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The volatilization of fluorine from three melts in the system N a 2 0 - A 1 2 0 3 - S i O  2 has been investigated at 1 atm 
pressure and 1200-1400°C. The melts chosen have base compositions corresponding to albite, jadeite and a per- 
aluminous melt with 75 mole % SiO 2. Melt spheres were suspended from platinum loops in a vertical tube furnace in a 
flow of oxygen gas, then quenched, sectioned and analysed by electron microprobe. The microprobe scans indicate that 
transport of fluorine to the melt-vapor interface is by binary, concentration-independent interdiffusion of fluorine and 
oxygen. F-O interdiffusivity increases in the order albite < peraluminous<jadeite. There is no simple reciprocal 
relationship between F-O interdiffusivity and melt viscosity. Comparison with data on high-pressure interdiffusivity of 
fluorine and oxygen in jadeite melt indicates that F-O interdiffusivity increases with pressure from 0.001 to 10 kbar 
while the activation energy remains unchanged. 

Fluorine chemical diffusivity in albite melt is substantially lower than H20 chemical diffusivity in obsidian melts 
suggesting that different diffusive mechanisms are responsible for the transport of F and H20 in igneous melts. 
Fluorine diffuses in albite melt via an anionic exchange with oxygen whereas water probably diffuses in obsidian melt 
via an alkali exchange mechanism. 

1. Introduction 

Our  unders tand ing  of diffusive t ransport  in 
silicate melts is still very poor. In particular,  data 
on anionic  diffusivities is lacking. Invest igat ion of 
anionic  diffusivities in silicate melts is impor tan t  
for a better  unders tand ing  of the coordina t ion  of 
anions  in the melt structure and for calculat ion of 
equi l ibrat ion rates in igneous melts dur ing petro- 
genesis. Examples of f luorine-rich igneous rocks 

are widespread [1-5] and their t ranspor t  proper-  
ties may be significantly affected by fluorine. For  
these reasons, the following study was under taken  
to investigate the t ranspor t  of fluorine in silicate 
melts. The volati l ization of f luorine from silicate 
melts has been investigated by several workers 
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using weight loss a n d / o r  bulk chemical analysis 
techniques [6-9] and  the present  study uses the 
relatively high volatili ty of f luorine in melts in the 

Na20-AI203-S iO 2 system to investigate f luorine 
diffusion in these silicate melts. This system was 
chosen because the structure and  physical proper- 
ties of melts in the base system has been investi- 
gated by various workers [10-14] and the norma-  
tive composi t ions of many  fluorine-rich igneous 
melts conta in ing  greater than 50 mole % of feld- 
spars + feldspathoids are well-represented by this 
system. 

2. Experimental method 

The three melts investigated have f luorine-flee 
composi t ions  corresponding to albite, jadei te  and  
a pera luminous  melt  with 75 mole % SiO 2. Fluo-  
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rine was included in the melt compositions by 
substituting 2A1F 3 for some of the A120 3 of the 
base composition. Thus the substitution is essen- 
tially two moles of fluorine for one mole of oxygen, 
denoted by the exchange operator, F20_ 1. The 
starting compositions were synthesized from re- 
agent grade sodium carbonate, alumina, aluminum 
fluoride and purified quartz sand. Carbonate + 
oxides+ fluoride equivalent to a decarbonated 
weight of 600 grams were mixed thoroughly for 12 
hours and then fused in a 10.5 cm long by 5.5 cm 
diameter platinum crucible for 6-10 hours at 
1600°C to ensure homogeneity and escape of air 
bubbles. 

Na, A1 and Si contents of quenched melts 
(glasses) were determined by energy dispersive 
analysis using an ARL-SEMQ microprobe fitted 
with an EEDS-ORTEC energy dispersive system. 
Operating conditions were a 15 kV accelerating 
voltage, a 4 nA sample current and 240 second 
count times. The beam was rastered over a 20 x 20 
~m area, a technique which proved adequate for 
avoiding volatilization of Na or F during analysis. 
The homogeneity of each glass was confirmed for 
Na, A1 and Si by analysing six spots on each glass. 

