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Microdosimetry of Diagnostic X Rays: Applications 
of the Variance-Covariance Method 

J . C H E N , * H . R o o s , f A N D A . M . K E L L E R E R * ^ 

^Institute for Radiation Biology, GSF, Neuherberg, Germany; and ^Radiobiological Institute, University of Munich, Germany 

C H E N , J . , Roos, H . , AND K E L L E R E R , A. M . Microdosimetry 
of Diagnostic X Rays: Applications of the Variance-Covariance 
Method. Radial. Res. 132, 271-276 (1992). 

Microdosimetric measurements in beams of diagnostic X rays 
(between 30 and 125 kV) have been performed. In these pulsed 
radiation fields, microdosimetric measurements are possible 
only by application of the variance-covariance technique. The 
dose mean lineal energy, j> D , is determined for various simulated 
diameters, at different depths in the absorber, and at different 
points within the pulse intervals. From the measured temporal 
dependences one can also obtain values of yD for different X-ray 
pulse generators. The results demonstrate the potential of the 
variance-covariance method for a diversity of microdosimetric 
measurements in radiation protection and in the quality control 
of radiation beams. © 1992 Academic Press, Inc. 

INTRODUCTION 

The quality factor in radiation protection is currently de­
fined as a function of the linear energy transfer (L) which 
can be calculated in radiation fields of known spectral dis­
tribution. But the experimental determination of the qual­
ity factor, especially for radiation fields with incompletely 
known spectra, needs to be based on the measurable micro­
dosimetric parameter dose mean lineal energy, y D , which is 
closely related to the dose mean linear energy transfer. This 
parameter therefore becomes increasingly important in the 
practice of radiation measurements. 

The variance-covariance method permits one to deter­
mine yD in time-varying radiation fields (7). Unt i l now, 
several applications of this method have been made. Some 
experiments were performed in the laboratory with low 
dose rate (2, i ) , some were performed with neutron beams 
(4, 5), and some were done with therapeutic electron beams 
(6. 7). A l l of the experiments show the potential of the vari­
ance-covariance method and its applicability in radiation 
protection and radiation beam control. 

However, while microdosimetry in its conventional form 
has become more and more important in their fields, the 
variance-covariance method has still not entered into rou­
tine practice. We felt, therefore, that a new investigation 
with added features would be useful. 

X rays are widely used in diagnostic radiology, but there 
are very few microdosimetric measurements so far for such 
radiation fields. In the pulsed diagnostic radiation fields, 
the variance method cannot be used, and measurements of 
single-event spectra would be possible only i f one reduced 
the dose rate sufficiently by increasing the source-to-detec­
tor distance, which is usually impracticable. Furthermore, 
measurements with the single-event technique would re­
quire impracticable time for this kind of radiation instru­
ment. With the variance-covariance method one avoids 
this dilemma. Therefore, a special aim of this paper is to 
demonstrate the potential of the variance-covariance 
method in pulsed diagnostic radiation fields. We give new 
data for these commonly used radiation fields and show 
that not only the averaged information for a whole pulse 
train but also the microdosimetric characteristics of individ­
ual subpulses can be determined by the variance-covari­
ance method. We achieve this by the use of a sufficiently 
high sampling frequency. 

The measurements with the variance-covariance 
method were performed in the field of a "two-pulse" X-ray 
generator for radiography. It wil l be seen subsequently that 
measurements on this type of generator provide microdosi­
metric information even for other pulsed X-ray generators. 

MATERIALS AND METHODS 

We chose to determine the quality of the diagnostic X rays produced by 
a Siemens "Nanomobil 2" X-ray generator. It is a two-pulse generator, i.e., 
there are two sinusoidal pulses within each 20-ms period (see Fig. 1). The 
anode voltage1 of this type of instrument can be varied between 30 and 
125 kV. 

A pair of tissue-equivalent cylindrical proportional counters (height 
equal to diameter) with methane-based tissue-equivalent gas was em­
ployed for the measurements. The geometry and construction of the detec­
tors have been described earlier (J). They have tissue-equivalent walls 12 
mm thick. The counters are linked to the same gas-flow system and to the 
same high voltage supply; any fluctuations of gas gain in the two detectors 
are therefore correlated and can, as is the case with the dose fluctuations, be 
eliminated with the variance-covariance technique. The proportional 
counters are calibrated with a collimated 2 4 1 Am a-particle source for differ­
ent gas pressures and electrode voltages. 

The electronic signal processing system is represented in Fig. 2. Two 
detectors, A and B, are exposed to the same radiation field and register 

1 The term anode voltage is here used for the maximum of the pulsed 
potential. 
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F I G . 1. Pulse form of anode voltage of a two-pulse X-ray generator. 

synchronously the electric signals which are proportional to the energy 
imparted within each of the detectors. The currents from the detectors are 
measured by electrometers in an integrating mode. The current and the 
voltage noise of the electrometers are 10"15 A and 20 p\ (rms), respec­
tively. To achieve optimal resolution, the signals of each irradiation pulse 
are further amplified to cover most of the dynamic range of the analog-to-
digital converter (12-bit). The influences of electronic noise and of the 
converter's resolution on the measured signals are below 5%. 

