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Appendix C 
A Compilation of Geometric 
Reduction Factors for 
Standard Geometries 

In the following, typical geometries are considered and the result­
ing geometric-reduction factors are given. The point-pair distance 
distributions are not listed but can readily be obtained from the 
geometric-reduction factor: 

P A B (JC) = 47Γχ2υΑΒω/νΒ. (CI) 

C . l The Autologous Case (A = B) 

As source region A and receptor Β coincide in the autologous case, 
the simplified notation XJ(x) can be used instead of U/^ix). Outside 
the specified intervals for x, all functions U(x ) or UAB(X) are zero. 

a) Infinite slab of height h: 

1 -
U(x) = < 

2h> 

A 
2x' 

0 <x < h 

χ > h. 
(C.2) 

b) Sphere of radius r: 

U(x) = 1 - ψΓ + j g s , 0 < χ < 2r. (C.3) 

185 
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c) Spherical shell with outer radius R and inner radius r. 

For r < ß/3: 

υ ω = Α 3 - / · 3 

For r > Ä/3: 

υ ω = Α 3 - / · 3 

Ä 3 - / - 3 - 3(Ä 2 + τ*)χ/4 + *»/8, 
Rz-2i* - 3Ä 2x/4 + r V l 6 , 
- ^ + 3(Ä 2 -r 2 ) 2 /&c + 3r>x/4 - *»/16, 
Ä 3 - 3Ä 2x/4 + r V l 6 , 

R3-r* - 3(Ä 2 + H)x/4 + rV8, 
3(Ä 2 - r 2 ) 2 ^ , 
- r 3 + 3 ( Ä 2 - r 2 ) 2 / 8 * + 3 Λ / 4 - r V l 6 , 

Ä 3 - 3 Ä 2 J C / 4 + r V l 6 , 

0 < x < 2 r 
2 r < x < Ä - r 
Ä - r < x < Ä + r 
Ä + r < x < 2 Ä . 

0 < x < Ä - r 
Ä - r < x < 2 r 
2 r < x < Ä + r 
Ä + r < x < 2 ß . 

(C.4) 

(C.5) 

Limit of thin spherical shell with radius r and thickness δ (δ « r ) : 

υω = < 
ι 

2δ ! 

_δ 
2χ' 

0<χ<δ 

ö<x<2r. 
(C.6) 

d) Spheroid with two axes d and the third axis erd (Kellerer, 1984) 

(C.7) 
U W 2 d e + 2 d 3 e 

x2 1 

for ο < χ < Max (d,e*d). 

The expression in the first line of Equation (C.7) applies for 
x<Min(d,e-d). In the case of e < l , the expression in the second line 
applies for x>e-d; in the case of e > l , the sum of the expressions in 
the first and in the second lines is used for x>d. 

In Equation (C.7), e = V k 2 _ l | is the eccentricity; then 

1 e2 .11 
C l = = 2 + * C 1 U °2 " 4e2 + 4 C l 

(C.8) 
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and 

ci(x) = 
cos~Hx), for 0 < x < l , 

cosh-H*) = (n(x + V ^ T ) , f o r z > l . 
(C.9) 

The auxiliary function ci(x) is introduced to permit one common 
formula for the oblate and the prolate spheroid (Kellerer, 1984). 
Throughout Appendix C, f~Hx) is defined as the inverse function of 
fix). 
e) Right cylinder with arbitrary cross section of width d and height 
h (Kellerer, 1981): 

U(x) = - Γ 2 ' 1 - - Ι U e i V ^ ^ ) dz, x^Vw+tf, (C.10) 

zx = VMax(o, x2-d2); z2 = Min(x,Ä) · (C. l l ) 
Uc(x) is the geometric-reduction factor of the cross section (x<d) as 
follows: 
Circular cross section: 

U c(x) = -
TT L 

COS" 1 \± cP * < d . (C.12) 

Square cross section (see Coleman, 1969): 

Uc<*) = ^ i 
TT 

χ2 Ax 
&--d+1*> (C.13) 

d<*< d V 2 . 

Integrating the expression, one obtains for the unit cube the relation 
derived by Piefke (1978): 

U(x) = < 

1 - + ^c 2 -
2 I T 4ir 

6 Τ Γ - 1 0 ^ 3x ^ JC 3 ^ 6 — 2 + — + — + cos 
4ΙΪΧ 2ιτ 2ir I T 

4ΤΓΛ 2ir 4ir TTJC trx 

o<x<l 

(-) - —(2x2+1) V x 2 - 1 , K x < V 2 

V 2 < * < V 3 , 

(C.14) 
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where 

A(x) = t a n " 1 ( V J ^ I ) + 2x tan" 1 ( x 2 - l - x V ^ 2 ) 
1 x 2 t a n _ 1 

Figure C.l shows geometric-reduction factors and point-pair dis­
tance distributions for the autologous case according to some of the 
preceding equations. 