Fluorine contents of the starting materials were 
determined by neutron activation analysis. Twelve 
replicates of each glass were determined against a 
curve for reagent grade CaF 2. The technique was 
verified with NBS standard glass SRM 91 (5.72 
wt.% F). Fluorine contents were combined with 
the raw spectra for Na, AI and Si as input for 
EDATA2 [15] allowing full ZAF reduction of the 
Na, A1 and Si data (Table 1). 

TABLE 1 

Analyzed melt compositions a 

Na AI Si F O Total 

Albite 8.31 9.15 31.54 5.8 44.5 99.30 
Jadeite 11.17 12.75 26.72 6.3 43.0 99.94 
Peraluminous 6.14 10.87 31.58 5.4 45.5 99.49 

a Na, AI and Si determined by electron microprobe; F de- 
termined by neutron activation analysis; O by stoichiometry. 
Errors for microprobe data expressed as percent of the 
amount present at 3 standard deviations: Na (4.3%), AI 
(2.0%), Si (1.0%). Errors in fluorine determinations are +0.1 
wt.% F at 1 standard deviation. 

Selected chips of glass were ground into spheres 
by using the method of Bond [16]. Spheres of glass 
(4-8 mm diameter) were suspended from platinum 
loops in an electrically-heated vertical tube fur- 
nace, equipped with a gas-tight alumina muffle 
tube. An "infinite" 02 gas reservoir was main- 
tained during the experiments by flowing oxygen 
gas through the furnace at a linear flow rate of 
0.10 cm/s .  Temperatures were controlled using a 
Pt-Pt13Rh thermocouple which was suspended 
within a few millimeters of each sphere. Three 
spheres were run at each temperature for each 
composition. The experiments ranged in duration 
from 600 to 19,200 seconds and melt spheres were 
quenched in air by removal from the furnace. 
Quenched melt (glass) spheres were removed from 
the ceramic hanger, ground in half, mounted in 
epoxy and polished for electron microprobe analy- 
sis. In rare cases where spheres deformed due to 
improper loop size or mounting, the runs were 
discarded. Generally, spherical shape was well-pre- 
served. 

Analyses of the concentration profiles resulting 
from volatilization were performed using an 
ARL-SEMQ microprobe in the wavelength disper- 
sive mode. Operating conditions for the scans of 
Na, AI and Si were a 15 kV accelerating voltage 
and a 4 nA sample current with the beam rastered 
over a 10 × 10 ~m area. Fluorine scans and step 
analyses required a sample current of 40 nA to 
achieve reasonable count rates (approximately 40 
cps/wt.% F). The quantitative analyses for fluo- 
rine were 100 second counts using a rastered beam 
as for Na, A1 and Si. 

Wavelength dispersive scans for Na, A1, Si and 
F (Fig. 1) show two basic features. Firstly, the 
concentration profile of fluorine extends (over 
several hundred micrometers) from essentially zero 
concentration at the sphere edge to a plateau 
corresponding to the original, undepleted fluoride 
concentration of the melt (Table 1). Secondly, the 
concentrations of Na, A1 and Si are constant over 
almost the entire length of the fluorine depletion 
zone except within 30-50 /~m of the sphere edge. 

Quantitative analyses of fluorine content across 
concentration profiles were obtained by standardi- 
zation to analyses of the starting glasses. The 
exchange of up to 5-6 wt.% F for O has an 
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Fig. 1. Concentrat ion profiles of Na,  AI, Si and F produced in 
an experiment  on fluorine-bearing jadei te  melt at 1200°C. 

insignificant effect on the fluorine ZAF correction. 
The 3 0 - 5 0 / t m  wide "surface layer" of Si deple- 

tion and Na + A1 enrichment (Fig. 1) indicates the 
escape of fluorine from the melt surface as an 
Si.bearing gas phase, possibly SiF 4 gas. This in- 
terpretation is corroborated by previous studies of 
fluorine volatility in dry systems at 1 atm [6-8]. 