The digitized data are stored in the computer as time sequences. The 
variance-covariance method does not require information on the tem­
poral interrelationship of the specific energies registered in consecutive 
measurement intervals. The information can, however, be used to deter­
mine from the data for the two-pulse generator the dose mean lineal energy 
as a function of instantaneous voltage, and thus the variations of yD within 
irradiation pulses. Figure 3 shows, as an example, the measured data from 
three irradiation pulses for two detectors; the duration of the sampling 
intervals was 100 ps. Due to attenuation of the softer X rays as well as the 
decline of photon yield at low anode voltages, Fig. 3 shows "zero" energy 
imparted during an appreciable portion of each cycle. 

From paired data for the two detectors the mean, t, of the energy im­
parted, its relative variance, K, and its relative covariance, C, are deter­
mined. The dose mean of the energy imparted per energy deposition event 
is given by the variance-covariance method. 

eD = (V-C)-e 

The corresponding values of the dose mean lineal energy, yD, are given by 

where I is the mean chord length of the simulated volume. 
Figure 3 indicates that detector B registered a somewhat higher dose rate 

than detector A. However, the values of the microdosimetric parameters, 

> 
CD 

0 
•e 
CO 
Q -

E 

i— 
CD 
C 

LU 

Time, t (ms) 

F I G . 3. Data for the energy imparted in sampling intervals of 100 /is 
from the pair of detectors. The peak voltage on the anode is 90 kV; the 
simulated diameter of the cylindrical detector volume is 0.5 ^m. 

as well as those of the relative variance and the relative covariance, are not 
dependent on dose rate, and equality of the dose rate in the two detectors 
or centering of two detectors in radiation field is therefore not a require­
ment of the variance-covariance method. 

Another advantage of the method is the correction for correlated addi­
tive disturbances (5, 4, 7), such as pick-up, that affect the two detectors 
equally. As shown in the Appendix, such disturbances are eliminated if the 
parameters for the two detectors are averaged. 

>'d = ( ^ D . A + ^ D . B ) / 2 

yD FOR VARIOUS SITE SIZES AND DIFFERENT 
ANODE VOLTAGES 

The dose mean lineal energies, yDj for simulated diame­
ters of 0.2, 0.5, 1, and 8 were measured at different 
anode voltages between 30 or 35 and 125 kV (Table I). For 
simulated diameters smaller than 1 pm signals at 30 kV 
were too weak to be measured with the required accuracy. 
Al l measurements were performed with a filter equivalent 
to 2 m m of aluminum. Figure 4 and Table I summarize the 
results. The standard deviations given in Fig. 4 are devia-

T A B L E I 
The Dose Mean Lineal Energy (keV/^im) at Different Anode 

Voltages (kV) for Two-Pulse X-Ray Generator 

D e - t e c - t o r s E l e c t r o m e t e r , A m p l i f i e r C o m p u t e r 

F I G . 2. Electronic signal processing system to perform measurements 
with the variance-covariance technique. 

Voltage 0.2 M m 0.5 fim 1 fim 8 

30 3.42 ± 0.25 1.98 ± 0 . 0 3 
35 5.89 ± 0.60 4.55 ± 0.24 3.35 ± 0 . 1 1 2.17 ± 0 . 1 2 
42 1.84 ± 0 . 0 7 
48 5.37 ± 0 . 5 4 4.30 ± 0.28 3.21 ± 0 . 0 9 
51 1.50 ± 0 . 0 2 
60 5.98 ± 0.48 4.27 ± 0.25 3.19 zb 0.16 1.41 ± 0.06 
75 5.82 ± 0.48 4.38 ± 0 . 1 3 2.94 ± 0.05 1.46 ± 0.06 
90 5.86 ± 0 . 1 0 4.36 ± 0 . 1 9 2.97 ± 0.03 1.47 ± 0.08 

110 6.10 ± 0 . 6 2 4.37 ± 0.27 2.94 ± 0.04 1.47 ± 0.09 
125 5.93 ± 0.44 4.38 ± 0.35 2.99 ± 0.04 1.35 ± 0.04 
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F I G . 4. Dose mean lineal energy as function of the peak voltage at 
different simulated diameters. The bars represent the standard deviations 
between different measurements. At large simulated diameters (1 and 8 
^m) most error bars are too small to be drawn. 

tions between different measurements; they depend not 
only on electronic noise of the measurement system but 
also on the noise of the radiation generator and of the envi­
ronment. 

