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Conventional surface crystallography by low-energy electron diffraction (LEED) employs a trial-and- 
error search controlled at each step by human effort. This trial-and-error approach becomes very 
cumbersome and unreliable to solve complex surfaces with a large number of unknown structural 
parameters. WC discuss automatic optimization procedures for LEED, which combine numerical search 
algorithms with efficient methods of determining the diffracted intensities for varying structures. Such 
approaches can reduce the computer time required for an entire structure determination by many 
orders of magnitude, while fitting many times more unknown structural parameters. Thereby, relatively 
complex structures, with typically 10 adjustable atoms (or 30 adjustable coordinates). can be readily 
determined on today’s workstations. These include non-symmetrically relaxed structures, surface recon- 
structions and adsorbate-induced substrate distortions. We also address the theoretical and cxperimen- 
tal requirements for an accurate structural determination. 

1. The challenges of structural complexity 

1.1. Limits of conr!entional LEED crystallography 

Until recently, the application of the technique of low-energy electron diffraction (LEED) 
[l-3] has been confronted by a theoretical barrier which has largely prevented the determina- 
tion of many complex surface structures. This barrier is due to the presence of many 
independent atoms in the surface unit cell [4,5] combined with the extensive computational 
requirements of multiple scattering, as expressed in the dynamical theory of LEED. In 
addition, the traditional approach to the determination of surface structure with LEED 
demands large computing times and cumbersome trial-and-error searches for optimal param- 
eters which define the “best-fit” structure. 

The most apparent limitation of LEED is the way in which the time taken to perform a 
single calculation of LEED-intensity spectra scales with the number of inequivalent atoms in 
the surface unit cell. The N’, or at best N2, scaling behavior reflects the nature of the 
multiple-scattering problem which, in simpiest terms, requires the summation of all multiple- 
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scattering paths between the N non-equivalent atoms in the surface. Over the past two 
decades, most theoretical advances in LEED have been aimed at reducing the computational 
resources needed for a single LEED calculation. This problem has been successfully ad- 
dressed by a number of approximations to full multiple scattering, which, by the neglect of 
certain contributions to the scattered intensity, increase the efficiency of a LEED calculation. 
Examples are renormalized forward scattering [l], reverse-scattering perturbation [61, quasi- 
dynamical LEED [7-91 and the beam-set-neglect method [4,10]. Also, a large gain in the 
speed of the computation can be obtained by using symmetry-adapted functions in the 
angular-momentum expansion [ll-131. 

However, the LEED calculation has primarily been used within the context of a structure 
determination in which Z-V spectra are repeatedly computed in order to find the best-fit 
surface structure. Thus, the less apparent, but in many ways more serious, limitation of LEED 
arises from the traditional trial-and-error method of determining a surface structure, in which 
human selection of new trial structures is required. This procedure also compares the 
experimental intensity spectra (Z-I/ curves) to the results of LEED calculations for a series of 
trial structures, with the help of R-factors that measure the misfit between theory and 
experiment. The time taken to perform this trial-and-error search scales exponentially with 
the number of varied parameters. For example, if one wishes to determine three structural 
parameters, one must exhaustively explore all corners of a cubic parameter space. The 
prospects for reliably determining in this manner the best-fit structure when fitting tens of 
parameters are clearly limited: most likely, significant regions of such a large volume of 
parameter space will remain unexplored. 

1.2. Automation of LEED crystallography 

Structural complexity demands a more sophisticated approach to the structure search, one 
in which the refinement of the model surface structure proceeds in an automated and 
organized manner. Indeed, the concept of using a directed search through parameter space 
has been suggested since the beginning of quantitative LEED structure determinations [3,14]. 
Of course, such a search is commonly used in X-ray crystallography [ 151. Therefore, in the last 
6 years or so, the focus of theoretical developments in LEED has been the adaptation of 
dynamical-LEED theory to the requirements of directed structural searches [16-201. The 
recent achievements promise automation of surface structures by LEED for the near future. 
However, one must not expect push-button, hands-off automation: as in X-ray crystallogra- 
phy, various models must be tried and results verified with a series of separate searches, 
chosen by a human being rather than by a computer. 

One drawback of incorporating a search method into full dynamical LEED is that one is 
forced to abandon an efficient feature used in such calculations [18]. Conventional LEED 
greatly benefits from the multiple re-use of costly energy-dependent quantities for many trial 
structures, before moving on to the next energy; only after all desired energies have been 
processed can a comparison be made with experiment for all those trial structures. By 
contrast, an automated search strategy needs the diffracted intensities at all energies for only 
one trial structure at a time. Thus, by attempting to increase the efficiency of the structure 
determination by using a directed search, the efficiency of the calculation of Z-V spectra for 
each trial structure is reduced, unless other measures are taken. (This difficulty can be 
partially overcome with modern workstations and supercomputers with a large memory that 
allows the storage of the layer-diffraction matrices for all energies.) This state of affairs is the 
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result of multiple scattering, which differentiates LEED markedly from X-ray diffraction in 
terms of computational requirements. 

