The JOURNAL of GEOLOGY

VOLUME 92

JANUARY 1984

NUMBER 1

JGEOAZ92(1) 1-120 (1984): US ISSN 0022-1376

INCOMING EDITORS' STATEMENT	1
PRECAMBRIAN TECTONICS AND CRUSTAL EVOLUTION IN SOUTH INDIA	
S. A. Drury, N. B. W. Harris, R. W. Holt, G. J. Reeves-Smith, and R. T. Wightman	3
A THERMAL-TECTONIC MODEL FOR HIGH-PRESSURE METAMORPHISM AND DE-	
FORMATION IN THE SESIA ZONE, WESTERN ALPS David C. Rubie	21
STRAIN ANALYSIS OF WRENCH FAULTS AND COLLISION TECTONICS OF THE	
ARABIAN-NUBIAN SHIELD F. Bryan Davies	37
SEGREGATION VESICLES, GAS FILTER-PRESSING, AND IGNEOUS DIFFERENTIATION	
A. T. Anderson, Jr., G. H. Swihart, G. Artoli, and C. A. Geiger	55
A MODEL FOR PREDICTING THE VOLUMES OF VESICLES IN SUBMARINE BASALTS	
Glenn J. MacPherson	73
A PETROGRAPHIC AND CHEMICAL SECTION THROUGH THE NORTHERN IDAHO	
BATHOLITHDonald W. Hyndman	83
GEOLOGICAL NOTES	
RB-SD Systematics and Ages of Principal Precamptian Lithologies in the South Snowy Riock	
BEARTOOTH MOUNTAINS C W MONTGOMERY AND I N LYTWYN	103
Using Isotropic Magnetic Susceptibility to Delineate Glacial Tills	105
STANLEY E. CHERNICOFF	113
REVIEWS	119

THE

JOURNAL OF GEOLOGY

A BI-MONTHLY

ALFRED T. ANDERSON, JR. AND ROBERT C. NEWTON, CO-EDITORS

BARBARA J. SIVERTSEN, Editorial Assistant

BOARD OF ASSOCIATE EDITORS

 Kevin Burke, Lunar and Planetary Inst., 3303 NASA Rd. 1, Houston, Texas Felix Chayes, Geophysical Laboratory, Washing- ton, D.C. John Dewey, Science Laboratories, University of 	 Henry W. Menard, USGS, Reston, Virginia Stanley A. Schumm, Colorado State University. Fort Collins Raymond Siever, Harvard University John Sutton, Jonatrial College, London
 Durham, DH1 3LE England Charles L. Drake, Dartmouth College Gerald M. Friedman, Rensselaer Polytechnic Institute John Imbrie, Brown University 	 John Sutton, Imperial College, London Tjeerd H. Van Andel, Stanford University Andrew B. Vistelius, Academy of Sciences of U.S.S.R., Leningrad Hugh R. Wynne-Edwards, University of British Columbia

VOLUME 92

JANUARY-NOVEMBER 1984

THE UNIVERSITY OF CHICAGO PRESS

CHICAGO, ILLINOIS

PUBLISHED JANUARY, MARCH, MAY, JULY, SEPTEMBER, AND NOVEMBER 1984 BY THE UNIVERSITY OF CHICAGO PRESS

© 1984 by The University of Chicago. All rights reserved.

CONTENTS OF VOLUME 92

NUMBER 1

1
2
3
21
37
55
73
83
03
13
19

NUMBER 2

BEHAVIOR OF ALKALIES DURING DIFFUSIVE INTERACTION OF GRANITIC XENOLITHS WITH BASALTIC MAGMA.	
E. B. Watson and S. R. Jurewicz	121
THE LEMNISCATE LOOP—COMPARISONS WITH THE SHAPES OF STREAMLINED LANDFORMS. P. D. KOMAR	133
SIGNIFICANCE OF THICK DEPOSITS OF COLLUVIUM ON HILLSLOPES: A CASE STUDY INVOLVING THE USE OF POLLEN ANALYSIS IN THE COASTAL MOUNTAINS OF NORTHERN CALIFORNIA, W. E. Dietrich and	
R. Dorn	147
CRATONIC SEDIMENTATION DURING THE PROTEROZOIC: AN ANOROGENIC CONNECTION IN WISCONSIN AND THE UPPER MIDWEST. J. K. Greenberg and B. A. Brown	159
AGE MIGRATIONS OF ANOROGENIC RING COMPLEXES IN NORTHERN NIGERIA. M. A. Rahaman, O. V.	
Breeman, P. Bowden, and J. N. Bennett	173
Alpine Metamorphism and Deformation in Phyllites Nappes (External Hellenides, Southern	
PELOPONNESUS, GREECE): GEODYNAMIC IMPLICATIONS. F. Thiébault and C. Triboulet	185
BIOTURBATION OF INTERTIDAL QUARTZ-RICH SANDS: A MODERN EXAMPLE AND ITS SEDIMENTOLOGIC AND	
PALEOECOLOGIC IMPLICATIONS. M. F. Miller	201
Geological Notes	
TECTONIC CONTROLS OF LATE PALEOZOIC SUBSIDENCE IN THE SOUTH CENTRAL UNITED STATES. A. Goldstein	217
KIMBERLITE REDEFINED. C. R. Clement, E. M. W. Skinner, and B. H. Scott Smith	223
Asymmetrical Migrating Beach Cusps on the Ganges River, India. N. A. Wells, J. A. Dorr, and A. Sengupta	229
Reviews	233

NUMBER 3

Relation between Chemical Composition and Sedimentation Rate of Pacific Ocean-Floor Sedi-	
ments Deposited since the Middle Cretaceous: Basic Evidence for Chemical Constraints on	
Depositional Environments of Ancient Sediments. R. Sugisaki	235