3. D a t a  reduct ion  

The constant levels of Na, Al and Si inside the 
surface layer mean that bulk diffusion of fluorine 
to this layer may be treated as binary interdiffu- 
sion of fluorine and oxygen, with no net transport 
of cations. The binary nature of F-O interdiffusion 
has been previously observed in high-pressure dif- 
fusion couple experiments [17]. The mathematical 
treatment of diffusion for these experiments is for 
a one-dimensional semi-infinite medium [18,pp. 
35-38]. The chemical gradient that serves as the 
driving force for chemical diffusion is quantified 
by the "reduced concentration" term; ( C -  
C1)/(Co-Cx) where C is the measured concentra- 
tion along the profile, C~ is the initial concentra- 
tion in the melt, and Co is the concentration in the 
gas phase. This equation holds equally well for the 
case of absorption into a semi-infinite melt medium 
from a gas phase (e.g. the hydration experiments 
of Shaw [19]) as it does for the present case of 
desorption or volatilization. In these volatilization 
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Fig. 2. Reduced concentration (C /C1)  data for a time series of 
experiments on fluorine-bearing jadeite melt at 1200°C. 

experiments, C O = 0, because the gas phase is es- 
sentially pure 0 2 gas. Therefore the reduced con- 
centration term for fluorine simplifies to I - C/C 1. 
The distance from the undepleted fluorine source 
is not measurable because it is a semi-infinite 
reservoir. Therefore, distance is measured from the 
undepleted oxygen source, i.e. the mel t /gas  inter- 
face. The relevant reduced concentration term is 
that for oxygen which, because CF(reduced) + 

Co(reduced) = 1, is equivalent to C/Cv In the case of 
concentration-independent diffusion, the equation 
relating the diffusion coefficient (D),  distance from 
the undepleted oxygen source ( X )  and time ( t)  is 
as follows: 

X/ (  EV~~ ) = erf -  1( C/C1 ) 

where erf-1 is the inverse of the error function. In 
practice, plots of e f t - 1 ( C / C  1) versus the distance 
from the melt-vapor interface yield straight lines 
whose slopes equal 1 / 2 v / ~  -. The linearity of such 
curves indicates that the diffusion process is con- 
centration independent. Fig. 2 illustrates such plots 
for the time series of experiments on jadeite melt 
at 1200°C. 

4. Resu l t s  

The experimental results are summarized in Ta- 
ble 2 and plotted versus reciprocal absolute tem- 
perature (Arrhenius plots) in Fig. 3. The tempera- 
ture dependence of F-O interdiffusion may be 



380 

TABLE 2 

Experimental conditions and results 

Composi- Temper- Duration -logxo D Number 
tion ature (cm2/s) of experi- 

(°C) ments 

Jadeite 1200 600-19,200 " 7.62 7 
1300 3600 7.24 3 
1400 1860 7.01 3 

Albite 1200 6900 8.98 3 
1300 7680 8.84 3 
1400 7200 8.46 3 

Peral- 1200 11,280 8.50 3 
uminous 1300 7560 7.98 3 

1400 7680 7.74 3 

a Results of a time series of seven experiments. 
Uncertainty in - l o g l o D  is estimated to be _+0.1 log units 
based on the standard deviation of the seven time series 
experiments in jadeite at 1200°C. 

fitted to Arrhenius equations of the form: 

logx0D -- logloD 0 - Ea/2.303RT 

where D is the diffusivity at temperature T(K), D o 
is the pre-exponential or frequency factor, R is the 
gas constant and E a is termed the activation en- 
ergy of F-O interdiffusion. The Arrhenius parame- 
ters, logl0D 0 and Ea, for each melt are listed in 
Table 3. 

The interdiffusion of fluorine and oxygen in the 
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Fig. 3. Experimental data plotted as Arrhenius functions of 
temperature. 

