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Abstract — A generalised formulation of microdosimetry clarifies the linkages berween the spatial distribution of energy
deposits, their proximity function, and the specific energy. The role of the proximity function suggests that it may replace,
for varicus purposes, the inchoate distribution. The Fourier transform of the proximity function is the product of the
Fourier transform of the inchoate distribution with its conjugate. This operation causes the loss of phase information, and
the reconstruction problem — the reconstruction of the inchoate distribution from its proximity function — can,
therefore, not be resolved by a mere deconvolution, For any finite peint pattern one can, however, show that its
proximity function permits, in principie, the reconstruction. Numerical examples with 2-dimensional patterns of up to 30
points have consistently ted (o unique solutions, apart from reflections. While there is a finite algorithm, it is readily seen
that the number of steps becomes excessive when the number of points in the patiern increases. The reconstruction
ptoblem can, thus, be solved in principie but not necessarily in practice. A more general approach must thus be based on
numericzl optimisation. The algorithm starts with an assumed initial point pattern and utilises a suitable measure for the,
difference between its proximity function and that of the original pattern. Minimising this difference can lead to the
original or to a similar pattern. With simple algorithms one obtains convergence only for patterns of few points; but
improved optimisation methods are likely to provide more general solutions.

INTRODUCTION

The evolution of microdosimetry has been largely
determined by the available experimental
techniques. The familiar parameters of radiation
quality are, therefore, closely linked to
measurements. In recent years, however, there has
been an increasingly important role for particle
track simulations. As emphasised in a preceding
contribution to this symposium!", there is a need for
closer links between the practical and the theoretical
aspects.

Important quantitics in theoretical
microdosimetry and in track simulation are closely
related to concepts and algorithms of stochastic
geometry. The inchoate distriburion of energy
transfers, i.e. the pattern of energy imparted to
matter by charged particles, results from a spatial
random process, and biophysical arguments in terms
of microdosimetry can, therefore, employ a variety
of geometric theorems that apply to the random
overlap of patterns of energy deposits and the
spatial distribution of critical tar%ets in the cell. A
theorem of great generality’™ expresses the
variance of the overlap in terms of the point-pair
distance distributions, and in its application to
micredosimetry it provides the fundamental
formula”® for the dose mean lineal energy, ¥p.
which is the most commonly invoked parameter of
radiation quality:

o [T os(x)-t(x
1 is the mean chord length of the reference region,
while s(x) is the proximity function of the reference

site (or its substitute, the detector) and t(x) is the
proximity function of the inchoate distribution. The
latter is the energy weighted distribution of distances
between enmergy deposits and, as such, a basic
characteristic of the pattern of energy deposition® ),

The general nature of Equation 1 and various
other applications of the proximity function suggest
a further exploration of the properties of t(x). The
present contribution will deal with one aspect that is
of basic mathematical interest, although it appears
too complex to permit definite solution. This is the
question of whether the proximity function, if
known with sufficient precision, contains, in
essence, the full information on the spatial
distribution of energy imparted. If one had a
method to reconstruct from the proximity function
the original pattern of energy deposits — or patterns
that are in a stochastic sense largely equivalent —
the question would be answered positively. The
proximity function could then be utilised as a
universal 100l and would be a compact but complete
description of radiation quality.

The subsequent considerations can merely outline
the problem, but they may stimulate further
investigations and may thus lead to an improved
theoretical basis of microdosimetry. As a first step
certain essential properties of the proximity function
need to be reconsidered. A subsequent section will
then explain the reconstruction preblem and a
tentative approach to its eventual solution.

AUTOCORRELATION AND PROXIMITY
FUNCTION

A preceding contribution to this symposium('’ has
referred to the concept of the directional proximity

193



J. BRECKOW, H FRIEDE, K. HAHN. H. ROOSand A. M. KELLERER

Autocorralation
25(x) ——————» £(x)
Foutier
Transform Fourler
I Transform
Multiplics tion
Zwy ————— T{W) = Z{w)-Z*(w)
= |2(w)|?

Zo{x): inchoate distribution

Z{w}: Fourier transform of z(x)
t{x): directional proximity function
T(w): Fourier transiorm of t{x)

Figure 1. The autocorrelation of the original function zy(x)

corresponds to the multiplication of the Foutier transform,

Z{w), with its conjugate complex, Z*(w). The latter

operation distegards phase information, and is, therefore,
not reverstble.

function, or the covariogramme, which is identical to
the familiar autocorrelation function:

10 = p | wxt)n @ &/ [z ds @)

where 2, (x) is the spatial pattern of energy deposits,
€;, at the transfer points, x;:

%) = =3 & 3(x—x) ®
Pri=1

where p is the density of the material,

The directional proximity function is somewhat
too complex to have practicai applications in
microdosimetry; it can, however, be helpful as a
mathematical tool and has, as such, found useful
applications®®). Of special interest is the utilisation
of the Fourier transform which converts a
convolution into a mere multiplication (Figure 1),
The interrelations that are indicated in Figure 1
might, at first sight, suggest the possible inversion of
the opecration that turns the inchoate disribution,
Zg(x), into the autocorrelation function. However,
the Fourier transform of the autocorrelation
function is the product of the Fourner transtorm of
Zy(x) with its (complex) conjugate and this implies
the loss of phase information. It is for this reason
that the process permits no straightforward
inversion.