CONTENTS OF VOLUME 92

STRUCTURE OF THE RIDDLEVILLE BASIN FROM COCORP SEISMIC DATA AND IMPLICATIONS FOR REACTIVA-	
TION TECTONICS. T. A. Petersen, L. D. Brown, F. A. Cook, S. Kaufman, and J. E. Oliver	261
SEDIMENTOLOGICAL EFFECTS OF A MOVING TERRAIN. A. Schedl and D. V. Wiltschko	273
The Origin and Significance of Reverse Zoning in Melilite from Allende Type B Inclusions.	
G. J. MacPherson, J. M. Paque, E. Stolper, and L. Grossman	289
EFFECTS OF MISSISSIPPI VALLEY-TYPE MINERALIZATION ON REE PATTERNS OF CARBONATE ROCKS AND	
Minerals, Viburnum Trend, Southeast Missouri. J. L. Graf, Jr	307
Geological Notes	
Armored Mud Balls and Friable Sand Megaclasts from a Complex Early Pleistocene Allu-	
VIAL FILL, SOUTHWESTERN MORRILL COUNTY, NEBRASKA. R. F. Diffendal	325
A NOTE ON THE GEOLOGY OF SOME BRAZILIAN KIMBERLITES. D. P. SVISERO, H. O. A. MEYER, N. L. E.	
Haralyi, and Y. Hasui	331
CLAY-MINERAL REGIONS IN PEORIA LOESS, MISSISSIPPI RIVER BASIN. R. V. Ruhe	339
IRON VARIATION WITHIN A GRANITIC PLUTON AS DETERMINED BY NEAR-INFRARED REFLECTANCE. A. K.	
Baird	344
Reviews	351

NUMBER 4

CONTINENTAL THERMAL AND TECTONIC REGIMES DURING THE ARCHAEAN. P. England and M. Bickle .	353
A SEDIMENTOLOGIC PERSPECTIVE ON STRATAL DISRUPTION WITHIN SANDSTONE-RICH MELANGE TERRANES.	
M. B. Underwood	369
The Solubility of H ₂ O in Melts in the System SiO ₂ -Al ₂ O ₃ -Na ₂ O-K ₂ O at 1 to 2 Kbars. D. B.	
Dingwell, D. M. Harris, and C. M. Scarfe	387
RARE EARTH ELEMENT DISTRIBUTION IN SOME HERCYNIAN GRANITOIDS FROM THE FINISTERRE REGION,	
NW SPAIN. J. I. Gil Ibarguchi, P. Bowden, and J. E. Whitley	397
METAMORPHIC TEMPERATURES IN THE MICHIGAMME FORMATION COMPARED WITH THE THERMAL EFFECT OF	
AN INTRUSION, NORTHERN MICHIGAN. K. Attoh and M. J. Vander Meulen	417
Geological Notes	
DIAMONDIFEROUS LAMPROITES. B. H. Scott Smith and E. M. W. Skinner	433
GULF COAST PALEOGENE STRATA: GROUPS OR STAGES? W. G. SIESSET	439
THE RELATIVE ROLES OF BOUDINAGE AND "STRUCTURAL SLICING" IN THE DISRUPTION OF LAYERED	
ROCK SEQUENCES. W. Bosworth	447
Pedimentaton versus Debris-Flow Origin of Plateau-Side Desert Terraces in Southern Utah.	
V. S. Williams	457
Reviews	469

NUMBER 5

A BASIN MODEL FOR MASSIVE BANDED IRON-FORMATIONS AND ITS GEOPHYSICAL APPLICATIONS. J. L.	_
Cisne	471
GEOCHRONOLOGY OF THE BAIE VERTE PENINSULA, NEWFOUNDLAND: IMPLICATIONS FOR THE TECTONIC	
EVOLUTION OF THE HUMBER AND DUNNAGE ZONES OF THE APPALACHIAN OROGEN. R. D. Dallmeyer and J. Hibbard	489
SEDIMENTATION IN PULL-APART BASINS: ACTIVE EXAMPLES IN EASTERN TURKEY. M. R. HEMPTON and	
L. A. Dunne	513
UPDRIFT MIGRATION OF TIDAL INLETS. D. G. Aubrey and P. E. Speer	531
CONTEMPORARY TILTING IN THE CENTRAL ATLANTIC COASTAL PLAIN? K. Fadaie and L. D. Brown	547
A GEOLOGICAL INTERPRETATION OF SEASAT-SAR IMAGERY OF JAMAICA. G. Wadge and T. H. Dixon	561
INSIGHTS ON WHY GRAPHIC CORRELATION (SHAW'S METHOD) WORKS. L. E. Edwards	583
Geological Notes	
TOURMALINE IN THE EARLY ARCHAEAN ISUA SUPRACRUSTAL BELT, WEST GREENLAND. P. W. U. Appel	599
Reviews	607