Dependence on Site Size 
As seen in Fig. 4, the dose mean lineal energy increases as 

the simulated diameter decreases. This is shown more di­
rectly in Fig. 5, which gives the overall values of y D for the 
entire pulse distribution as a function of diameter. The val­
ues for the points are averages over the range of possible 
voltages; they are plotted together with their standard de­
viations, which are small. 

The decrease in j7D with increasing site size is a general 
feature of microdosimetric distributions. At large site sizes 
and with short particle ranges, it reflects the increasing frac­
tion of "starters" and "stoppers" and then of "insiders," 
i.e., of particles that do not traverse the entire site. In the 
present case one deals with electrons that have, on average, 
ranges that are considerably larger than the site sizes that 
are investigated. But even under this condition yD decreases 
with increasing site diameter, because there are only small 
distances over which the electrons exhibit high LET; i.e., 
the small range of the track ends accounts for the large 
values of y in small sites. 

A further very important factor at small site sizes is en­
ergy loss straggling, i.e., the clustering of energy in b rays or 
groups of b rays. Such local energy concentrations can lead 
to high values of yu in small regions, but less so in larger 
sites. 

The joint influence of the different, complex factors on 
j7D is more clearly seen in the fundamental relationship that 
links yD to the proximity function, t(x), of a radiation. 

/"Jo 
U(x/d)-t(x)-dx 

The proximity function, t(x), is defined as the distribu­
tion of distances between all energy transfers in particle 

tracks, and U(x/d) is the geometric reduction factor of a 
given site, i.e., the sum distribution of chord lengths of the 
site for so-called internal source randomness (8). The diame­
ter of the site is d. For a sphere or a right cylinder (cylinder 
length equals the diameter of the cylinder) the mean chord 
length is 

/"= 2d/3. 

Using the distance scaled by the diameter, x' = x/d, one has 

Ä> = i f U{x')-t(d-x'ydx: 
Z Jo 

Apart from its behavior at very small distance t(x) is a mo­
notonously decreasing function of distance x, and the for­
mula shows that yD must be a monotonously decreasing 
function of d. The argument applies to any function U(x\ 
i.e., to an arbitrary convex shape. 

Dependence on Anode Voltage 

The dependence of yD on anode voltage is far more com­
plex. It reflects the change of electron energies with photon 
energies, and the change in y D with changing electron en­
ergy at specified site sizes. Both dependences are nonmono­
tonic. For the anode voltages in the range of 30 to 125 kV 
and for the filter and the detector wall thickness that are 
employed in the present experiments the average photon 
energies vary from about 25 to 60 keV (9). Due to the varia­
tion of relative cross sections for the photo- and Compton 
effects in this range of photon energies, the average initial 
energy of the released electrons decreases with increasing 
photon energy, as seen in Fig. 6. There is then an increase in 
the average LET. However, yD increases only at small site 
sizes, while there is a decrease with decreasing electron en­
ergy at larger site sizes. Figure 4 shows all these complexi­
ties. 

Due to the thickness of the filter and of the detector wall 
the spectra of X rays in the detector volume are very narrow 
for anode voltages around 35 kV, i.e., they are almost mono-
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F I G . 5. The dose mean lineal energy as function of the site diameter. 
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FIG. 6. Average initial energy of the (first collision) released electrons 
as a function of photon energy in water. 

energetic. The values of v D for these anode voltages agree 
well with the data for monoenergetic photons obtained by 
Kliauga and Dvorak (70) in single-event measurements. 

j ; D AT DIFFERENT DEPTHS 

Measurements of absorbed dose as a function of depth in 
a receptor are fundamental to dosimetry. But beyond the 
dose distributions one needs to consider also the variation 
of radiation quality with depth. It is therefore of interest to 
examine the dependence of the lineal energy on depth. 

Different depths in tissue were simulated simply by plac­
ing different acrylic blocks (density 1.17 g/cm 3) in front of 
detectors. The thickness of the blocks was changed from 0 
to 11.5 cm. Taking the detector wall (A 150, density 1.12 
g/cm 3) into account, one simulates in this way depths in 
tissue from 1.34 to 14.8 cm. There appeared to be no need 
for providing backscatter beyond that taking place in the 
detector wall. The measurements were performed for anode 
voltages of 42 and 70 kV, and with a filter equivalent to 1 
mm of aluminum. The results are given in Fig. 7. 

For a small simulated site the dose mean lineal energy 
decreases somewhat with increased depth, as seen in Fig. 7. 
This dependence is in line with the "hardening" of the radia­
tion quality that has been demonstrated by Hahn 2 in Monte 
Carlo calculations for photon energies below 100 keV. 

VARIATION OF THE LINEAL ENERGY 
WITH PULSE PHASE 

Using the temporal information in the measured data, 
one can determine the dose mean lineal energy for any 
point within the radiation pulse; one merely needs to select 
in the analysis the observations at this point. As examples, 
two such phase dependences are shown in Fig. 8. 