1.3. Types of strvctural complexity 

There are various types of structural complexity that one must envisage: the theoretical 
methods that will most efficiently yield the solution will depend on the type of complexity 
involved. Conventional LEED theory is most efficient for structures which have only one 
atom in the two-dimensional surface unit cell per layer, piovided that these layers are well 
separated (by at least about 0.7 A, more often about 1.0 A). This applies to many common 
unreconstructed clean-crystal terminations, like the (11 l>, (100) and (110) faces of fee metals, 
the (110) and (100) faces of bee metals and the (0001) face of hcp metals, but very few other 
clean surfaces. Atomic adsorption on these “low-Miller-index” surfaces also often yields a 
simple structure, if one neglects lateral relaxations induced in the substrate. 

Most surfaces of technological interest are not so simple. Semiconductors, whether clean or 
adsorbate-covered, usually reconstruct with large relaxations from the bulk lattice that extend 
many layers below the surface. Compounds (from metallic to covalent to ionic) often 
reconstruct or relax in complex ways. On metals, adsorbates can induce small (- 0.1 A), but 
significant local relaxations that are also complex, or can even cause larger-scale reconstruc- 
tions of the substrate. More complex adsorbates, like molecules, also present many unknown 
coordinates to be determined, as the adsorbate distorts under the influence of the bonding to 
the substrate, and vice versa. For these various types of complex surface, new methods have 
now proven their ability to yield detailed structure determinations very efficiently and almost 
automatically. This review will concentrate on these developments. 

Adsorbates on substrates may also be disordered. The same complexities of mutually 
induced relaxations or reconstructions can occur in the disordered case as well. Some of the 
efficient methods of structural solution which we shall describe for ordered structures are 
easily applied also to such disordered overlayers [21,22]. 

Stepped surfaces (i.e. surfaces which have high Miller indices) have always presented 
difficulties for LEED theory even with the conventional trial-and-error methods. Progress has 
been achieved to enable the calculation of LEED intensities for a given stepped structure 
with or without relaxations and adsorbates [23-261. Here again, some of the new efficient 
methods to be described for soIving complex ordered structures can be added to the 
stepped-surface analysis, thereby allowing their efficient determination [25,261. 

Other forms of structural complexity have not yet received much attention. One such case 
is incommensurate lattices, which occur frequently in hetero-epitaxy and in weak adsorption. 
The incommensurability translates into non-periodic local relaxations that are at present 
difficult to extract from experiment. Another form of complexity is provided by polymers and 
biopolymers, so far largely unexplored. Yet another is the structure of amorphous or liquid 
surfaces, where so far virtually no structure determination of any sort has been possible with 
LEED. 

1.4. Topics qf discussion 

The fundamental difficulty in optimizing many structural parameters is their correlation 
through diffraction: one cannot fit one parameter at a time, but has to fit them all 
simultaneously, since diffraction inevitably couples them together. Therefore, given a set of 
experimental I-V curves, the problem of structure determination by LEED has three 
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requirements. Firstly, one needs a means of calculating as efficiently as possible diffracted 
intensities at each step in the search. Secondly, one needs a strategy for searching through 
parameter space to efficiently locate the best-fit structure. Finally, one needs a means of 
comparing the calculated intensities to the measured spectra which serves as our guide for 
continuing the structure search. 

Below, we review and discuss recent progress in implementing efficient methods of 
determining complex structures with LEED. These methods promise automation of surface 
crystallography in the near future. First, in section 2, we shall draw lessons from the long and 
successful practice of X-ray crystallography. Then, in section 3, our attention will focus on the 
various methods that have been applied so far to increase the efficiency of the LEED 
computations for single structures and for modified structures related to another one: these 
include tensor LEED, linear expansions and linear LEED. We shall next address, in section 
4, optimization algorithms that have proved fruitful for LEED, such as direct methods, 
least-squares fitting, and the Rosenbrook, direction-set and simplex methods. Importantly, we 
shall discuss in section 5 implications for practical surface crystallography by LEED, based on 
the experience gained in the recent past. It will be stressed, in section 6, that the methods 
developed for LEED are also applicable to other techniques of surface-structure determina- 
tion, such as photoelectron and Auger electron diffraction, and high-resolution electron 
energy-loss spectroscopy. Finally, we shall conclude and look at future prospects in section 7. 

