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The tumor suppressor p53 exerts important protective functions towards DNA-damaging agents. Its inactivation 
by allelic deletions or point mutations within the P53 gene as well as complex formation of wildtype p53 with cellular 
or viral proteins is a common and crucial event in carcinogenesis. Mutations increase the half-life of the p53 protein 
allowing the immunohistochemical detection and anti-p53 antibody formation. Distinct G to T point mutations in 
codon 249 leading to a substitution of the basic amino acid arginine by the neutral amino acid serin are responsible 
for the altered functionality of the mutant gene product and were originally identified in 8 of 16 Chinese and 5 of 
10 African HCC patients. Both groups are frequently exposed to mycotoxin contaminations of their food. Today an 
average P53 gene mutation rate of 25% is assumed for high-aflatoxin Bi-exposure regions. This is double the rate 
observed in low-aflatoxin Brexposure countries. Although many HCC patients displaying P53 mutations also suffer 
from HBV infection, which itself can lead to rearrangements of P53 coding regions or induce the synthesis of viral 
proteins possibly interacting with p53, the specific G to T transversion within codon 249 of the P53 gene seems to 
directly reflect the extent of aflatoxin Bi exposure. 
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Hepatocellular carcinoma (HCC) represents one of 
the most common lethal tumors worldwide (1) and ac- 
counts for up to 30% of all types of malignant tumors 
in South East Asia and south and equatorial Africa. 
Chronic hepatitis B and C virus (HBV and HCV, respec- 
tively) infection, cirrhosis and aflatoxin Bi exposure are 

considered the major aetiologic factors of HCC develop- 
ment (2). Molecular biological techniques have increas- 
ingly elucidated the pathogenic mechanisms which 

induce or maintain malignant hepatocyte transforma- 
tion, and have provided evidence that inactivation of the 
tumor suppressor p53 is a common and crucial event in 
carcinogenesis. 

The P53 gene - -  normal and deranged functions 

The P53 gene, located on the short arm of chromo- 
some 17 (17p13), encodes a nuclear phosphoprotein 
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which was originally identified as forming complexes 
with the large T(umor) antigen of the Simian Virus 40 
(3). Wildtype p53 protein contains at least three func- 
tionally active domains (Fig. l). The carboxyterminus 
harbours an oligomerizing function that allows p53 
tetramer formation (4) and a DNA-binding activity. A 
transcriptional trans-activator function resides in the 
aminoterminus (5,6), which is involved in the control of 
transcription by regulating the interaction of DNA 
polymerase-alpha with other components of the DNA 
replication complex (7). Whereas wildtype p53 is not re- 
quired for normal ontogenic development in mice (8), it 
seems to exert pivotal protective functions as "guardian 
of the genome" (9): DNA-damaging agents like ultravi- 
olet light, gamma-irradiation or certain chemotherapies 
(10) stimulate intracellular accumulation of p53. In high 
concentrations p53 inhibits DNA replication and cell 
growth thus providing sufficient time for DNA repair or 
;allowing cytolysis, if the damage exceeds the restoring 
capacity of the cellular DNA repair systems (9). 

Inactivation of the tumor-suppressing potential can 
be achieved by (l) allelic deletions or (2) point mutations 
within the P53 gene as well as by (3) complex formation 
of wildtype p53 with cellular or viral proteins (Fig. 2). 
Abnormal structure and expression of the P53 gene are 
observed in various hepatoma cell lines (l 1). HBV DNA 
integration can take place in the short arm of human 
chromosome 17 (12) near P53 sequences (13) and struc- 
tural rearrangements and subsequent aberrant tran- 
scription of the P53 gene were found in both hepato- 
carcinoma cell lines and HCC tissues (14). In clonogenic 
assays using human fibroblast cell lines it was recently 
demonstrated that the disruption of one P53 gene, with 
the concomitant reduction of p53 protein levels, was not 
sufficient to induce increased endogenous gene amplifi- 
cation considered to represent a preneoplastic condition 
in this system. However, the loss of both P53 alleles in 
these cells resulted in an increased rate of amplifications 
in association with the failure to arrest growth (15). 

Point mutations are present in P53 cDNAs derived 
from astrocytomas, breast cancers, small cell lung 
cancers, esophageal cancers, osteosarcomas, rhab- 
domyosarcomas and colon cancers (7). Germ line P53 
mutations occur in families with the Li-Fraumeni syn- 
drome with autosomal dominantly inherited risk of 
diverse myesenchymal and epithelial neoplasms at mul- 
tiple sites (16,17). Almost 90% of these mutations are 
clustered in four regions of exons 5-8 of the P53 gene 
(18; Fig. 1). Point mutations affect distinct base pairs 
and result in the substitution of single amino acids. G to 
T transversions detected in codon 249 in human HCC 
(19,20) lead to a substitution of the basic amino acid 
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Fig. I. Genomic organisation of human P53, which consists of I I 
exons (numbers above) and l0 introns (white boxes). The hatched grey 
bars represent non-coding regions from which mRNAs are tran- 
scribed. The exons in black reflect preferred regions for point muta- 
tions. Interrupted white bars indicate a distance of l0 (intron I) and 
approximately 2.5 kb (intron 10), respectively. The encoded p53 pro- 
tein is given below the gene sequence, a: trans-activating domain, b: 
oligomerizing domain, c: DNA-binding domain of p53 protein. Size 
markers in kb (kilobases) and aa (aminoacids), respectively. The same 
pattern of coloration was chosen for correspoding exons and protein 

domains. 