2 K . Hahn and A. M. Kellerer, private communication, 1990. 

For a simulated diameter of 1 pm and an anode voltage 
of 75 kV, the dose mean lineal energy does not vary sub­
stantially. This agrees with the results for 1 pm in Fig. 4, 
which show little change in yD with anode voltage. In con­
trast, one sees in Fig. 4 a significant rise in the dose mean 
lineal energy with anode voltages below 50 kV and at a 
simulated diameter of 8 / im. The anode potential is pulsed, 
as illustrated in Fig. 1, and the dose mean lineal energy 
varies in phase with the anode potential. The variations in 
y D are exemplified in Fig. 8 for a simulated diameter of 8 
pm and for the anode voltage 51 kV; the maximal differ­
ence in yD is, in this case, about 44%. 

These two examples demonstrate the potential and the 
diverse possibilities of the variance-covariance technique 
for the measurement, with high sampling frequency, of the 
time dependence of microdosimetric parameters in peri­
odic radiation fields. 

yD FOR DIFFERENT X-RAY GENERATORS 

A 2-pulse generator exhibits variations of the anode volt­
age that are larger than those for 6-pulse or 12-pulse genera­
tors. Using part of the data on the voltage dependence for a 
2-pulse generator one can therefore deduce the variations 
for 6-pulse or 12-pulse generators. As it happens, the super­
position pulses for 6- or 12-pulse generators are of the same 
shape as subregions around the peaks of the 2-pulse genera­
tor (see Fig. 9). It is therefore particularly easy to derive the 
values yD for the multipulse generators by using only the 
suitably restricted pulse data measured for the 2-pulse gener­
ator. 

Results are given in Fig. 10. The decrease in yD with an­
ode voltage for generators of different pulse numbers is rep­
resented. More marked dependences of yD would have to be 
seen, i f the measurements were performed with detectors of 
thin wall or with wall-less counters; the role of low-energy 
photons would then be more important. 

CONCLUSION 

The measured microdosimetric data for the commonly 
used diagnostic X rays show the considerable potential of 

4 .8 i 1 

4 . 0 1 1 — 1 

0 5 10 15 

Equivalent depth in tissue (cm2/g) 

FIG. 7. Depth dependence of the dose mean lineal energy for anode 
voltages of (—) 42 and (—) 70 kV. The simulated diameter is 0.5 ^m. 
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F I G . 8. Variation of the dose mean lineal energy with the pulse phase 
of the periodic X-ray fields. (A) I /urn, 75 kV; ( • ) 8 urn, 51 kV. 

the variance-covariance method. Such data could not 
readily be obtained with the conventional single-event tech­
nique in microdosimetry, and they would, of course, be 
impossible with the simple variance technique. The vari­
ance-covariance method is thus seen to be a useful tech­
nique for radiation protection and quality control, espe­
cially in time-varying or in incompletely known radiation 
fields. 

APPENDIX 

Reduction of the Influence of Correlated Additive Noise 
by Averaging of the Parameters 

for the Two Detectors 

The signal to be measured, us, is accompanied by the 
noise, uN. The result of a measurement is then 
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F I G . 9. Pulse form of anode voltage of a 6-pulse and a 12-pulse X-ray 
generator. The pulse forms of the 6-pulse and 12-pulse generators are part 
ofthat performed by the 2-pulse generator. 
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F I G . 10. Dose mean lineal energy as function of anode voltage for the 
( • ) 2-pulse, (•) 6-pulse, and (4)12-pulse generator. The simulated diame­
ter is 1 jum. 

Um = Us + W N . 

The mean value üm, the variance Vm and the covariance C m 

are given by the relationships 

^ = Us 

y m y s ' Y N 

C m = C s + C N . 

According to the variance-covariance method one derives 
from detector A the dose mean value 

n(A) C s s D *7S(A) z7s(B) * 

But because of the noise, // N , one obtains 

r / A X ^m(A) C m K N (A) C N w m , D (A) = -=—T~ ~ T T — = M^D + 
z7m(A) ilm(B) ^ u ' w8(A) iT8(B) * 

Similarly, one obtains from detector B 

- / m VrJß) Cm _ F N(B) C N 

*7m(B) *7m(A) s ' " i7s(B) z7s(A) 

For correlated noise one has 

^ N ( A ) = K N(B) = CN = a2. 

The average of the two dose mean values from detectors A 
and B equals 

ä m , D ( A ) + i7m,D(B) _ 
2 ~ s D 

1 1 _ 1 1 _ \ = _ 
2 \ÜS(A) ÜS(B) + *7S(B) üs(A)j 

Thus the correlated additive noise has no influence on the 
results of the variance-covariance method, i f the averaging 
is performed. 
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