
This is a repository copy of An efficient asymptotic extraction approach for the green's 
functions of conformal antennas in multilayered cylindrical media.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/42628/

Article:

Wu, J., Khamas, S.K. and Cook, G.G. (2010) An efficient asymptotic extraction approach 
for the green's functions of conformal antennas in multilayered cylindrical media. IEEE 
Transactions on Antennas and Propagation, 58 (11). pp. 3737-3742. ISSN 0018-926X 

https://doi.org/10.1109/TAP.2010.2077030

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 58, NO. 11, NOVEMBER 2010 3737

[5] G. Manara, M. Bandinelli, and A. Monorchio, “Electromagnetic cou-
pling to wires through arbitrarily shaped apertures in infinite conducting
screens,” Microw. Opt. Tech. Lett., vol. 13, no. 1, pp. 42–44, Sep. 1996.

[6] V. Daniele, M. Gilli, and S. Pignari, “EMC prediction model of a single
wire transmission line crossing a circular aperture in a planar screen,”
IEEE Trans. Electromagn. Compat., vol. 38, pp. 117–126, May 1996.

[7] T. S. Bird, “Exact solution of open-ended coaxial waveguide with
center conductor of infinite extent and applications,” IEEE Proc.

Microw. Antennas Propag., vol. 134, no. 5, pp. 443–448, Oct. 1987.
[8] T. S. Bird, “�� mode excitation of flanged circular coaxial waveg-

uides with an extended center conductor,” IEEE Trans. Antennas

Propag., vol. AP-35, pp. 1358–1366, Dec. 1987.
[9] D. G. Dudley, Mathematical Foundations for Electromagnetic Theory.

Piscataway, NJ: IEEE Press, 1994, p. 168.
[10] B. Davies, Integral Transforms and Their Applications, 3rd ed. New

York: Springer, 2002, p. 234.
[11] COMSOL Multiphysics Version 3.4 COMSOL, 2007.
[12] N. Marcuvitz, Waveguide Handbook. New York: McGraw-Hill,

1951, pp. 77–78.

An Efficient Asymptotic Extraction Approach for the

Green’s Functions of Conformal Antennas in Multilayered

Cylindrical Media

Jun Wu, Salam K. Khamas, and G. G. Cook

Abstract—Asymptotic expressions are derived for the dyadic Green’s

functions of antennas radiating in the presence of a multilayered cylinder,

where analytic representation of the asymptotic expansion coefficients

eliminates the computational cost of numerical evaluation. As a result,

the asymptotic extraction technique has been applied only once for a

large summation order . In addition, the Hankel function singularity

encountered for source and evaluation points at the same radius has been

eliminated using analytical integration.

Index Terms—Cylindrical antennas, dyadic Green’s function, method of

moments, multilayered media.

I. INTRODUCTION

Efficient computation of dyadic Green’s functions (DGF) for an-

tennas in the vicinity of a layered dielectric cylinder has been the focus

of several studies in recent years [1]–[7]. The infinite series involved

converges slowly however, or even diverge, when the source and obser-

vation points are located at the same dielectric interface, that is when

�� � � � ��. A procedure to accelerate the convergence has been in-

troduced in [4], which has been enhanced further in a subsequent study

[5]. The expressions developed in [5] can be used to model source and

field points that are at the same dielectric interface with a small az-

imuth separation ��. However, they are singular when � � ��, hence

further investigations have been reported to eliminate the singularity,

involving either a hybrid approach [6], or a small argument Hankel

function approximation [7]. In the aforementioned studies asymptotic
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Fig. 1. Cross section of a multilayered dielectric cylinder.

extraction has been considered twice; once for the proper truncation

of the infinite series as � � � where an � independent asymptotic

expansion coefficient has been introduced, and secondly as �� � �

for the efficient computation of the Sommerfeld integral. Owing to the

rather complex nature of reflections at the dielectric interfaces, the ex-

pansion coefficients have been determined using numerical approaches

such as extrapolation [5]. Asymptotic DGF expressions have then been

achieved using the Sommerfeld identity and the Hankel functions ad-

dition theorem [8].

In this article, alternative asymptotic DGF representations are de-

rived using the large order principal asymptotic forms of the Bessel

and Hankel functions [9], where simpler non-singular expressions have

been obtained together with analytic formulations of the asymptotic ex-

pansion coefficients. Use of these expressions saves computation time

and provides considerable algebraic simplifications include analytical

integration of the Hankel function singularity using the Sommerfeld

identity, so that no further measures are needed to handle the singu-

larity. Furthermore, it has been shown that a single asymptotic extrac-

tion, for larger �, is sufficient to formulate closed form DGF expres-

sions, which results in a computationally more efficient model. The

algorithm has been evaluated using a method of moments (MoM) tech-

nique where cylindrically conformal wire antennas have been analyzed.

Enhanced convergences of computed input impedances validate the ac-

curacy and efficiency of the proposed formulation.

II. FORMULATION

General representations of cylindrical DGF are given briefly in this

section based on those reported in [1], [2]. This is followed by the pro-

posed asymptotic DGF formulation, which is fundamentally different

from that presented in earlier studies [4]–[7].

