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Abstract. Radially restricted linear energy transfer (LET) is a basic physical 
parameter relevant to radiation biology and radiation protection. In this report 
a convenient method is presented for the analytical computation of this quantity 
without the need for complicated simulation. The method uses the energy-re- 
stricted LET LA, as recently redefined in a 1993 ICRU draft document and 
supplements it by a relatively simple term that represents the energy of fast 5 rays 
lost within distance r from the track core. The method provides a better fit than 
other models and is valid over the entire range of radial distance from track 
center to the maximum radial distance traveled by the most energetic secondary 
electrons. Lr computed by this approach differs only a few percent from the values 
obtained from explicit Monte Carlo simulations. The concept applies equally to 
heavy ions and to electrons. 

Introduction 

Different ionizing particles may have the same linear energy transfer (LET), 
but depending on velocity and charge, the microdosimetric patterns of energy 
deposition around their trajectories can be substantially different and can result 
in different relative biological effectiveness (RBE). Restricted LET can serve 
as a parameter that accounts for these differences. There are two alternative 
definitions. Energy-restricted L E T  is a concept that is most suitable in calcula- 
tions; radially restricted L E T  is more complicated, but also more meaningful 
in radiobiological considerations, especially when one deals with high-energy 
heavy ions that are of growing importance with regard to radiotherapy or radia- 
tion protection in space. Furthermore,  Lr is measurable, in contrast to L~. 
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The radially restricted LET, Lr, can be obtained through Monte Carlo com- 
putations. However, such computations are complicated and time consuming, 
and approximations are, therefore, usually employed. Several methods have been 
chosen in the past that are valid for a limited range of intermediate to large 
radial distances. In view of the improved definition and the increasing interest 
in heavy ions, it is desirable to reconsider the existing approximations and 
to seek an improved treatment that can be used in the entire range of radial 
distance, from track center to maximal radial distance traveled by the most 
energetic secondary electrons. 

Empirical expressions 

A number of approximative equations for radially restricted LET were developed 
in the past. They are attractive because of their symplicity of use. Two 
approaches have been widely used. 

Chatterjee et al. (1973) and Chatterjee and Schaefer (1976) presented an equa- 
tion for the radial energy deposition around the trajectory of a heavy charged 
particle in water, the core and penumbra model. It is assumed that excitations 
form a core of high-energy deposition in the center of the particle track, while 
the ~ electrons transport their energy away from the core and form a penumbra 
around it. The core radius r c and the penumbra radius rp in microns are set 
equal to: 

rc =0.0116/? 

rp = 0.768 E -- 1.925 ~ + 1.257 

where E is the kinetic energy of the particle in megaelectron volts per nucleon, 
fl is the speed of the particle in fractions of the speed of light. The formulas 
apply to water and to particles with kinetic energy larger than 2 MeV/nucleon. 
Outside the core region the radially restricted LET is given by 

_L~[ l + 21n (r/rc) ] 
Lr= 14 l + 2 1 ~ J  for rc<_r<_rp (1) 

According to (1), Lr increases linearly with In (r). As shown in Fig. 1, this model 
agrees well with simulated results in the penumbra region. 

Recently, Xapsos (1992) presented another simple empirical expression for 
the radially restricted LET: 

Lr _ In { rmax [-zl (2 - A/T,~ax) + I(1 -- A/Tma,,)]/I 2 } Loo (2) 
2 In (Tm,x/I) 

I is the mean excitation energy (I = 71.6eV for water vapor), Tmax the maximum 
energy of secondary electrons, and A the cutoff energy corresponding to the 
radial distance r. The range-energy relation given by Cole (1969) for air and 
collodion is used to link A (in kiloelectron volts) to r (in microns): 

A = 5.9(r + 0.007) o.565 -0.367 



8 

3 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 i 

10-4 10-2 

pro tons  i '~ wa te r  vapour  

i I i I i I ~ . I 

J~ 
,~ Cbatterjee Scnaefer's A a p r o x -  

,~ Monte Car.o SEmuia~lon ..... 

i i i 

1 100 104 

radial distance, r / /Jrn 

183 

Fig. 1. Radially restricted linear 
energy transfer (LET) in 
percentage of stopping power as a 
function of radial distance. 
Comparison of Chatterjee- 
Schaefer's approximation with 
Monte Carlo simulations 
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Fig. 2. Radially restricted LET in 
percentage of stopping power as a 
function of radial distance. 
Comparison of Xapsos's 
approximation with Monte Carlo 
simulations 

As shown in Fig. 2, the values L, obtained by Xapsos's  expression agree fairly 
well with simulations for radial distances in excess of a few nanometers.  For  
small radial distances, L, goes to 0.5 L~ ,  which is too high. 

Empirical models are simple and convenient to use, if the relevant parame-  
ters, such as core and penumbra  radii or corresponding range-energy relation, 
are known. Their validity is, however, restricted to relatively large radial dis- 
tances. 