arginine by the neutral amino acid serin and may ex- 
plain the functional alteration of the mutated protein. 
These mutations are all the more important since no 
mutations are observed in any other region of exons 5-8 
of P53 or in non-tumorous tissues of the same patients. 
Furthermore, while no P53 mutations were detectable in 
early HCC stages as classified by histological evalu- 
ation, abnormalities of the P53 gene were shown in eight 
of 22 advanced HCCs (21). In six of seven cases of these 
advanced tumors, the P53 gene aberrations were 
significantly associated with the loss of heterozygosity 
or alteration of a second tumor suppressor gene, the 
retinoblastoma Rb gene (21). This emphasizes the 
relevance of structural P53 aberrations in advanced 
stages of disease and supports the hypothesis that an 
accumulation of mutations in tumor suppressor genes is 
important for tumorigenesis. 
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Fig. 2. Schematic illustration of the tumor suppressor function of 
wildtype ,o53 (wtp53). Possible modes of inactivation of p53 by point 
mutation (A, rap53), allelic deletion or complex formation with viral 
(E6, EIb) or cellular (MDM2) proteins and the consequences for the 

cell cycle are depicted below. 
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Mutant p53 proteins have lost the ability to act as 
tumor suppressors in transfection assays. While wild- 
type p53 can suppress transformation in oncogene co- 
operation assays between c-myc and c-ras, mutated p53 
can gain transforming potential (22). Mutations increase 
the half life of the normal p53 protein several times and 
result in the translation of a more stable protein that can 
be detected with immunohistochemical methods and in- 
duces anti-p53 antibody formation in more than 25% of 
HCCs (23). The diagnostic efficiency of anti-p53 anti- 
body determination in detecting P53 gene mutation, 
however, remains to be elucidated. When monoclonal 
anti-p53 antibodies were used to stain tissue sections, 
overexpression of P53 was shown in 9 of 58 HCC 
specimens (24). This indirect detection of P53 mutations 
may, however, underestimate the actual frequency of 
gene mutations, because it will not recognize allelic dele- 
tions or codon stop introductions which lack protein 
translation. On the other hand, p53 protein analysis may 
also overestimate the prevalence of gene mutations since 
other mechanisms of protein stabilization such as inacti- 
vation ofp53-degrading enzymes or complex formation 
may play an important role. By forming heterologous 
oligomeric complexes with wildtype p53s mutated p53 
inactivates wildtype p53 and antagonizes its tumor sup- 
pressing potential (25,26). The oncoproteins Elb and E6 
of the adeno- and papilloma viruses, respectively, are 
further examples for p53 inactivating binding partners 
(27), which are derived from DNA tumor viruses. 
Recently, co-immunoprecipitation experiments iden- 
tified the MDM2 protein, which was encoded and 
originally described on a mouse double minute chromo- 
some but overexpressed in human sarcomas, as the first 
cellular binding counterpart of p53 (28, Fig. 1). Prelimi- 
nary data suggest that no p53 mutations occur if MDM2 
gene amplification is present. As with viral oncopro- 
teins, large amounts of MDM2 protein may complex 
and inactivate wiidtype p53 (28). 

Aflatoxins and HCC 

There seems to be a geographical correlation between 
P53 codon 249 mutation in HCCs and aflatoxin Bl up- 
take. The described point mutation was originally found 
in eight of 16 Chinese and five of 10 African patients 
(19,20) with both groups living in regions with tradi- 
tionally high exposure to mycotoxins. None of these 
mutations were detectable in 20 patients with HCCs 
recently studied in Great Britain (29). Only two of 13 
HCC DNAs from Germany displayed a C to T and a T 
to A transversion, respectively, in codons 257 or 273, but 

not in codon 249 (30). In all of the latter countries the 
environmental aflatoxin uptake is low. More recent 
studies claim a P53 gene mutation rate of 25%for  high- 
aflatoxin Brexposure regions (31). This is twice the rate 
observed in Iow-aflatoxin Brexposure countries, but 
still considerably less than previously assumed. Data 
from 167 patients with HCCs from various geographic 
areas differing in daily mycotoxin exposure also support 
the notion that codon 249 mutations of the P53 gene are 
directly associated with high aflatoxin uptake (32). Afla- 
toxin B t, the main food contaminating mycotoxin in 
China and Africa, is a fungal metabolite, mostly from 
inappropriately stored grain and is known as a 
hepatocarcinogen and epidemiologically defined risk 
factor for HCC development in different species (32,33). 
The involvement of aflatoxins, bioactivated by P450 iso- 
enzymes (34), in the observed G to T point mutations 
seems even more likely, because they specifically induce 
G by T substitutions by reacting almost exclusively with 
DNA guanines at the N7 position (35). 

Since many HCC patients investigated for p53 muta- 
tions also suffer from HBV infection, the relative impact 
of these factors in the development of HCC is difficult 
to establish. Integration of HBV DNA during infection 
leads to manifold rearrangements of cellular DNA that 
can also affect P53 coding regions. Furthermore HBV 
DNA integration induces the synthesis of HBV trans- 
activator proteins (36-39) which may inactivate p53 by 
complex formation. However, the specific G to T point 
mutation within codon 249 of the P53 gene in HCC 
DNAs is not pathognomonic for all HCCs but seems to 
directly reflect the extent of aflatoxin Bi exposure. 
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