2} x / 4+x^{3} / 16, & R+r \leq x \leq 2 R .\end{cases}$
Limit of thin spherical shell with radius r and thickness $\delta(\delta \ll r)$:

$$
\mathrm{U}(x)= \begin{cases}1-\frac{x}{2 \delta}, & 0 \leq x \leq \delta \tag{C.6}\\ \frac{\delta}{2 x}, & \delta<x \leq 2 \mathrm{r}\end{cases}
$$

d) Spheroid with two axes d and the third axis $e \cdot d$ (Kellerer, 1984)

$$
\begin{align*}
& \mathrm{U}(x)=1-\frac{3 x}{2 d} \frac{\mathrm{c}_{1}}{e}+\frac{x^{3}}{2 d^{3}} \frac{\mathrm{c}_{2}}{e} \tag{C.7}\\
&+\frac{3}{8} \frac{\epsilon}{\left(e^{-1}-e\right)} {\left[\sqrt{\left|\frac{d^{2}}{x^{2}}-1\right|}\left(\frac{x^{2}}{2 d^{2}}+1\right)+\left(\frac{x^{3}}{2 d^{3}}-\frac{2 x}{d}\right) \operatorname{ci}\left(\frac{d}{x}\right)\right], } \\
& \text { for } 0<x \leq \operatorname{Max}(d, e \cdot d) .
\end{align*}
$$

The expression in the first line of Equation (C.7) applies for $x \leq \operatorname{Min}(d, e \cdot d)$. In the case of $e<1$, the expression in the second line applies for $x>\mathrm{e} \cdot \mathrm{d}$; in the case of $e>1$, the sum of the expressions in the first and in the second lines is used for $x>d$.

In Equation (C.7), $\epsilon=\sqrt{\left|e^{2}-1\right|}$ is the eccentricity; then

$$
\begin{equation*}
\mathrm{c}_{1}=\frac{1}{2}+\frac{e^{2}}{2 \epsilon} \mathrm{ci}\left(\frac{1}{e}\right), \quad \mathrm{c}_{2}=\frac{1}{4 e^{2}}+\frac{3}{4} \mathrm{c}_{1}, \tag{C.8}
\end{equation*}
$$

and

$$
\operatorname{ci}(x)= \begin{cases}\cos ^{-1}(x), & \text { for } 0 \leq x \leq 1 \tag{C.9}\\ \cosh ^{-1}(x)=\ln \left(x+\sqrt{x^{2}-1}\right), & \text { for } x>1\end{cases}
$$

The auxiliary function $\operatorname{ci}(x)$ is introduced to permit one common formula for the oblate and the prolate spheroid (Kellerer, 1984). Throughout Appendix C, $\mathrm{f}^{-1}(x)$ is defined as the inverse function of $\mathrm{f}(x)$.
e) Right cylinder with arbitrary cross section of width d and height h (Kellerer, 1981):

$$
\begin{gather*}
\mathrm{U}(x)=\frac{1}{x} \int_{z_{1}}^{z_{2}}\left(1-\frac{z}{h}\right) \mathrm{U}_{\mathrm{c}}\left(\sqrt{x^{2}-z^{2}}\right) \mathrm{d} z, x \leq \sqrt{h^{2}+d^{2}} \tag{C.10}\\
z_{1}=\sqrt{\operatorname{Max}\left(0, x^{2}-d^{2}\right)} ; z_{2}=\operatorname{Min}(x, h) \tag{C.11}
\end{gather*}
$$

$\mathrm{U}_{\mathrm{c}}(x)$ is the geometric-reduction factor of the cross section $(x \leq d)$ as follows:
Circular cross section:

$$
\begin{equation*}
\mathrm{U}_{\mathrm{c}}(x)=\frac{2}{\pi}\left[\cos ^{-1}\left(\frac{x}{d}\right)-\frac{x}{d} \sqrt{1-\frac{x^{2}}{d^{2}}}\right], \quad x \leq d . \tag{C.12}
\end{equation*}
$$