A. General DGF Expansions

A multilayered cylindrical structure is illustrated in Fig. 1, where

each dielectric layer has a permittivity and a permeability of �� and

�� respectively. When the source and observation points are in the ���

layer, the spatial domain dyadic Green’s function for a conformal cur-

rent element is given by [1]
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with 
�
�����, �
���
� 
���� represent the cylindrical Bessel and

second type Hankel functions, respectively, ��� � 
� � ������ �
�������

��,and ���� is the 2 � 2 multiple reflection matrix at the

interface of layers � and �, given by [1]

������ � ������ ���������������

�
�����������������
��
������� (7)

Explicit expressions for the local reflection and transmission ma-

trices,���� and ���� , are given in the Appendix. In order to simplify

the present formulation considerably, (3)–(6) are presented in a dif-

ferent format compared to those reported in earlier studies.

B. Asymptotic DGF Expansions

When the summation index � is sufficiently large, the large order

asymptotic expansion of the Bessel and Hankel functions can be

employed. The following principal asymptotic forms [9] have been

adopted as they lead to significant simplification of the final DGF

expressions;
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where � is the Euler’s number. The large order Hankel function may

be derived using
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��� (8c)

which can be expressed as
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Since 
��������� � � for larger �, then (8d) reduces to
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Useful identities can be then attained as
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With the aid of (9), asymptotic expressions for the normalized re-

flection matrix, which is given by (38), can be obtained by the matrix

equation (10), shown at the bottom of page. The asymptotic transmis-

sion matrix can then be expressed as
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where the superscript � denotes an asymptotic form. As � increases,

local reflections at the boundaries of the �	
 layer persist while multiple

reflections from other layers’ boundaries decline significantly. For in-

stance, in a three layers cylinder it can be shown that
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For simplicity moderately thick cylindrical layers are considered

first, in which the factor �������
�� decays rapidly as � � �.

Therefore, a simplified expression for the multiple reflection matrix

can be written as

�

�

��� � �
�

��� (13)

i.e. the multiple reflections matrix asymptotes to the local counterpart

for larger �. With no loss of generality, a recursive formula can be

expressed as
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Numerical computations of (14) may result in�
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owing to under-flows in the computations of Bessel functions when

� � �. Therefore, normalized expressions have been employed in

which � independent asymptotic matrices are developed as shown in

(10), which must then be multiplied by the Bessel and Hankel functions

de-normalization factors given in (34), (35) to obtain�
�

�����. Then sub-

stituting (14) in (6) provides
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where two terms of (6) have been eliminated owing to the aforemen-

tioned factor of ���������
��. Asymptotic expressions for the DGF can

then be obtained by substituting the elements of (16) into the (2)–(5).

Hence computationally efficient expansions can be achieved by sub-

tracting the spectral asymptotic expansion elements from, and subse-

quently adding their Fourier transforms to, the overall DGF compo-

nents. For example, 
�� can be expressed as
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In earlier studies, no analytical expression has been formulated for

the asymptotic expansion coefficient �����, hence it has been deter-

mined numerically [5], [7]. As a result, it wasn’t possible to make a di-

rect use of the Sommerfeld identity for integrals such as (18). Instead,

the addition theorem was used to replace the infinite summation by the

Hankel function 	
���
� ���������������, with the singularity at ��� � ���� han-

dled using the small argument approximation [7]. Furthermore another

level of asymptotic extraction has been used as �� � � for the effi-

cient computation of the Sommerfeld integral in (18).

In the present study, an analytic expression for����� can be deduced

from (16) for each of the spatial asymptotic DGF components. In the

case of 
�
�� , the expansion coefficient can be derived as
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where �� � ����� ��������������, ���� � ����������������
���, ���� � ��� � ��������� � �����, and �� � ��� � ��������� �
�����.

With the aid of (8), the following asymptotic identities can be defined
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where �� � ��� �� and ���� � ���������. As a result, (19) can be

written as
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In the same way it can be shown that
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Therefore, 
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�� may be obtained by substituting (21) in (18), that is,
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It can be seen from (23) that 
�
�� has been decomposed into three

terms; the first represents radiation from a source in an infinite homoge-

nous medium while the remaining two correspond to reflections at the

boundaries of the �
� layer. Further, each term consists of a �� indepen-

dent coefficient that is multiplied by a Bessel and a Hankel function.

Hence, these terms can be integrated analytically using the Sommerfeld

identity in conjunction with the Hankel function addition theorem, that

is, [8]
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The closed form representation of ��
�� can then be written as
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�� � �	�
� ������ ���, � � 
,


 � 	, and � � �� � ���� � �			� 			���. Thus numerical evalua-

tion of the improper integral involving �
���
� �����			 � 			��� has been

avoided. As a consequence of this, simplified asymptotic DGF expan-

sions have been developed by employing asymptotic extraction once

only. It should be noted that numerical computation of (17) has been

implemented using (22) for the subtracted asymptotic component. This

is because the closed form representation of ��
�� has been obtained by

employing (21), and a valid asymptotic extraction requires the subtrac-

tion and addition of the same quantities.