772

CONTENTS OF VOLUME 92

_

NUMBER 6

ROCK COMPOSITION, DOLOMITE STOICHIOMETRY, AND ROCK/WATER REACTIONS IN DOLOMITIC CARBONATE	
ROCKS. C. M. Sperber, B. H. Wilkinson, and D. R. Peacor	609
MAGNETIC POLARITY STRATIGRAPHY OF LATE MIOCENE AND EARLY PLIOCENE CONTINENTAL DEPOSITS,	
CATAMARCA PROVINCE, NW ARGENTINA. R. F. Butler, L. G. Marshall, R. E. Drake, and G. H.	
Curtis	623
PROCESSES OF SELECTIVE GRAIN TRANSPORT AND THE FORMATION OF PLACERS ON BEACHES. P. D. KOMAR	
and C. Wang	637
A PROTEROZOIC VOLCANO-PLUTONIC TERRANE, GUNNISON AND SALIDA AREAS, COLORADO. M. E. Bick-	
ford and S. J. Boardman	657
ON THE INTERNAL GEOMETRY OF MYLONITE ZONES. T. H. Bell and R. L. Hammond	667
LAND-MAMMAL AGES, FAUNAL HETEROCHRONY, AND TEMPORAL RESOLUTION IN CENOZOIC TERRESTRIAL	
SEQUENCES. J. J. Flynn, B. J. MacFadden, and M. C. McKenna	687
DEPOSITIONAL CHARACTERISTICS OF A SUBMARINE DEBRIS FLOW. D. B. Prior, B. D. Bornhold, and	
M. W. Johns	707
DYNAMICAL MODELS FOR MELT SEGREGATION FROM A DEFORMABLE MATRIX. F. M. Richter and D.	
McKenzie	729
Geological Notes	
AN ALNOITE IN THE SIERRAS SUBANDINAS, NORTHERN ARGENTINA. H. O. A. MEYER and L. M. Villar	741
DROWNED REEFS AS INDICATORS OF THE RATE OF SUBSIDENCE OF THE ISLAND OF HAWAII. J. G. MOOTE and	
D. J. Fornari	752
Reviews	761
Index to Volume 92	763
CONTENTS OF VOLUME 92	771

THE SOLUBILITY OF H₂O IN MELTS IN THE SYSTEM SIO₂-AL₂O₃-NA₂O-K₂O AT 1 TO 2 KBARS¹

DONALD B. DINGWELL, DAVID M. HARRIS,² AND CHRISTOPHER M. SCARFE Experimental Petrology Laboratory, Department of Geology, University of Alberta, Edmonton, Alberta T6G 2E3

ABSTRACT

The solubilities of water in six melts in the system K₂O-Na₂O-Al₂O₃-SiO₂ were determined at 970–1630 bars and 800°C. Melts were synthesized hydrothermally in Pt capsules in cold-seal vessels and then quenched isobarically. The solubilities were determined by micromanometric measurement of H₂O evolved during vacuum fusion of vesicle-free glass wafers and are reproducible to $\pm 2.8\%$ (2 s.d.) of the concentration. The solubilities at 970 bars for the granitic and phonolitic minimum melts are 2.88 \pm 0.10 wt % and 5.01 ± 0.14 wt %, respectively. Both peralkaline and peraluminous granitic melts have higher H₂O solubilities than the 1 kbar P(H₂O) minimum melt and indicate the existence of minima in solubilities at molar (Na + K)/Al = 1 along joins of constant SiO₂. Two melts at constant SiO₂ and (Na + K)/Al ratio, but varying in Na/(Na + K) (0.57, 0.69 molar), have the same solubility (2.88 \pm 0.10, 2.74 \pm 0.10 wt %). The compositional dependence of solubilities for peralkaline and peraluminous melts is not predicted by the solubility mechanism and calculation method of Burnham (1975, 1979, 1981) that was developed for metaluminous melts. The pressure dependence of solubility was investigated for a peralkaline melt with six determinations at four pressures from 970 to 1620 bars. The mole fraction of dissolved water (based on 8 moles of O) for this melt is proportional to the square root of the fugacity of water; the root mean square deviation from linearity is 1.4% and is equal to the analytical precision (1 s.d.). Our data for the haplogranite minimum are lower than some other determinations; however, the limitations of the various methods for determining solubilities in melts make detailed comparisons with our data difficult. The solubility of water in a Bishop Tuff melt was estimated from our measurements and used with direct measurements of H₂O in rhyolitic melt inclusions (4.9 \pm 0.5 wt %, Druitt et al. 1982) to obtain the minimum pressure of water (2100 \pm 300 bars) and minimum depth (8 \pm 1 km) of crystallization.

INTRODUCTION

The solubility of water in granitic liquids of various compositions is a crucial property influencing the petrogenesis of intrusive and extrusive silicic rocks (e.g., Wyllie 1979; Burnham 1979). The dependence of solubility on melt composition is especially important during crystallization of granitic intrusions. Saturation of residual melts results in boiling phenomena closely associated with Cu-Mo porphyry systems and various pegmatites. The explosive eruption of magmas may be triggered by energy released during the expansion of a vapor phase evolved from melts (e.g., Sparks et al. 1977; Harris 1981b). Numerical models for the evolution of vapor (e.g., Wilson et al. 1980) from granitic liquids at low pressures require detailed knowledge

¹ Manuscript received January 5, 1984; revised April 2, 1984.

² Now at IRT Corporation, 6800 Poplar Place, McLean, Virginia 22101.

[JOURNAL OF GEOLOGY, 1984, vol. 92, p. 387–395] © 1984 by The University of Chicago. All rights reserved. 0022-1376/84/9204-007\$1.00 concerning the effects of composition and pressure on the solubility of water in such melts.

The solubility of water in granitic melts has been the topic of several experimental studies; however, there is no consensus on the results or their interpretation (e.g., Oxtoby and Hamilton 1978b; Day and Fenn 1982). These previous solubility determinations may be divided broadly into two categories: those using chemographic or phase equilibrium techniques (Burnham and Jahns 1962; Fenn 1973; Whitney 1975; Voigt et al. 1981) and those using a weight loss method (e.g., Goranson 1931, 1938; Bowen and Tuttle 1950; Yoder et al. 1957; Orlova 1963; Oxtoby and Hamilton 1978a). Solubility data obtained by such techniques were reviewed by Day and Fenn (1982), who discussed the assumptions and limitations associated with each method. A new capacitance manometric technique for micro-determination of H₂O evolved from vacuum fusion of glass (Harris 1981a) affords a method for measuring H₂O released from experimentally quenched vapor-saturated melts prepared as glass wafers free of fluidfilled vesicles. By using this technique we

Fig. 1.—Melt compositions in the system $K_2O-Na_2O-Al_2O_3-SiO_2$ (1 kbar phase equilibria data from Tuttle and Bowen (1958) and Hamilton and MacKenzie (1965)).

have determined the solubility of water in haplogranitic melts in the system $K_2O-Na_2O-Al_2O_3-SiO_2$.