Square cross section (see Coleman, 1969):

$$
\mathrm{U}_{\mathrm{c}}(x)=\frac{1}{\pi}\left\{\begin{array}{l}
\frac{x^{2}}{d^{2}}-\frac{4 x}{d}+\pi, \quad x \leq d \tag{C.13}\\
\pi-2-4 \cos ^{-1}\left(\frac{d}{x}\right)+4 \sqrt{\frac{x^{2}}{d^{2}}-1}-\frac{x^{2}}{d^{2}}, \quad d<x \leq \mathrm{d} \sqrt{2} .
\end{array}\right.
$$

Integrating the expression, one obtains for the unit cube the relation derived by Piefke (1978):

$$
\mathrm{U}(\mathrm{x})= \begin{cases}1-\frac{3}{2} \mathrm{x}+\frac{2}{\pi} x^{2}-\frac{1}{4 \pi} x^{3}, & 0 \leq \mathrm{x} \leq 1 \tag{C.14}\\ \frac{6 \pi-1}{4 \pi x}-2+\frac{3 x}{2 \pi}+\frac{x^{3}}{2 \pi}+\frac{6}{\pi} x \cos ^{-1}\left(\frac{1}{x}\right)-\frac{2}{\pi x}\left(2 x^{2}+1\right) \sqrt{x^{2}-1}, & 1<x \leq \sqrt{2} \\ \frac{6 \pi-5}{4 \pi x}+1-\frac{3(1+\pi) x}{2 \pi}-\frac{x^{3}}{4 \pi}+\frac{2}{\pi x}\left(x^{2}+1\right) \sqrt{x^{2}-2}-\frac{6}{\pi \mathrm{x}} \mathrm{~A}(x), & \sqrt{2}<x \leq \sqrt{3}\end{cases}
$$

where

$$
\begin{gathered}
\mathrm{A}(x)=\tan ^{-1}\left(\sqrt{x^{2}-2}\right)+2 x \tan ^{-1}\left(x^{2}-1-x \sqrt{x^{2}-2}\right) \\
-x^{2} \tan ^{-1}\left(\frac{1}{\sqrt{x^{2}-2}}\right) .
\end{gathered}
$$

Figure C. 1 shows geometric-reduction factors and point-pair distance distributions for the autologous case according to some of the preceding equations.

C. 2 The Heterologous Case ($\mathbf{A} \neq \mathrm{B}$)

a) Two concentric spheres A and B with radii R and r, respectively:
$\mathrm{U}_{\mathrm{AB}}(x)= \begin{cases}\operatorname{Min}\left(1, r^{3} / R^{3}\right), & x<|R-r| \\ \left.\frac{3}{4 R^{3}} \frac{2}{3}\left(R^{3}+r^{3}\right)-\frac{1}{4}\left(R^{2}-r^{2}\right)^{\frac{1}{x}}-\frac{1}{2}\left(R^{2}+r^{2}\right) x+\frac{1}{12} x^{3}\right], & |R-r|<x<R+r .\end{cases}$
b) A spherical surface, A, of radius R and a concentric sphere, B, of radius r :
$\mathrm{U}_{\mathrm{AB}}(x)= \begin{cases}\frac{1}{2}+\frac{r^{2}-R^{2}}{4 R x}-\frac{x}{4 R}, & |R-r|<x<R+r \\ 1, & R<r \text { and } x<r-R .\end{cases}$
c) A spherical surface, A , of radius R and a concentric shell, B , of inner radius r_{1} and outer radius r_{2} :

The geometric-reduction factor is equal to the preceding solution with $r=r_{2}$ minus the solution with $r=r_{1}$.