C.2 The Heterologous Case (Α Φ Β) 

a) Two concentric spheres A and Β with radii R and r, respectively: 

M i n d ^ / i ? 3 ) , 
U A B ( X ) = 

4Ä 3 

1 1, |(Ä 3 + r 3 ) - 4 ( Ä 2 - ^ - ^ Ä 2 + r 2 ) x + ^ c 3 

χ 2V 12 

*<|Ä-r| 

, |Ä-r| <x<R + r. 
(C.15) 

b) A spherical surface, A, of radius R and a concentric sphere, B, of 
radius r: 

f 1 r*-R2 _ x_ 
ΌΑΒ(χ) = \ 2 4Rx 4 Ä ' $-ή<χ^ + Γ 

R<r and x < r - Ä . 

(C.16) 

c) A spherical surface, A, of radius R and a concentric shell, B, of 
inner radius r x and outer radius r 2 : 

The geometric-reduction factor is equal to the preceding solution 
with r = r 2 minus the solution with r=rv 

For Ä>r 2 , i.e., for A outside B: 

U A B W 

1 rj - R2 _ x_ 
2 4Rx 4R' 

Γ R-r2<x<R-rx 

1 Α Η - Γ ! < Χ < Α + Γ2 

Ä - r 1 < x < Ä + r 1 . 

(C.17) 

4Rx y 
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F i g . C.l. Geometric-reduction factors, U(x), or the point-pair distance distribu­
tions, p(x), for the autologous case. 

a: Geometric-reduction factors for spherical shells according to Equations (C.4) and 
(C.5). The distance, x, is given relative to the outer diameter, D. The ratio of inner 
diameter, d, to outer diameter of the shell is indicated on the curves. The dashed curve 
corresponds to the sphere [Equation (C.3)]. 

b: Geometric-reduction factors for spheroids according to Equation (C.7). The distance, 
x, is given relative to the two equal diameters, d, of the spheroid. The ratio e of the 
third diameter to d is indicated on the curves. The dashed curve represents the limit 
of an infinitely extended prolate spheroid, while the dotted curve represents, for 
comparison, an infinitely long circular rod of diameter d [Equations (C.10) and (C.12)]. 
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F i g . C.l. continued 
c: Geometric-reduction factors for the sphere of diameter d [Equation (C.3)], the 
circular right cylinder of diameter and height d [Equations (C.10) and (C.12)], the 
cube of side length d [Equation (C.14)], and the infinite slab of height d [Equation 
(C.2)]. The distance, x, is given relative to d. 

d: Point-pair distance densities for a disc of diameter d [Equation (C.12)], a square of 
side length d [Equation (C.13)], and a spherical surface of diameter d [Equation (C.6)]. 
The distance, x, is given relative to d. 



C .2 T H E H E T E R O L O G O U S C A S E ( Α Φ Β ) / 191 

For R < r x , i.e., for A in the interior void of the shell for R> (r2 - rx)l 
2: 

1 rj-R2 x_ 
( 2 4Rx 4M9 

U A B ( X ) = \ 4Rx ' 

1 4-R2 _ χ_ 
2 4Rx 4R' 

Γ ! - Α < Χ < Γ 2 - Α 

Γ 2 - Α < Χ < Α + Γ! 

R + r!<x<R + r2. 

(C.18) 

Fori? < f r 2 - rJ/2 

Γ 1 _ rj-R2 _£_ 
2 4Rx 4Ä 

U A B W = 1, 

2 4Rx 
χ 

4R ' 

r i + Ä < J c < r 2 - Ä 

r 2 - Ä < x < r 2 + Ä . 

(C.19) 

Special cases: 

An outer surface of the shell (R = r 2 ) : 

UABOC) = 

1 _ JL 
2 4 r 2 ' { 0 < Χ < Γ 2 - Γ ! 

Γ ! + Γ 2 < Χ < 2 <*<2r 2 

^-r^xK^ + ru 

An inner surface of the shell (R = r x ) and Ä > r 2 /3: 

(C.20) 

UAB(X) 

2 4 Ä ' 

4/yt ' 

1 r | - r ? 

o < J c < r 2 - r x 

r 2 - r 1 < x < 2 r 1 

2 r 1 < x < r 1 + r 2 . 
4/vt 4/*!' 