The other unique aspects of our work are: (1) the study of haplogranitic melts to bridge the gap between melts of feldspar composition and natural granitic liquids; (2) the precise measurement of water solubility at up to four pressures in the range 1-2 kbars and determination of the pressure dependence for two compositions; and (3) investigation of the effects of increasing peralkalinity on water solubility at 1 kbar. The effects of composition and pressure on the solubility of H₂O are essential for understanding the petrogenesis of silicic plutonic and volcanic rocks.

EXPERIMENTAL AND ANALYTICAL PROCEDURES

The glasses used in the hydrothermal runs were synthesized from reagent grade Na_2CO_3 , K_2CO_3 , Al_2O_3 , and SiO_2 by using standard techniques described by Schairer and Bowen (1956). The compositions of the anhydrous glasses used as starting materials (fig. 1) were determined by electron microprobe.

Synthetic vapor-saturated melts were produced hydrothermally. Twenty-five to 50 mg of powdered glass were added to 10 to 20 mg of triple-distilled water in 3 mm Pt capsules and welded. The capsules were checked for possible leakage by testing for weight loss after drying in an oven at 110°C for 15 minutes. Sealed capsules were loaded into cold-seal pressure vessels and raised to the desired run pressure by using an air-driven hydraulic pump. Pressurized capsules were heated to the run temperature (800°C) by using Kanthal-wound resistance furnaces mounted concentrically about the vessels along a vertical axis. Temperatures were monitored with Chromel-Alumel thermocouples and the actual temperatures are believed accurate to ± 5°C. Pressures were measured with Bourdon-tube gauges previously calibrated with a Heise gauge. All run durations were 10⁶ seconds. The charges were quenched isobarically by using compressed air. Pressure was maintained during the quench by opening the vessel to the pressure line and by pumping for the duration of the quench. Owing to the response time of the pump, there were slight

fluctuations in pressure during quenching. These fluctuations were monitored and are included in the pressure uncertainties listed in table 1. Except for water, the compositions of the hydrated glasses were determined by electron microprobe (table 1). All of the glass compositions, when recalculated H_2O -free and normalized to 100%, are within analytical error of their respective anhydrous starting compositions.

The quenched run products consisted of vesicular glass free of microlites. The vesicles contained liquid water and an enclosed vapor bubble and indicate that the charges were fluid-saturated during the experiments. It is extremely difficult to estimate accurately the volume fraction of vesicles in the run products. We avoided this difficulty by preparation of vesicle-free glass wafers.

Polished glass wafers free of occluded fluids were prepared manually from the experimental charges. The resulting wafers were typically 40–100 μ m thick, depending upon the sizes and locations of vesicles within the glass wafer. Absence of occluded fluid was established by transmitted light microscopy at 200× magnification. The glass wafers were liberated from the Canada balsam mounting media by using acetone. The wafers were washed ultrasonically in acetone and checked again optically for purity at 200× magnification using transmitted and reflected light microscopy.

The amount of H₂O dissolved in the glass was determined by the vacuum fusion micromanometric method described in Harris (1981a). The determinations of H₂O were made on duplicate glass wafers of different mass for each run, and the amounts reported are the duplicate means. The samples of glass ranged in mass from 0.020 to 0.600 mg. Sample masses were determined with a Cahn-G electronic microbalance and are considered precise to ± 0.003 mg. The analytical precision for water can be estimated by considering the variance of the relative deviations of the individual measurements about their duplicate mean. This method provides an estimate of $\pm 2.8\%$ of the concentration for the standard deviation of the duplicate means about their ensemble mean, if multiple pairs of determinations were made for each experimental charge. The overall reproducibility of our solubility measurements includes uncertainties due to variation of run pressures, possible variable diminution of dissolved water during the quench, and analytical errors in the determination of H₂O (e.g., incomplete extraction of H₂O during vacuum fusion of samples, or loss of H₂O due to adsorption by the walls of the vacuum system). The overall reproducibility was estimated by repetition of experiments. Two solubility determinations have been repeated (table 1; EA1.2K at 970 bars, runs 80 and 38; EA1.2K at 1620 bars, runs 85 and 44). Both solubility determinations were within 0.06 wt % H₂O of their ensemble means, or about 1.4% of the concentration. The precision attained in these measurements exceeds that reported by Harris (1981a) owing to the greater precision of sample masses that was made possible in this study by using an electronic microbalance.

RESULTS

The glass compositions and solubility determinations at various pressures are given in table 1. The effects of pressure and composition are described next.

Pressure Dependence.-The effects of pressure on the solubility of water were determined for two melts with identical Na/(Na + K) ratios (0.57) and similar Si/Al ratios but with differing (Na + K)/Al ratios. Both liquid compositions were peralkaline. The experimentally determined solubilities, expressed as wt % H₂O in the hydrous liquid, are shown in table 1. The solubilities were recast as mole fractions by using the method of Burnham (1979) and fit (table 2) to linear equations as functions of the square root of the water fugacity (Burnham et al. 1969). The root mean square deviations from linearity are less than 1.4%. The equimolar solubility of water is slightly larger for the more peralkaline liquid at both 970 and 1620 bars $P(H_2O)$. Hence, the derivatives with respect to square root of fugacity differ by 5%.