For $R>r_{2}$, i.e., for A outside B:

$$
\mathrm{U}_{\mathrm{AB}}(x)= \begin{cases}\frac{1}{2}+\frac{r_{2}^{2}-R^{2}}{4 R x}-\frac{x}{4 R}, & \left\{\begin{array}{l}
R-r_{2} \leq x \leq R-r_{1} \\
R+r_{1} \leq x \leq R+r_{2}
\end{array}\right. \tag{C.17}\\
\frac{r_{2}^{2}-r_{1}^{2}}{4 R x}, & R-r_{1}<x<R+r_{1}\end{cases}
$$

Fig. C.1. Geometric-reduction factors, $\mathrm{U}(x)$, or the point-pair distance distributions, $\mathrm{p}(x)$, for the autologous case.
a: Geometric-reduction factors for spherical shells according to Equations (C.4) and (C.5). The distance, x, is given relative to the outer diameter, D. The ratio of inner diameter, d, to outer diameter of the shell is indicated on the curves. The dashed curve corresponds to the sphere [Equation (C.3)].
b: Geometric-reduction factors for spheroids according to Equation (C.7). The distance, x, is given relative to the two equal diameters, d, of the spheroid. The ratio e of the third diameter to d is indicated on the curves. The dashed curve represents the limit of an infinitely extended prolate spheroid, while the dotted curve represents, for comparison, an infinitely long circular rod of diameter d [Equations (C.10) and (C.12)].

Fig. C.1. continued
c: Geometric-reduction factors for the sphere of diameter d [Equation (C.3)], the circular right cylinder of diameter and height d [Equations (C.10) and (C.12)], the cube of side length d [Equation (C.14)], and the infinite slab of height d [Equation (C.2)]. The distance, x, is given relative to d.
d: Point-pair distance densities for a disc of diameter d [Equation (C.12)], a square of side length d [Equation (C.13)], and a spherical surface of diameter d [Equation (C.6)]. The distance, x, is given relative to d.

For $R<r_{1}$, i.e., for A in the interior void of the shell for $R \geq\left(r_{2}-r_{1}\right) /$ 2:
$\mathrm{U}_{\mathrm{AB}}(x)= \begin{cases}\frac{1}{2}-\frac{r_{1}^{2}-R^{2}}{4 R x}+\frac{x}{4 R}, & r_{1}-R \leq x \leq r_{2}-R \\ \frac{r_{2}^{2}-r_{1}^{2}}{4 R x}, & r_{2}-R \leq x \leq R+r_{1} \\ \frac{1}{2}+\frac{r_{2}^{2}-R^{2}}{4 R x}-\frac{x}{4 R}, & R+r_{1}<x \leq R+r_{2} .\end{cases}$
For $R \leq\left(r_{2}-r_{1}\right) / 2$
$\mathrm{U}_{\mathrm{AB}}(x)= \begin{cases}\frac{1}{2}-\frac{r_{1}^{2}-R^{2}}{4 R x}+\frac{x}{4 R}, & r_{1}-R \leq x \leq r_{1}+R \\ 1, & r_{1}+R<x \leq r_{2}-R \\ \frac{1}{2}+\frac{r_{2}^{2}-R^{2}}{4 R x}-\frac{x}{4 R}, & r_{2}-R<x \leq r_{2}+R .\end{cases}$
Special cases:
An outer surface of the shell $\left(R=r_{2}\right)$:
$\mathrm{U}_{\mathrm{AB}}(x)= \begin{cases}\frac{1}{2}-\frac{x}{4 r_{2}}, & \left\{\begin{array}{l}0<x<r_{2}-r_{1} \\ r_{1}+r_{2} \leq x \leq 2 r_{2}\end{array}\right. \\ \frac{r_{2}^{2}-r_{2}^{2}}{4 r_{2} x}, & r_{2}-r_{1}<x<r_{1}+r_{2} ;\end{cases}$
An inner surface of the shell $\left(R=r_{1}\right)$ and $R \geq r_{2} / 3$:
$\mathrm{U}_{\mathrm{AB}}(x)= \begin{cases}\frac{1}{2}+\frac{x}{4 R}, & 0 \leq x \leq r_{2}-r_{1} \\ \frac{r_{2}^{2}-r_{1}^{2}}{4 r_{1} x}, & r_{2}-r_{1}<x \leq 2 r_{1} \\ \frac{1}{2}+\frac{r_{2}^{2}-r_{1}^{2}}{4 r_{1} x}-\frac{x}{4 r_{1}}, & 2 r_{1}<x \leq r_{1}+r_{2} .\end{cases}$
d) Two concentric shells A and B of infinitesimal thickness and with radii R and r :