Analytical approach 

An alternative to the empirical fits to L, has been chosen by Baum (1969). 
This approach links L, to the energy-restricted LET by adding to it a suitable 
correction term. In his formulation Baum had to refer to L~ in its conventional 
definition. Considering a cylinder of radius r that corresponds to the range 
traveled by an electron with kinetic energy of A, he noted that L , > L ~ ,  the 
missing term being the energy deposited in the cylinder by 6 electrons with 
kinetic energy larger than A. To account for this energy and to account, further- 
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Fig. 3. Radially restricted LET in 
percentage of stopping power as a 
function of radial distance. 
Comparison of Baum's 
approximation with Monte Carlo 
simulations 

more, for the inadequacy of the former definition of La, he used the formula 

d N  Lr=L~+ 13.5 -~ ~ -x  ( A -~- 13.5) (3) 

The value 13.5 eV is the mean ionization energy in producing secondary elec- 
trons. The term dN/dx is the number of collisions with energy loss of the 
particles greater than A + 13.5, which can be calculated from the Bohr equation 
for heavy ions. L~+ 13.s is the energy-restricted LET, which is to be calculated 
from the Bethe formula. The range-energy relation, which links radial distance 
r to the cutoff energy A is, as in the formulation by Xapos, taken from the 
equation given by Cole. For  protons with different kinetic energies, comparisons 
of (3) with the results of Monte Carlo simulations are shown in Fig. 3. For  
radial distances in excess of a few nanometers Baum's model agrees fairly well 
with the simulations. 

The approach chosen by Baum is sufficiently attractive to serve as the basis 
of a further improvement which makes use of the new definition of energy- 
restricted LET in the 1993 ICRU draft document (Allisy et al. 1993). 

In its new definition the energy-restricted LET contains the binding energy 
for secondary electrons with kinetic energies in excess of cutoff energy A : 

i Tm~x ) L~-pNAZ7 ,~ ai(T,E)(r+I~)dr+ ~ ch(T,E)Iidr (4) 
MA . 

and it can, therefore, replace the approximation L A + 13.5 that is used by Baum. 
When the redefined La is used, the missing term for calculation of L~ results 
only from the energy of fast 6 rays lost within distance r from the track core. 
If A is the energy of the electrons with range r, the simplest approximation 
for this missing term is that all 6 electrons with energy larger than A deposit 
a part of their kinetic energy within radius r that equals the given cutoff energy 
A. With this approximation one obtains an expression for L~ : 

L~=L~+ A ~ a~(T, E)d T (5) 
A " A (r) 
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Fig. 4. Radially restricted LET in 
percentage of stopping power as a 
function of radial distance. 
Comparison of present 
approximation with Monte Carlo 
simulations 

where o-(T, E) is the differential ionization cross section. The relationship between 
r and A is given by an equation for electrons in water from ICRU Report 16 
(1970): 

A = exp [1.8488 + 0.567173 In r -  0.019612(ln r) 2 + 0.002836(ln r) 3 ] (6) 

The results of (5) are given in Fig. 4. Comparing the results with Monte Carlo 
simulations, one sees that in the entire radial distance range (5) gives a good 
approximation for the radially restricted LET. 

Discussion 

Radially restricted LET is a basic physical parameter relevant ro radiation biolo- 
gy and radiation protection. In our study a convenient method is presented 
for the analytical computation of this quantity. The method is analogous to 
the earlier approach by Baum (1969). It improves this approach by utilizing 
the new definition of the energy-restricted LET L~. The radially restricted LET 
calculated with this method agrees well with the result of a Monte Carlo simula- 
tion, the differences being at most a few percent. A comparison with experimental 
results is not made here, as there is sufficient evidence in the literature to show 
that the results of the empirical expression, as well as Monte Carlo simulations, 
are in accordance with experimental results for larger radial distances. At small 
radial distances near the track center, however, experimental results are uncer- 
tain. Those uncertainties arise mainly from the fact that the experiments did 
not measure the energy deposition directly, but electric current or light emission 
produced by secondary electrons. At small radial distances, especially for dis- 
tances smaller than 1 nm, the Monte Carlo simulations give, therefore, more 
reliable results. The results of Monte Carlo simulations presented here agree 
well with the results given by Hamm with OREC-Code (Waligorski et al. 1986). 

The analytical approach is given in terms of interaction cross sections. Using 
the redefined energy-restricted LET, one needs ionization cross sections as they 
are given in the literature in analytical form (Rudd 1990) for the calculation 
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of L~. The method  is of general validity and  applies equally for heavy ions 
and  electrons. Since radially restricted LET  is an integrated form of radial  dose 
dis t r ibut ion,  the formula  can also be utilized to derive the radial  dose d i s t r ibu t ion  
a r o u n d  the particle trajectories. 

Appendix: cross sections used in the computations 

Protons 

For proton ~nergies considered here, the main interactions are impact ionizations and excita- 
tions. In ionization processes the semiempirical differential ionization cross sections for proton 
scattering in water vapor are used that have been derived by Rudd (1990). These cross sections 
cover the energy range up to 5 MeV. To extend their applicability to higher energies, the 
total ionization cross sections of Rudd are extrapolated by the non-relativistic asymptotic 
Bethe formula given by Inokuti (1971) for proton energies up to 20 MeV and are further 
extrapolated by the relativistic asymptotic Bethe formula for proton energies greater than 
20 MeV. The corresponding differential ionization cross sections were then renormalized by 
these asymptotic expressions. 

Excitation processes were represented by cross sections for electrons of the same velocity. 
The excitation cross sections for electron transport in water vapor are taken from a Monte 
Carlo program written by Zaider et al. (1983). The same extrapolation methods as described 
above are also used for the excitation cross sections. This treatment of excitation processes 
of protons appears to be admissible, since the values obtained with this data set for the total 
stopping power in water are in good agreement with the values given in the literature (ICRU 
Report 49, 1993). 

Electrons 

The physical data for the interaction processes, elastic scattering, excitations and ionizations 
were given in the appendix of a previous paper (Kellerer et al. 1992). We were encouraged 
to use this set of cross sections for calculations of electron transport in water vapor, since 
the cross sections reproduce the collision stopping power (ICRU Report 37, 1984) with good 
precision. 
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