Effects of Na-K Exchange.—The effects of exchanging Na and K in haplogranitic melts may reveal whether there is a notable effect of alkali cation size on the solubility of water. Two experiments (runs 37 and 61) conducted at 970 bars show that the increase of the Na/ K ratio from 1.34 at the eutectic to 2.23 caused no measurable change in solubility (maximum 0.14 wt %). Further research should determine whether this is also true for

		EXPERIMENT	AL DETERMIN	NATIONS OF I	H ₂ O Solubii	ITY FROM M	EASUREMEN	TS OF H ₂ O I	n Quenchei	d Glass		
Run No. Series	80 EA1.2K	38 EA1.2K	48ª EA1.2K	43 EA1.2K	85 EA1.2K	44 EA1.2K	36 EAK	83 EAK	37 EOR	61 NOR	60 PHO	58ª EAL
			Pre	essure and f	ugacity of H	I ₂ O during e	experiment	s at 800°C				
Pressure ^b f ^b _{H2} O	970 825	970 825	1160 965	1450 1175	1620 1297	1630 1305	970 825	1620 1297	970 825	970 825	970 825	970 825
			Microprob	e ^c analyses	and vacuun	n fusion dete	erminations	s ^d of H ₂ O in	glass			
	75.00 9.80 4.02 4.69 3.38 96.89	74.24 9.73 4.08 4.55 3.29 95.89	3.72	74.84 9.74 4.08 4.68 4.36 97.70	73.64 9.66 3.96 4.59 4.67 96.52	73.99 9.57 4.10 4.60 4.55 96.81	74.63 9.19 4.70 5.33 3.44 97.29	72.27 8.93 4.41 5.25 4.98 95.84	75.27 11.20 3.79 4.32 2.88 97.46	75.67 11.15 4.53 3.09 2.74 97.18	54.67 22.82 10.56 5.08 5.01 98.14	3.46
				Glass co	mpositions I	recalculated	to 100% to	otals				
$ \begin{array}{l} SiO_2\\ Al_2O_3\\ Na_2O\\ K_2O\\ H_2O \end{array} $	77.49 10.13 4.15 4.85 3.38	77.53 10.16 4.26 4.75 3.29	77.32 10.06 4.15 4.75 3.72	76.68 9.98 4.18 4.80 4.36	76.43 10.03 4.11 4.76 4.67	76.54 9.90 4.24 4.76 4.55	76.79 9.46 4.84 5.48 3.44	75.58 9.34 4.61 5.49 4.98	77.29 11.50 3.89 4.44 2.88	77.92 11.48 4.67 3.18 2.74	55.76 23.28 10.77 5.18 5.01	75.62 13.24 3.52 4.16 3.46
				М	oles of catio	ns per 100 g	g of melt					
Si Al Na K H Total	1.290 .199 .134 .103 .375 2.101	1.290 .199 .138 .101 .365 2.093	1.287 .197 .134 .101 .413 2.132	1.276 .196 .135 .102 .484 2.193	1.272 .197 .133 .101 .519 2.222	1.274 .194 .137 .101 .505 2.111	1.278 .186 .156 .116 .382 2.118	1.258 .183 .149 .117 .553 2.260	1.286 .226 .126 .0942 .320 2.0522	1.297 .225 .151 .0676 .304 2.0446	.928 .457 .348 .110 .556 2.399	1.259 .260 .114 .088 .384 2.105
Na/Na + K Na + K/Al Si/Al	.565 1.19 6.48	.577 1.20 6.48	.570 1.19 6.53	.570 1.21 6.51	.568 1.19 6.46	.576 1.23 6.57	.574 1.46 6.87	.560 1.45 6.87	.572 .97 5.69	.691 .97 5.76	.760 1.00 2.03	.564 .777 4.84

TABLE 1.

other liquid compositions in the vicinity of the ternary eutectic.

Dependence of Solubility on the Alkali/ Aluminum Ratio .--- The equimolar solubilities of water in four liquids that differ in alkali/aluminum ratio were determined at 970 bars and are summarized in table 3. For the range of silica-saturated compositions investigated, the equimolar solubility at 970 bars water pressure increases linearly with increasing alkali to aluminum ratio, and the root mean square deviation from linearity is about 1.4%. However, the solubility of water in the peraluminous liquid (table 1, run 58) does not lie on the extension of this line to the peraluminous field. This suggests the existence of minima in the solubility of H₂O at (Na + K)/Al = 1 for melts along joins of constant molar SiO₂ in anhydrous melts.

Solubility in a Phonolite Liquid.—The 970 bar solubility of H_2O in the phonolite liquid exceeds that of all the granitic melts investigated. The phonolite composition, which has alkali/aluminum equal to 1 and very much less silica than those runs listed in table 3, does not satisfy the linear relation obtained in table 3.

DISCUSSION

Comparison with Earlier Determinations.—The determinations of water solubility in haplogranitic liquids from this study are shown (fig. 2) in relation to other determinations at low pressures. Although the results are generally similar to those of earlier workers, the effects of pressure and composition on the water solubilities are evident in our results and may help to explain some of the differences shown in figure 2.