$$
\begin{equation*}
\mathrm{U}_{\mathrm{AB}}(x)=\frac{r \delta}{2 R x}, \quad|R-r|<x<R+r \tag{C.22}
\end{equation*}
$$

where δ is the (infinitesimal) thickness of the shell B.
Note: Solutions b) to d) apply also if A is part of the spherical surface, e.g., a sector, a spherical cap, a ring within the shell or a point.
e) A plane A (or part of a plane) and a parallel plate B of thickness h at distance a :
$\mathrm{U}_{\mathrm{AB}}(x)= \begin{cases}\frac{1}{2}-\frac{a}{2 x}, & a \leq x \leq a+h \\ \frac{h}{2 x}, & a+h<x .\end{cases}$
f) Two parallel infinite plates A and B of thickness H and h, respectively, and separated by distance a ($H<h$)

$$
\mathrm{U}_{\mathrm{AB}}(x)=\left\{\begin{array}{ll}
\frac{1}{4}-\frac{a}{4 x}, & a \leq x \leq a+H \\
\frac{x-a-H / 2}{2 x}, & a+H<x \leq a+h \tag{C.25}\\
\frac{h}{2 x}-\frac{(H+h+a-x)^{2}}{4 H x}, & a+h<x<a+H+h \\
\frac{h}{2 x}, & x>a+H+h
\end{array}, \quad \begin{array}{l}
\mathrm{U}_{\mathrm{BA}}(x)=\mathrm{U}_{\mathrm{AB}}(x) \cdot \frac{H}{h}
\end{array}\right.
$$

The same solution applies if A is a section of the infinite plate, i.e., a right cylinder (finite plate).
g) A point A and a right cylinder B:

$$
\left.\begin{array}{rl}
\mathrm{U}_{\mathrm{AB}}(x) & =\frac{1}{2 x} \int_{z_{1}}^{z_{2}} \mathrm{U}_{\mathrm{AC}}\left(\sqrt{x^{2}-z^{2}}\right) \mathrm{d} z, \sqrt{y_{1}^{2}+b^{2}}<x<\sqrt{(b+h)^{2}+y_{2}^{2}} \tag{C.26}\\
z_{1} & =\operatorname{Max}\left(b, \sqrt{\operatorname{Max}\left(0, x^{2}-y_{2}^{2}\right.}\right)
\end{array}\right), z_{2}=\operatorname{Min}\left(b+h, \sqrt{x^{2}-y_{1}^{2}}\right) . .
$$

$\mathrm{U}_{\mathrm{AC}}(x)$ is the two-dimensional geometric-reduction factor for the cross section C of the cylinder relative to the projection of point A,
$\mathrm{P}(\mathrm{A})$, into the plane which corresponds to $\mathrm{C} ; y_{1}$ and y_{2} are the minimum and maximum distances in this plane between $\mathrm{P}(\mathrm{A})$ and $\mathrm{C} ; h$ is the height of the cylinder; b is the projected distance on the cylinder axis between A and $P(A)$. Point A is assumed to lie below the cylinder bottom. If A lies between the two planes through the faces of the cylinder, one obtains the solution as a sum by suitable subdivision of B into two cylinders.