A solution in terms of the directional proximity
function could, nevertheless, be achieved. But this is
of theoretical interest only, because of the
impracticality of numerical calculations with t(x). A
guestion of far greater pragmatic interest is whether
the reconstruction problem might be sclved even on
the basis of the familiar proximity function, t(x),
which i1s a directional average over the
autocorrelation functiont!,
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THE ASSOCIATION OF DISTANCES

This paragraph will first demonstrate — by very
simple considerations — the possibility ‘in principle’
of the reconstruction. But it will be seen that the
solution becomes impracticable whenever one deals
with even a moderate number of points in a pattern.

For the purpose of the subsequent consideration a
simplification of the actual microdosimetric problem
will be employed. Instead of the proximity function
of a stochastic ensemble of point patterns, we will
consider the proximity function of single point
patterns, i.e. of single realisations of a siochastic
process. In a further simplification all points in the
pattern will be assigned equal weight,

A pattern of n points is associated with
m=n(n—1)/2 distances. f the association between
the distances were known, the reconstruction would
be straightforward.

The notion of the association of distances can be
understood by assuming that the points are
numbered from 1 to n, and that x;, is the distance
between points i and k; the pattern is then
characterised by a symmetrical matrix, X:

0 X2 Xp3 : X1n
X2 0 X : Xz
X= X33 Xp 0 : X3y (4)
Xn1 Xoz Xp3 - 0

It is sufficient to consider one triangular part of the
matrix; from the ordered set of m distances one can
then readily reconstruct the point pattern. In the 2-
dimensional example this corresponds to the
problem of reconstructing a map of the location of
cities from thex mutnal distances.

The proximity function gives the m distances but
not their association. However, there is only a finite
number of possible associations and from this one
concludes that, in priaciple, one can reconstruct the
original pattern from the proximity function by
forming all possible associations and by attempting
the reconstraction in each case. There is, of course,
ne certainty that the reconstruction has only one
solution. But if the selution is not unigue, one is, at
least, certain to obtain the original pattern as one of
the solutions.

The somewhat striking conclusion is, that the
reconstruction problem has a solution. It would
however be a fallacy to infer from this fact the
necessaty existence of a practicable solution. Te
understand the problem one may consider the
number of possible associations of the distances.

There are m! possibilities to order the distances
into the triangular scheme. The number of
‘essentially  different’  associations is  smaller,
because the numbering of the n poinis is arbitrary
and without effect on the spatial patterns. The
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number of ‘essentially different’ associations is
therefore:

E!: {n{n—1)/2)!

M=n! n!

(5)
Table 1 gives the values m for point numbers up to
n=12. It is evident that the simple method of
exhausting all associations is impracticable for n>6.
One concludes, therefore, that the reconstruction
problem can be solved in principle, but not
necessarily in practice.

THE PROBLEM OF MULTIPLE SOLUTIONS

The reconstruction problem would be of
comparatively little interest if there were a large
number of solutions to the same proximity function.
This aspect of the problem will, therefore, be briefly
considered in general terms and will then be
examined by some numerical computations.

Although 1t may be difficult to obtain general
statements, one may intuitively expect, that the
solution is — apart from translations, rotations, and
reflections — unigue or that there is at most a small
number of solutions. This expectation is based on
the simple observation that the problem is largely
overdetermined for a sufficiently large point
pattern. Consider the k-dimensional case, There are
then k-n coordinates of the points, but translation
and rotation of the pattern reduce the number of
degrees of freedom to k(n--2)+1. The proximity
function, on the other hand, contains the
m=n(n—1)/2 distances as parameters, and Table 2
shows that, even for moderate point aumbers, the
problem is substantially overdetermined. The
conclusion is that an arbitrarily chosen increasing
step function will not be a proximity functions, and
that a proximity function may have multiple
solutions only in exceptional cases where there are

Table 1. Nember of points in a pattern, the corresponding
number of point—pair distances and the total number of
distance associations.

certain symmetries in the point patterns (see, for
example, Reference 7). It will be of particular
interest to identify conmstraints that a monotonous
function must meet to be a proximity function, but
the problem transcends the scope of this
contribution.