All previous measurements of water solubility in granitic melts (except those of Khitarov et al. 1959, 1967) have employed one or both of the chemographic and weightloss techniques. The chemographic technique involves the construction of isobaric T-X or rock-water pseudobinary phase diagrams (see Burnham and Jahns 1962 for discussion). In these diagrams the intersection of the water-saturated liquidus with the divariant L - L + V or L - L + C curve is determined. The intersection gives the concentration of water equal to the solubility limit. However, according to Day and Fenn (1982), water contents may be overestimated by as much as 1.0

X., calculated from burnnam s (1979) paper X, 201 .409	E» X	.363	.356	.386	.426 Vm1	.443	.437	.372	.465	.322	.308	.379	.371
X .409 .409 .423 .454 .465 .409 <t< td=""><td></td><td></td><td></td><td></td><td>A calci</td><td>ulated from</td><td>BULTINAT S</td><td>ded (6/61)</td><td>er</td><td></td><td></td><td></td><td></td></t<>					A calci	ulated from	BULTINAT S	ded (6/61)	er				
MW 293 293 293 294 299 289 285 208 296 In K 1.79	"X	.409	.409	.423	.454	.465	.465	.409	.465	.409	.409	.409	.409
In K 1.79 <th< td=""><td>MM</td><td>293</td><td>293</td><td>293</td><td>293</td><td>293</td><td>293</td><td>299</td><td>299</td><td>289</td><td>285</td><td>208</td><td>296</td></th<>	MM	293	293	293	293	293	293	299	299	289	285	208	296
 ^a Microprobe analyses of hydrous products are not available for runs 48 and 58. ^b Pressure and fugacity are given in bars; pressure uncertainty is +10 30 bars. Fugacity was calculated from Burnham et al. 1969. ^c Classes were analyzed by B. Dinowell with the University of Alberta ARI. SEMO micronobe usine 15 kV xeceleratine voltage and a 4 nanoamo probe current in the energy dispersive mode: al 	In K	1.79	1.79	1.72	1.58	1.53	1.53	1.79	1.53	1.79	1.79	1.79	1.79
	^a Microprot ^b Pressure <i>i</i> ^c Glasses w	be analyses of hydro and fugacity are give are analyzed by D. F	ous products are en in bars: press B. Dingwell with	not available for ure uncertainty i the University of	r runs 48 and 58. is + 10, - 30 bar f Alberta ARL SI	s. Fugacity was	calculated from e using 15 kV a	m Burnham et : iccelerating voli	al. 1969. tage and a 4 nai	noamp probe cu	rrent in the ene	rgy dispersive r	node; a beam

M. Harris) are duplicate means for individual experiments: reproducibility of solubility determinations is about ± 0.06 wt % (see runs 80, 38, 85, and 44)

Gold. 1979). Analyses have the following 3 standard deviation uncertainties quoted as percentages of the amount present: SiO₂, 0.69%; Al-O₃, 1.78%; K₂O, 2.58%; Na₂O, 4.76%

^d Determinations of H₂O (D.

Run No.	Pressure bars	f _{H2} O bars	f _{H20} ^{1/2} bars ^{1/2}	X ^m _w meas.	X ^m _w calc.	Residual
		E	A1.2K 970-1630	bars		
80	970	825	28.72	.363	.356	007
38	970	825	28.72	.356	.356	.000
48	1160	965	31.06	.386	.385	001
43	1450	1175	34.28	.426	.425	001
85	1620	1297	36.01	.443	.446	.003
44	1630	1305	36.12	.437	.447	.010
		$\begin{array}{l} X_{w}^{m} = 0 \\ r.m \end{array}$.003 + 0.0123 (f _H i.s. error of fit =	₅₀ , bars) ^{0.5} 0.005		
			EAK			
36	970	825	28.72	.372	.371	001
83	1620	1297	36.01	.465	.465	.000
		$\begin{array}{rl} X_{w}^{m} &=& 0.\\ r.m \end{array}$	$0006 + 0.0129 (f_{\rm H})$.s. error of fit =	₁₂₀ , bars) ^{0.5} 0.0006		

	TABLE 2.		
EFFECT OF PRESSURE	ON THE SOLUBILITY OF	H ₂ O in Two	Liquids

NOTES.-Solubility data and the origin were fit to linear equations by the method of least squares.

wt % by using the L - L + V or "dimple" technique. At pressures below two kbar the L - L + C technique requires the careful addition of small amounts of water to experimental charges and the execution of waterundersaturated experiments on melts for which equilibrium is difficult to achieve.

In the weight-loss technique, water concentrations are obtained by comparison of the weight of H_2O added to the charge before the experiment with the weight of the postrun hydrous glass after the charge has been pierced and heated to 110°C (Hamilton et al. 1964). Because the charges are generally oversaturated with H_2O , the run products, especially below 2 kbar, are vesicular, and the amount of H_2O in the vesicles must be subtracted from the total H_2O determined by weight loss (Burnham and Jahns 1962). Alternatively, if the vesicles can be ruptured by stepwise heating without loss of any H_2O from the glass (e.g., Oxtoby and Hamilton 1978*a*), then it may be possible to determine the solubility from weight loss measurements during heating of vesicular glass. Uncertainties for weight loss techniques are predictably rather large.

In contrast, the experimental, sample preparation, and microanalytical techniques used in the present work permit the solubility to be determined with a variation of about ± 0.10 wt % (2 s.d.) in replicate experiments at pressures from 1.0–2.0 kbars. The principal advantage over the previously mentioned tech-

TABLE 3	
---------	--

Dependence of the Equimolar Solubility of Water in Melts on the Atomic Ratio of Total Alkalis to Aluminum at 970 Bars H₂O Pressure

Run	Series	SiO ₂ wt %	(Na + K)/Al molar	Xw
61	NOR	77.92	0.97	308
37	EOR	77.29	0.97	.322
80	EA1.2K	77.49	1.19	.363
38	EA1.2K	77.53	1.20	.356
36	EAK	77.53	1.46	.372
	X ^m _w	= 0.200 + 0.124 (Na + r.m.s. error of fit = 0.01	K)/Al 10	

FIG. 2.—Solubility determinations in natural and synthetic granites. (BDM, Beinn an Dubhaich granite, Oxtoby and Hamilton, 1978b; SMG, Stone Mountain granite, Goranson, 1931; EDG, El'Dzurtinskii granite, Khitarov et al. 1959; HP, Harding pegmatite, Burnham and Jahns, 1962). Data from this study are for $T = 800^{\circ}C$.

niques are the high precision and the fact that the measured water is wholly derived from the glass. Other significant advantages are that the technique does not require multiple runs, precise determination of a phase boundary, or precise measurement of the amount of water added to an experimental charge.