For the circular area of radius r relative to the point at distance a from the center, one has:

$$
\begin{equation*}
\mathrm{U}_{\mathrm{Ac}}(x)=\frac{1}{\pi} \cos ^{-1}\left[\operatorname{Max}\left(-1, \frac{x^{2}+a^{2}-r^{2}}{2 a x}\right)\right], \quad \operatorname{Max}(a-r, 0) \leq x \leq a+r \tag{C.27}
\end{equation*}
$$

h) A point A and a planar domain B of infinitesimal thickness δ :

Let h be the distance of A from the plane C of B , and let $\mathrm{U}_{2}(y)$ be the 2 -dimensional geometric-reduction factor ($y_{1}<y<y_{2}$) of B relative to the projection of A in C . Then:

$$
\begin{equation*}
\mathrm{U}_{\mathrm{AB}}(x)=\frac{\delta}{2 x} \mathrm{U}_{2}\left(\sqrt{x^{2}-h^{2}}\right), \sqrt{h^{2}+y_{1}^{2}}<x<\sqrt{h^{2}+y_{2}^{2}} . \tag{C.28}
\end{equation*}
$$

For a disc of radius r and a projected distance a of A from its center, one obtains

$$
\begin{equation*}
\mathrm{U}_{\mathrm{AB}}(x)=\frac{\delta}{2 \pi x} \cos ^{-1}\left[\operatorname{Max}\left(-1, \frac{x^{2}+a^{2}-r^{2}-h^{2}}{2 a \sqrt{x^{2}-h^{2}}}\right)\right] . \tag{C.29}
\end{equation*}
$$

For a rectangle with side lengths a and b, we restrict to a special case for A: The straight lines which come out from the sides divide the plane into 8 rectangles with infinite content; the projection of A, $\mathrm{P}(\mathrm{A})$, is assumed to lie in the left lowest rectangle with infinite content; s is the distance of $\mathrm{P}(\mathrm{A})$ to the next rectangle line parallel to a, t is analogously related to b. (Different positions of A can be reduced to the described special case.) For the two dimensional geometrical factor, one has:

$$
\begin{align*}
\mathrm{U}_{2}(y)= & \frac{1}{2 \pi}\left[\sin ^{-1}\left(\frac{\operatorname{Min}\left(a+s, \sqrt{y^{2}-t^{2}}\right)}{y}\right)\right. \tag{C.30}\\
& \left.-\sin ^{-1}\left(\frac{\operatorname{Max}\left(s, \sqrt{\operatorname{Max}\left(0, y^{2}-(b+t)^{2}\right)}\right)}{y}\right)\right] ;
\end{align*}
$$

194 / APPENDIX C
therefore,

$$
\begin{align*}
\mathrm{U}_{\mathrm{AB}}(x)= & \frac{\delta}{4 \pi x}\left[\sin ^{-1}\left(\frac{\operatorname{Min}\left(a+s, \sqrt{x^{2}-h^{2}-t^{2}}\right)}{\sqrt{x^{2}-h^{2}}}\right)\right. \tag{C.31}\\
& \left.-\sin ^{-1}\left(\frac{\operatorname{Max}\left(s, \sqrt{\operatorname{Max}\left(0, x^{2}-h^{2}-(b+t)^{2}\right)}\right)}{\sqrt{x^{2}-h^{2}}}\right)\right]
\end{align*}
$$

The diagrams in Figure (C.2) give geometric-reduction factors and point-pair distance distributions for the heterologous case according to some of the preceding equations.

Fig. C.2. Geometric reduction factors, $\mathrm{U}(x)$, or the point-pair distance distributions, $\mathrm{p}(x)$, for the heterologous case.
a: Geometric-reduction factors for a sphere, A , of radius R, and a concentric sphere, B , of radius r according to Equation (C.15). The ratio r / R is indicated on the curves. The distance, x, is given relative to R.
b : Geometric-reduction factors for a spherical surface, A , of radius R and a concentric sphere, B, of radius r according to Equation (C.16). The ratio r / R is indicated on the curves. The distance, x, is given relative to R.

Fig. C.2. continued
c: Geometric-reduction factors for a plane, A, separated by distance a from an infinite plate, B, of height h according to Equation (C.23). The ratio a / h is indicated on the curves. The distance, x, is given relative to h.
d: Point-pair distance distributions between a spherical surface of radius R and a concentric spherical surface of radius r according to Equation (C.22). The ratio r / R is indicated on the curves. The distance, x, is given relative to r.