The asymptotic expressions developed so far involve two quasi-static

images that correspond to local reflections at the boundaries of a mod-

erately thick cylindrical layer. For thinner layers, local reflections at the

adjacent boundaries need to be incorporated into the model. This can

be achieved by extracting two more quasi static images from the spec-

tral domain Green’s function, which are then added back in the closed

form DGF representation. Again taking ��
�� as an example therefore,

from (22)
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Following a similar procedure, asymptotic expressions for the other

DGF components can be accomplished as
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Closed form representations of (28)–(30) can then be obtained using

(24) in conjunction with the following identity
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which gives a unified asymptotic DGF expansion as
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It should be noted that employing (32) provides further simplifi-

cations in the ��


 expression as it eliminates a few highly singular

closed-form terms that appear in previous investigations [5]. The spec-

tral domain components have been computed using a deformed path

in the complex �� plane of the Sommerfeld integral, where the first

term of (17) has been sampled uniformly along that path and approxi-

mated into discrete complex images form using the generalized pencil

of functions (GPOF) method [10], [11] and then transformed into the

spatial domain, as previously reported in [1], [2].



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 58, NO. 11, NOVEMBER 2010 3741

Fig. 2. Input impedance of a � directed dipole of length � when the antenna is
placed at dielectric interface, approaching it from either layer � � � or � � �.

III. RESULTS

The significance of the proposed solution is demonstrated using an

MoM model of a conformal wire dipole, printed on an interface be-

tween two cylindrical dielectric layers surrounding a PEC core. Non

magnetic dielectric layers have been considered, i.e. �� � ��. Each

dipole is divided into eleven segments of equal length ��. Piecewise

sinusoidal expansion and testing functions, given by ���������� ���

������ ���������, are employed in a Galerkin’s MoM procedure. Ex-

citation is provided by a delta gap source at the center of the dipole,

and the thin wire approximation has been adopted in which the source

and observation points are located at �� � � � ��, �� � �, and � � �,

where � is the wire radius. Following an example reported in [12], the

geometry of Fig. 1 is considered assuming the PEC cylindrical core

has a radius of �� � 		�
 �� and is covered by a dielectric substrate

with a relative permittivity of 	�� � 
��� and a thickness of 1 cm

with 	�� � 	�� � 	. A 
 directed printed dipole driven at 6 GHz

is modelled at the interface between layers � � 	 and � � 
 using a

wire radius of 0.0125 cm. The computed input impedance of this an-

tenna is illustrated in Fig. 2, where it can be observed that good agree-

ment has been achieved compared with the results reported in [12]. The

dipole has been modelled approaching the interface from each side,

and as expected the input impedance is the same in both cases. This

example demonstrates the validity of the suggested approach in the

analyses of printed antennas when ��� � ����. Fig. 3 illustrates the con-

vergence of the input impedance as a function of the number of terms

in the infinite summation of spectral elements for a particular dipole

length of ��
 � ���, where it can be seen that the impedance con-

verges using approximately 30 terms when the proposed approach is

employed, whereas non convergent results are obtained if the method

reported in [1], [2] is implemented directly. This is to be expected when

no asymptotic extraction is employed, as has been mentioned in earlier

studies [4]–[7]. A 
 directed dipole of length ��
 � ��� is next mod-

elled at the interface between 1 mm thick dielectric layers 	�� � ���,

	�� � 
��� and 	�� � 	, having a PEC core radius of 12.6 cm at

6 GHz. The input impedance is illustrated in Fig. 4, where it is evident

that convergence has been attained using 70 terms irrespective of the

direction of approach to the interface. As another validation, the mutual

impedance between two � directed current sources has been calculated

and compared to that reported in [7] with good agreement as shown in

Fig. 5 using the parameters given in the aforementioned article.

Fig. 3. Convergence of the input impedance of the � directed printed cylin-
drical dipole for ��� � ���, where � refers to the antenna’s layer.

Fig. 4. Convergence of the input impedance of a � directed cylindrical dipole
printed at the interface of thin dielectric substrates when ��� � ���.

Fig. 5. Mutual impedance between two � directed current sources printed on a
two-layer dielectric cylinder when � � ���� .

IV. CONCLUSION

A new approach to compute the DGF for antennas in the vicinity

of layered cylindrical media has been introduced, where simplified

closed form expressions have been obtained and validated for the

spatial asymptotic DGF components. These expressions have been
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achieved through a single application of asymptotic extraction for

larger �. This results in a significant saving in the required compu-

tation time as it eliminates the need for another level of asymptotic

extraction for larger �� as well as the need to determine the expansion

coefficients numerically. Furthermore, the Hankel function singularity

when ��� � ���� has been handled through analytical integration. A

simplification in the formulae for the spectral asymptotic expansion

elements has also been achieved. The model’s advantage reduces as

the radial distance between field and source points increases as well as

when the antenna is not located close to a dielectric boundary.

APPENDIX

The local reflection and transmission matrices can be defined as [1]
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�����������
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where the matrix � can be expressed in a convenient form as
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