From the comparison of the present data and previous work for granitic melts depicted in figure 2, two major conclusions can be drawn. The first conclusion is that our results at 800°C and those of Khitarov et al. (1959) for the El'Dzurtinskii granite at 900°C are approximately similar. On the other hand, the data of Oxtoby and Hamilton (1978b) on the Beinn an Dubhaich granite, although similar in magnitude, were obtained at 1100°C. The second conclusion is that our solubilities are lower than those of Burnham and Jahns (1962) on the Harding pegmatite at temperatures between 660-810°C and those of Goranson (1931) on the Stone Mountain granite at 900°C. The Stone Mountain, El'Dzurtinskii, and Beinn an Dubhaich granites are approximately similar in alkali/aluminum ratios, but they vary considerably in their K/Na ratios. The Harding pegmatite is distinct in having high contents of Rb, Li, and F (see Burnham 1979). Oxtoby and Hamilton (1978b; see also Voigt et al. 1981) showed that the equimolar solubility of water is significantly greater in NaAlSi₃O₈ melt than in KAlSi₃O₈ melt. We conclude that compositional variations and measurement techniques are causes for these differences. These problems have been reviewed recently by Day and Fenn (1982). We wish only to emphasize that the equimolar solubility of water is enhanced in increasingly peralkaline melts and this variation is not predicted by the model of Burnham (1979). The model of Burnham (1981) does reproduce our solubility determinations for PHO at 970 bars (wt % H₂O calc. = 5.02); and EA1.2K at 1620 bars (wt % H₂O calc. = 4.68) but overestimates all the other melt solubilities in table 1. Further discussion on solubilities in feldspathic melts is outside the scope of this paper which pertains to haplogranitic melts and natural granitic melts.

As far as we are aware, data on solubilities in phonolitic melts are not available in the literature. The fact that phonolitic melts show strongly enhanced solubility of H₂O over SiO₂-saturated compositions indicates the potential for a far more dramatic role for H₂O in the crystallization and emplacement of phonolitic magmas. Generally, it is clear that a range of water solubilities are to be expected in granitic melts of variable composition. These differences must be taken into account in the geochemical modeling of processes such as pegmatite formation, hydrothermal activity, crystallization, volatile exsolution, and eruptive mechanisms for granitic magmas.

GEOLOGICAL APPLICATION

The experimentally determined solubility of water in haplogranitic melts and determinations of water in rhyolitic melt inclusions in phenocrysts may be used to estimate the minimum pressure of crystallization for the Bishop Tuff. Druitt et al. (1982) determined the concentration of water in rhyolitic glass in quartz from the basal Plinian airfall unit of the Bishop Tuff to be $4.9 \pm 0.5\%$. A vacuum fusion gas analyzer method was used. The glass contained 77.6% SiO₂, 13.3% Al₂O₃, 0.6% FeO, 0.5% MgO, 0.3% CaO, 3.9% Na₂O, and 4.6% K₂O (A. T. Anderson, personal comm.). The gram molecular weight of the anhydrous melt (286 g) was calculated by the method of Burnham (1979). The Na/(Na + K) and Si/Al ratios are 0.563 and 4.95, respectively, and near to or within the range investigated. The alkalis Na and K account for about 90 mole % of the exchangeable cations, and the range of exchangeable cations to aluminum is 0.96. Therefore, we estimate the equimolar solubility for the stated compo-

sition to be $X = 0.0111 \times (f(H_2O), bars)$. Accordingly, the pre-eruption fugacity of water estimated from the 4.9 \pm 0.5% in the melt inclusions at 800°C is 1630 \pm 200 bars. The pressure of water is estimated to have been 2100 ± 200 bars. The implied minimum depth of origin of these phenocrysts is 7.8 ± 1.1 km. The known presence in these inclusions of other components such as CO₂ (A. T. Anderson, personal comm.) would increase the minimum pressures and depths of crystallization. Druitt et al. (1982) reported a minimum concentration of water (2 wt%) in rhyolitic inclusions in quartz phenocrysts from the last erupted Mono Lobe. Our solubility measurements suggest minimum fugacities and pressures of H₂O of 480 and 530 bars, respectively. The direct measurements of preeruption water contents (Druitt et al. 1982) and solubility of water in related haplogranitic melts at 1-2 kbar and 800°C (this study) yield more direct estimates of pressures than are available from mineral equilibria (Hildreth 1979).

ACKNOWLEDGMENTS.-D. M. Harris's research was conducted during tenure of an Izaak Walton Killam Memorial Post-Doctoral Fellowship. Harris also acknowledges support from the President's Fund at the University of Alberta. The U.S. Geol. Survey loaned equipment constructed by the second author in the laboratory of Edwin Roedder. D. B. Dingwell was supported by a 1967 Science Scholarship from the Natural Sciences and Eng. Res. Council of Canada (NSERC). The Experimental Petrology Lab. is supported by NSERC grant A 8394 awarded to C. M. Scarfe. We also wish to thank D. G. W. Smith for advice and assistance in using the electron microprobe facility which is supported by NSERC grant A 4254. We thank C. Wayne Burnham, J. A. Whitney, and E. Roedder for critical reviews. Experimental Petrology Laboratory publication 79.