TABLE 3 

Arrhenius parameters for 1 atm F-O interdiffusion 

Composition logl0D 0 Ea * 
(in cm2/s) (kcal/mole) 

Albite - 4.74 + 1.24 28.9 + 8.9 
Jadeite - 2.50 + 0.64 34.4 _+ 3.4 
Peraluminous - 2.09 + 1.03 43.0 _+ 7.4 

a Uncertainties quoted at 1 standard deviation. 

Na20-AI203-SiO2 system is strongly dependent 
on melt composition. At 1400°C, F-O interdiffu- 
sivity increases over an order of magnitude from 
albite melt ( l o g l 0 D = - 8 . 4 6 )  to jadeite melt 
( l o g l 0 D = - 7 . 0 1 ) ,  along the join SiO2-NaA102. 
F-O interdiffusivity also varies strongly with al- 
kali /aluminum ratio. At 1200°C and 75 mole % 
SIO2, the diffusion of fluorine in albite melt is 
slower than in the peraluminous melt (log~0D = 
- 7 . 7 4 ) .  

If the trend of decreasing diffusivity with in- 
creasing SiO z content extends beyond albite along 
the NaA102-SiO 2 join then the F-O interdiffusiv- 
ity measured in albite melt may be taken as an 
upper limit on F-O interdiffusivity in more silicic 
melts like rhyolites. 

5 .  D i s c u s s i o n  

5.1. Comparison with viscosity data 

The suggestion that similar mechanisms and 
species may control viscous flow and diffusion in 
silicate melts has led several investigators to ex- 
amine the validity of the Stokes-Einstein equation 
which inversely relates viscosity and diffusivity 
[20-24]. It has been generally concluded that the 
Stokes-Einstein relationship is qualitatively invalid 
in relating viscosity and network-modifying cat- 
ionic diffusivities in silicate melts [20-22,25-27]. 
However, for the case of oxygen self-diffusion, 
Shimizu and Kushiro [23] have stated that an 
inverse correlation between log D and log T/ is 
well-approximated by the Eyring form of the 
Stokes-Einstein equation. The success of any equa- 
tion which inversely correlates viscosity and oxygen 



diffusivity strongly implies that the same struc- 
tural unit and mechanism are involved in both 
transport processes. Dunn [27] has recently shown 
that 0 2- is probably the dominant species in- 
volved in oxygen diffusion in basaltic melts and 
Shimizu and Kushiro [23] argue that the viscous 
flow of jadeite and diopside melts is controlled by 
the diffusion of individual 0 2- units. 

The conclusions of this study regarding the 
application of the Stokes-Einstein equation to F-O 
interdiffusivity are negative (Table 4). Qualita- 
tively, we would expect this result because the 
viscosity of these melts is a strong function of 
fluorine content [28] while the F-O interdiffusivity 
is not. 

5.2. Pressure dependence of F-O interdiffusion in 
jadeite melt 

The results of this study for jadeite melt are 
compared with the high-pressure data of Dingwell 
and Scarfe [17] in Fig. 4. F-O interdiffusivity 
clearly increases with pressure from 0.001 to 10 
kbar, as does oxygen self-diffusivity [23]. The 
dashed lines are interpolations based on the as- 
sumption of a smoothly decreasing pressure de- 
pendence with increasing pressure. In fact, Dunn 
[27] has shown that the pressure dependence of 
oxygen chemical diffusivity in basaltic melts is 
discontinuous in the pressure range of 1-10 kbar 
whereas Shimizu and Kushiro [23] show a smoothly 
increasing self-diffusivity of oxygen in jadeite melt 
in the pressure range of 5-20 kbars. This contrast 