(C.21) 
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d) Two concentric shells A and Β of infinitesimal thickness and with 
radii R and r: 

rS \R-r\<x<R + r, (C .22) 
2Rx 9 

where δ is the (infinitesimal) thickness of the shell B. 
Note: Solutions b) to d) apply also i f A is part of the spherical surface, 
e.g., a sector, a spherical cap, a ring within the shell or a point. 
e) A plane A (or part of a plane) and a parallel plate Β of thickness 
h at distance a: 

UAB(X) = 

1 
2 

A 
2 * ' 

a 
2xy 

a^x^a+h 

a + h<x. 
(C .23) 

f) Two parallel infinite plates A and Β of thickness Η and h, respec­
tively, and separated by distance a (H<h) 

r 1 _ a_ 
4 4xy 

x-a-H/2 

U A B W _ < 
2x 

A 
2x * 

A 
^ 2x' 

(H+h + a-x)2 

4Hx 

a<x<a+H 

a+H<x<a + h 

a + h<x<a+H+h 

x>a+H+h 

(C .24) 

Η 
U B A W = U A B O C ) - ^ (C .25) 

The same solution applies i f A is a section of the infinite plate, i.e., 
a right cylinder (finite plate). 
g) A point A and a right cylinder B: 

U A B W = ^ / ' ' U A C C V * 2 - * 2 ) dz , Vy\ + b2 <x< V ( 6 + A ) 2 + y\ (C .26) 

zl = Max(6, V M a x C O ^ - y D ) , z2 = Min (b + hy Vxt-y2). 

U A C (JC) is the two-dimensional geometric-reduction factor for the 
cross section C of the cylinder relative to the projection of point A, 
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P(A), into the plane which corresponds to C; yx and y2 are the mini­
mum and maximum distances in this plane between P(A) and C; h 
is the height of the cylinder; 6 is the projected distance on the cylinder 
axis between A and P(A). Point A is assumed to lie below the cylinder 
bottom. I f A lies between the two planes through the faces of the 
cylinder, one obtains the solution as a sum by suitable subdivision 
of Β into two cylinders. 

For the circular area of radius r relative to the point at distance a 
from the center, one has: 

U A c(* ) = ~ c o s - 1 , M a x ( a - r , o ) < x < a + r. (C.27) 

h) A point A and a planar domain Β of infinitesimal thickness 8: 

Let h be the distance of A from the plane C of B, and let U2(y) be the 
2-dimensional geometric-reduction factor (yi<y<y2) of Β relative to 
the projection of A in C. Then: 

UABOC) = ^ ( V ? 1 ^ ) , V F + ^ f < * < . (C.28) 

For a disc of radius r and a projected distance α of A from its center, 
one obtains 

Max - 1 , 
Λ̂  + α 2 — r 2 —h 2 

2aV^H2 
(C.29) 

For a rectangle with side lengths a and 6, we restrict to a special 
case for A: The straight lines which come out from the sides divide 
the plane into 8 rectangles with infinite content; the projection of A, 
P(A), is assumed to lie in the left lowest rectangle with infinite 
content; s is the distance of P(A) to the next rectangle line parallel 
to a, t is analogously related to 6. (Different positions of A can 
be reduced to the described special case.) For the two dimensional 
geometrical factor, one has: 

sin 
_ ^ M i n (a + s, (C.30) 
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therefore, 

4ττχ 
W M m t o H V ^ O j ( C 3 1 ) 

. _,/Max(s, V M a x ( 0 j c 2 - h ? - ( b + t)2)) 

- s i n _ l 

The diagrams in Figure (C.2) give geometric-reduction factors and 
point-pair distance distributions for the heterologous case according 
to some of the preceding equations. 
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F i g . C.2. Geometric reduction factors, U(x), or the point-pair distance distribu­
tions, p(jc), for the heterologous case. 

a: Geometric-reduction factors for a sphere, A , of radius R, and a concentric sphere, 
B , of radius r according to Equation (C.15). The ratio r/R is indicated on the curves. 
The distance, JC, is given relative to R. 

b: Geometric-reduction factors for a spherical surface, A , of radius R and a concentric 
sphere, B , of radius r according to Equation (C.16). The ratio r/R is indicated on the 
curves. The distance, JC, is given relative to R. 
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F i g . C.2. continued 

c: Geometric-reduction factors for a plane, A , separated by distance a from an infinite 
plate, B , of height h according to Equation (C.23). The ratio a/h is indicated on the 
curves. The distance, x, is given relative to h. 

d: Point-pair distance distributions between a spherical surface of radius R and a 
concentric spherical surface of radius r according to Equation (C.22). The ratio r/R is 
indicated on the curves. T h e distance, x, is given relative to r. 