REFERENCES CITED

- BOWEN, N. L., and TUTTLE, O. F., 1950, The system NaAlSi₃O₈-KAlSi₃O₈-H₂O: Jour. Geology, v. 58, p. 489-511.
- BURNHAM, C. W., 1975, Water and magmas: a mixing model: Geochim. Cosmochim. Acta, v. 39, p. 1077–1084.
- 1979, The importance of volatile constituents, in YODER, H. S., JR., ed., The Evolu-

tion of the Igneous Rocks: Princeton, N.J., Princeton University Press, p. 439-482.

—— 1981, The nature of multicomponent aluminosilicate melts: Phys. Chem. Earth, v. 13–14, p. 197–229.

——; HOLLOWAY, J. R.; and DAVIS, N. F., 1969, Thermodynamic properties of water to 1000°C and 10,000 bars: Geol. Soc. America Spec. Paper 132, 96 p.

, and JAHNS, R. H., 1962, A method for determining the solubility of water in silicate melts: Am. Jour. Sci., v. 260, p. 721-745.

- DAY, H. W., and FENN, P. M., 1982, Estimating the P-T-X(H₂O) conditions during crystallization of low calcium granites: Jour. Geology, v. 90. p. 485-507.
- DRUITT, T. H.; ANDERSON, A. T., JR.; and NAGLE, F., 1982, Water in rhyolitic magma, Bishop, California: (abs.) Trans. Amer. Geophys. Union (EOS), v. 63, p. 451.
- FENN, P. M., 1973, Nucleation and growth of alkali feldspars from melts in the system NaAlSi₃O₈-KAlSi₃O₈-H₂O: Unpub. Ph.D. dissertation, Stanford University, Stanford, CA, 167 p.
- GORANSON, R. W., 1931, The solubility of water in granitic magmas: Am. Jour. Sci., v. 22, p. 481– 502.
- HAMILTON, D. L., and MACKENZIE, W. S., 1965, The system $NaAlSiO_4$ -KAlSiO₄-SiO₂: Mineral. Mag., v. 34, p. 214–231.
- ; BURNHAM, C. W.; and OSBORN, E. F., 1964, The solubility of water and effects of oxygen fugacity and water content on crystallization in mafic magmas: Jour. Petrol., v. 5, p. 21-39.
- HARRIS, D. M., 1981a, The microdetermination of H₂O, CO₂, and SO₂ in glass using a 1280°C microscope vacuum heating stage, cryopumping, and vapor pressure measurements from 77 to 273 K: Geochim. Cosmochim. Acta, V. 45, p. 2023– 2036.

—— 1981b, Vesiculation and eruption of a subduction zone basalt (abs.): Trans. Am. Geophys. Union (EOS), v. 62, p. 1084.

- HILDRETH, W., 1979, The Bishop Tuff: evidence for the origin of compositional zonation in silicic magma chambers: Geol. Soc. America Spec. Paper 180, p. 43–75.
- KHITAROV, N. I.; KADIK, A. A.; and LEBEDEV, E. B., 1967, Separation of water from magmatic melts of granitic composition: Geokhimiya, v. 11, p. 738-756 (in Russian).

- ; LEBEDEV, E. B.; RENGARTEN, E. V.; and ARSEN'EVA, R. V., 1959, The solubility of water in basaltic and granitic melts: Geochemistry, v. 5, p. 479-492.
- ORLOVA, G. P., 1963, Solubility of water in albite melts—under pressure: Internat. Geology Rev., v. 6, p. 254–258.
- OXTOBY, S., and HAMILTON, D. L., 1978*a*, The discrete association of water with Na₂O and SiO₂ in NaAl silicate melts: Contrib. Mineral. Petrol., v. 66, p. 185–188.
- , and —, 1978b, Calculation of the solubility of water in granitic melts, *in* MACKENZIE,
 W. S., ed., Progress in experimental petrology: Natural Environ. Res. Coun. Pub. Ser. D. No.
 11: Dept. of Geology, Manchester Univ., p. 37–40.
- SCHAIRER, J. F., and BOWEN, N. L., 1956, The system Na₂O-Al₂O₃-SiO₂: Am. Jour. Sci., v. 254, p. 129–195.
- SMITH, D. G. W., and GOLD, C. M., 1979, EDATA2: A FORTRAN IV computer program for processing wavelength—and/or energydispersive microprobe analyses, *in* NEWBURY, D. E., ed., Proc. 14th Ann. Conf: Microbeam Anal. Soc., San Antonio, Texas, p. 273–278.
- SPARKS, R. S. J.; SIGURDSSON, H.; and WILSON, L., 1977, Magma mixing: a mechanism for triggering acid explosive eruptions: Nature, v. 267, p. 315– 318.
- TUTTLE, O. F., and BOWEN, N. L., 1958, Origin of granite in light of experimental studies in the system KAISi₃O₈-NaAISi₃O₈-SiO₂-H₂O: Geol. Soc. America Mem. 74, 153 p.
- VOIGT, D. E.; BODNAR, R. J.; and BLENCOE, J. G., 1981, Water solubility in melts of alkali feldspar composition at 5 kbar, 950°C (abs.): Trans. Amer. Geophys. Union (EOS), v. 62, p. 428.
- WHITNEY, J. A., 1975, The effects of pressure, temperature, and $X(H_2O)$ on phase assemblage in four synthetic rock compositions: Jour. Geology, v. 83, p. 1–31.
- WILSON, L.; SPARKS, R. S. J.; and WALKER, G. P. L., 1980, Explosive volcanic eruptions— IV. The control of magma properties and conduit geometry on eruption column behavior: Geophys. Jour. Roy. Astron. Soc., v. 63, p. 117– 148.
- WYLLIE, P. J., 1979, Magmas and volatile components: Am. Mineralogist, v. 64, p. 469-500.
- YODER, H. S.; STEWART, D. B.; and SMITH, J. R., 1957, Ternary feldspars: Carnegie Inst. Washington Yearbook 56, p. 206–217.