T A B L E  4 

Di f fus iv i t i e s  + v iscos i t ies  f r o m  1200  to 1 4 0 0 ° C  

log]0 D logz07/a 

A l b i t e  1200  - 8.98 4.25 

1300  - 8 .84 3 .84  

1400  - 8.46 3.46 

J a d e i t e  1200  - 7 .62 4.21 

1300  - 7 .24  3.73 

1400  - 7 .07 3.29 

P e r a l u m i n o u s  1200  - 8 .80 5.28 

1300 - 7 .98 4.68 

1400 - 7 .74  4 .09  

a D a t a  f r o m  D i n g w e l l  et  al. [28], _+ 5%. 
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Fig. 4. Pressure dependence of F-O interdiffusivity in fluorine- 
bearing jadeite melt (data from [17] and this study; inset: 
activation energy as a function of pressure). 

in pressure dependence may result, in part, from 
comparison of chemical and self-diffusivity. Here 
we only wish to note that the F-O interdiffusivity 
increases from 1 atm to lower crustal pressures. 

5.3. Comparison with water 

The comparison of the chemical diffusion of 
fluorine and water is of interest for at least two 
reasons. Firstly, because of the geological signifi- 
cance of fluorine in igneous melts. It is clear that 
relatively dry, fluorine-rich silicate melts do occur 
[1-5] and their kinetic behavior deserves investiga- 
tion and comparison with that of wet melts. Sec- 
ondly, the structural comparison of fluorine and 
water may yield information on the speciation of 
these depolymerizing agents in silicate melts. 

Chemical diffusion of water in natural silicate 
melts has been investigated by several workers 
[19,29-32]. In Fig. 5 the data for the chemical 
diffusion of fluorine in albite melt are compared 
with data for the chemical diffusion of water in 
obsidian melts [21]. Although the comparison of 
data in Fig. 5 involves melts of albite and obsidian 
composition, both represent relatively polymerized 
melts with alkali/aluminum ratios at or near 1 : 1. 

The chemical diffusivity of fluorine in albite 
melt is approximately two orders of magnitude 
less than that of water in obsidian melt. Consider- 
ing the composition dependence of fluorine diffu- 
sivity which is observed between jadeite and albite 
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Fig. 5. Comparison of the chemical diffusivities of fluorine in 
albite melt and water in obsidian/rhyolite melt with tracer 
diffusivities of alkalies in obsidian melt (data from [22,32] and 
this study). 

melts (Fig. 3), the difference between fluorine and 
water diffusivity in obsidian melt is probably even 
larger than indicated in Fig. 5. We believe that 
such a difference in the magnitude of diffusivity 
results from different diffusion mechanisms for 
fluorine and water in these melts. 

Qualitatively, the difference in diffusivity leads 
us to infer that if F -  is the principal diffusing 
species, as is suggested by the binary nature of the 
interdiffusion of fluorine and oxygen, then water 
is probably not transported principally as O H - ,  
the monovalent anion of similar size. Conversely, 
if the diffusion of water is as O H - ,  then the 
species involved in fluorine diffusion would have 
to be a slower moving complex, perhaps A1Fg 3 
[33]. Lack of cationic concentration gradients dur- 
ing F-O interdiffusion leads us to favor the former 
possibility. 

Perhaps the most significant difference between 
the diffusive behavior of fluorine and water is the 
concentration dependence of the chemical diffu- 
sion of water contrasted with the concentration 
independence of fluorine diffusion in all melts 
investigated in this study. The concentration de- 
pendence of water diffusivity in obsidian melt has 
been investigated by Delaney and Karsten [31] 
who state that the activation energy of chemical 
diffusion of water in obsidian melt remains con- 
stant while the frequency factor (log Do) increases 
with water concentration. Delaney and Karsten 

[31] propose that the concentration dependence of 
water diffusivity results from the occurrence of 
more than one solution site for water in obsidian 
melt whose relative occupancies change with water 
concentration. The concentration independence of 
fluorine diffusion suggests that one melt structural 
site is adequate to explain the observed diffusive 
behavior of fluorine. 