Since general conclusions are difficult, we have
examined the uniqueness of the solutions of the
reconstruction problem by numerical examples. As
shown in the preceding section, the exploration of
all distance associations is impracticable. If,
however, the distances are precisely known, the
problem is greatly simplified. Entire classes of
associations are then readily seen to be impossible,
and a finite algorithm becomes possible.

For simplicity we have examined merely the 2-
dimensional case. Beginning with the largest
distance, x.,. one can search for five more
distances that are able to form with x,., the four
sides of a quadrangle and its two diagonals, Once
this initial quadrangle is determined one proceeds to
find triplets of distances that connect a further point
to a triplet of points that have already been
constructed. "This finite algorithm is feasible with
patterns of up to about 30 points, and then requires
computing times which can be many hours on a PC.

Figure 2 shows examples of patterns that have
been reconstructed by this straightforward method.
They are arbitrarily selected from several dozen
cases that have been computed, and the essential
point in the present context is that the inferred
patterns were in all cases identical to the initial
patterns or their mirror images. This suggests that
the reconstruction problem has, in essence, unique
solutions. The explicit computations have been
utilised merely to explore the problem of the
uniqueness of reconstructed patterns. It is not a
suitable general procedure because it requires
precise knowledge of the distances and because it
leads to excessive computing times for point
numbers in excess of about 30. It is also considerably
more time consuming in the 3-dimensional than in
the 2-dimensional case.

Number of Number of Number of Table 2. Number of points in a paitern, the corresponding
points, distances, associations, number of degrees of freedom of coordinates in different
n m = n({n=1)/2 M=m!n! dimensjons, and the number of point—pair distances.

3 3 1 Number of Number of degrees of freedom Number of
4 6 30 points, of coordinates distances,
5 16 ) 30,240
6 15 1.8x10° n R! R? R’ m
7 21 1.0x10'
8 28 7.6x10% 5 4 7 10 10
9 36 1.0x 10% 10 9 17 25 45
10 45 3.3x10% 20 19 37 35 190
11 55 3.2%10% 50 49 97 145 1225
12 66 11x10% 100 9% 197 295 4950
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Figure 2. Examples of 2-dimensional point patterns and their proximity functions. These point patterns — and a
considerable number of further examples — have been reconstructed directly from their proximity functions; all solutions
were, apart from reflections, identical to the original patterns.
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Figure 3. Original pattern, randomiy chesen initial pattern, and the soluticn of the optimisation procedure. The lower
panels give the corresponding integral proximity functions. The solution is congruent to the original pattern.
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USE OF OPTIMISATION PROCEDURES

Since there is no practicable finite algorithm for
large patterns, one may base — as in similar
mathematical problems — the search for solutions
on optimisation algorithms. Such algorithms can,
even for functions of many variables, identify
maxima or minima. To solve the reconstruction
problem, one needs to ‘guess’ an initial point
pattern, determine its proximity function, and
choose a suitable measure to quantify its deviation
from the proximity function of the unknown original
pattern. Varying the assumed paitern one can then,
by use of the optimisation algorithm, identify the
minimum of the measure of the deviation and,
thereby, search for the original pattern.

We have formulated an optimisation algorithm in
terms of the sumn of the squares of the differences
between the ordered distances. The conjugate
gradient algorithm then requires for each iteration
step the reordering of distances between point pairs
before the computation of the ‘economic function’
that measures the deviations between the proximity
functions.

The large number of potential associations of
distances suggests that the optimisation proccdure
may frequently converge toward secondary minima,
instead of the absolute solution; it is also not
unlikely that the facility of convergence depends
greatly on the complexity of the underlying pattern,
with easiest convergence for a uniform random
distribution of points. The question of convergence
is central to optimisation problems, but we have not,
at this stage, employed the various techniques to
overcome the difficulty.

The unrefined application of the conjugate
gradient algorithm converges adequately only for
small point numbers. Figure 3 gives the example of a
pattern of six points and the corresponding integral
proximity function which was readily identified.
Figure 4 gives an example of incomplete
convergence, where the derived pattern is
substantially  different from the original
configuration, atthough the proximity functicns are
nearly the same, at least on a linear scale of
distances.
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Figure 4. Original pattern and the solution of the

optimisation procedure in a case of incomplete

convergence. The corresponding proximity functions

(lower panecls) are largely equal, but the patterns differ
considerably.

The incomplete convergence highlights the
difficulty of the reconstruction problem, but one
must note that the remaining differences of the
proximity functions appear more substantial on a
logarithmic scale of the distances, which indicates
that a more suitable ‘economic function’ may lead to
improved convergence. One notes, furthermore,
that two patterns may appear very different over all,
but may nevertheless exhibit largely equivalent
stochastic properties, as they are relevant for the
problems of microdosimetry.

The reconstruction problem is far from a solution
but it points towards a multitude of questions that
are essential to a Dbetter understanding of
microdosimetry and any numerical description of
radiation guality.
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