5.4. Diffusion mechanisms 

From a comparison of data on viscosities of 
and diffusivities in F- and H20-bearing melts ([28] 
and this study), it is apparent that the effects of 
fluorine and water on melt viscosity are similar 
while their diffusivities are considerably different. 
The viscosity data suggests similar structural roles 
for fluorine and water within polymerized silicate 
melts, probably the replacement of Si-O-(Si,A1) 
bridges with (Si,A1)-F and (Si,AI)-OH, respec- 
tively. The diffusivity data, in contrast, highlight 
several differences in the transport of fluorine and 
water in these melts. Fluorine exchanges with 
oxygen via a mechanism which is independent of 
concentration and strongly dependent on melt 
composition. The exchange can be modelled as 
binary, without the involvement of any cations. 
Water, in contrast, diffuses in polymerized melts 
at a rate that varies with water concentration. 
Karsten et al. [32] have reported evidence of K 
and possibly Na  concentration gradients produced 
during the chemical diffusion of water. These al- 
kali concentration gradients suggest that interac- 
tion of water and alkalies may be an essential 
feature of chemical diffusion of water in these 
melts. The albite-H20 solubility model of Burn- 
ham [34] does imply that the solution of water in 
albite melt will involve alkali transport. 

Fig. 5 presents tracer diffusion data for Li, Na, 
K, Rb and Cs [22] and chemical diffusion data for 
water [21, fig. 5] in obsidian melts, as well as 
chemical diffusion data for fluorine in albite melt 
(this study). The diffusivity of alkalies in obsidian 
melt increases smoothly with decreasing ionic 
radius from Cs to Na. However, Li diffuses at 
essentially the same rate as Na. In Fig. 5 it is 
evident that the chemical diffusivity of water, un- 
like that of fluorine, is very similar to the tracer 



di f fus iv i ty  o f  N a  ( and  Li). Pe rhaps  the  d i f fu s ion  o f  

h y d r o g e n - b e a r i n g  species  in o b s i d i a n  is c o n t r o l l e d  

by  the m o b i l i t y  o f  N a  via  an  a lkal i  e x c h a n g e  

r e a c t i o n  s imi la r  to tha t  d i scussed  by  L a n f o r d  et al. 

[351. 

6. Summary 

T h e  1 a t m  vo la t i l i za t ion  o f  f l uo r ine  f r o m  albi te ,  

j a d e i t e  and  p e r a l u m i n o u s  me l t s  in the  sys tem 

N a 2 0 - A I 2 0 3 - S i O  z invo lves  (1) f l u o r i n e - o x y g e n  in- 

t e rd i f fu s ion  to the  me l t  surface,  and  (2) l i be r a t i on  

o f  S i - F - b e a r i n g  gas(es)  f r o m  the  m e l t  surface.  T h e  

F - O  in t e rd i f fu s ion  is a b inary ,  c o n c e n t r a t i o n - i n d e -  

p e n d e n t  p rocess  wh ich  is s t rong ly  d e p e n d e n t  on  

m e l t  c o m p o s i t i o n .  F l u o r i n e  chemica l  d i f fus iv i ty  in 

j a d e i t e  me l t  increases  f r o m  0.001 to  10 k b a r  whi le  

the  ac t i va t i on  ene rgy  r ema ins  u n c h a n g e d .  T h e r e  is 

n o  r ec ip roca l  r e l a t i onsh ip  b e t w e e n  F - O  in te rd i f fu -  

s ivi ty  and  me l t  v iscosi ty .  T h e  re la t ive  m a g n i t u d e s  

o f  the  c h e m i c a l  d i f fus iv i t ies  o f  f luo r ine  and  w a t e r  

sugges t  tha t  these  c o m p o n e n t s  d i f fuse  by  f u n d a -  

m e n t a l l y  d i f f e r en t  m e c h a n i s m s .  T h e  d i f fus ion  o f  

f l uo r ine  is a s imple  an ion i c  e x c h a n g e  wi th  o x y g e n  

whe rea s  the  d i f fus ion  o f  wa t e r  p r o b a b l y  invo lves  

a lkal i  ca t ions .  
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