2. Lessons from X-ray crystallography 

2.1. Initial structural guesses 

The long and successful practice of X-ray crystallography contains very useful lessons for 
the 50-years younger field of LEED crystallography. Since both methods are diffraction 
techniques, the problems and limitations of crystallography are in principle the same. The 
main difference lies in the way a suitable initial structural model is found. With X-ray 
diffraction (XRD), a number of methods are available to arrive at an approximate guess of 
the structure more or less directly from the experimental data (e.g. the Patterson function and 
Fourier synthesis). There are also so-called direct methods which allow a structure determina- 
tion directly from the intensities for structures of limited complexity (routinely up to about 80 
independent atoms at present); so far, no suitable equivalent method has been introduced in 
the case of LEED, where a good initial guess of the structure is required (even in the case of 
the “direct methods” of LEED). As far as the structure refinement is concerned (i.e. final 
optimization of parameters starting from a good initial structure) both methods should be 
comparable. Nevertheless, some differences exist here as well, and that will be the focus of 
the following discussion. 

2.2. XRD more accurate than LEED 

Compared with X-ray diffraction, the calculation of LEED intensities is much more 
complicated, the theory uses additional approximations and has additional non-structural 
parameters: spherical atomic potentials, constant inner potential (muffin-tin zero), neglect of 
the potential barrier at the surface, uniform absorption and isotropic temperature factors 
[1,3]. We therefore cannot expect the structural results obtained from LEED to be more 
precise than those determined with X-rays, nor can we expect that refinement techniques 
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work better than with X-rays. A brief summary of the structure-refinement techniques of 
XRD therefore will exhibit the best-case limits for LEED. 

2.3. Database size 

For XRD the number of (symmetrically inequivalent) measured beam intensities is typi- 
cally a factor of 5-10 larger than the number of free parameters to be fit. Smaller 
redundancies are frequently used if more data cannot be measured or if the data are very 
precise. The accur$cy which can be obtained for the interatomic distances is in most cases not 
larger than 0.01 A. Nevertheless, the standard deviation psually quoted for the positional 
parameters is often much smaller than this (e.g. 0.001 Al, but it is calculated assuming 
statistical errors and a certain model for thermal vibrations, neglecting systematic errors. 
Note, on the other hand, that the lattice parameters (lattice constants) can be determined 
with much higher precision than this (unlike in LEED, where bulk substrate values from 
XRD are usually assumed without check). 

In the case of LEED the data redundancy must be viewed in the context of continuous 
curves rather than individual data points: continuous curves of intensity as function of energy 
(or angles). With many angles of incidence and large energy ranges, the data base is in 
principle much larger than in the case of X-rays. However, frequently only the data at normal 
incidence are used and the database then becomes comparable to the situation with X-rays. 
In the case of LEED Z-P’ curves (intensity versus energy curvesl, the number of independent 
data points is often estimated to be equal to the number of measured maxima. (It should bc 
kept in mind that the 1-V curves can be approximated as a superposition of Lorentzian 
curves of similar width [27].) If we assume an average peak separation of about 15 eV, the 
independent information in the I-V curves with a total range of 3000 eV amounts to about 
200 data points. The free parameters to be fit to experiment are primarily the structural 
parameters, the inner potential and the thermal vibrations. The scale factors, which arc 
needed for each beam independently to compare experimental and theoretical intensities, 
have to be taken as free parameters as well. In the above mentioned case, which might 
correspond to, say, 15 beams and 10 structural and non-structural parameters, this would 
amount to about 25 free parameters to be determined from 200 data points. This considera- 
tion shows us that the redundancy of data is about the same for XRD as for LEED when 
using normal incidence only. 

2.4. Least-squares refinement 

The standard method for structure refinement in X-ray analysis is the least-squares 
optimization using the expansion method [28]. Starting with an arbitrary structure the 
refinement converges to a local extremum (usually, but not necessarily, a minimum) of the 
R-factor in the parameter space. It is clear that the starting model must be sufficiently close to 
the correct structure. How close must it be’? A very rough estimate is that the atoms should be 
within a few tenths of an &rgstrom from the correct positions. If all the atoms are misplaced, 
it is often not possible to start the full simultaneous refinement of all parameters. One then 
tries to first refine single parameters or blocks of parameters keeping other parameters fixed, 
and to proceed stepwise in this way until in the final step all parameters can be freed. For 
large structures in particular, a block refinement can be used, which however converges more 
slowly, or constraints can be used to move rigid groups of atoms or molecules in the structure. 
In any case, one must check that the same minimum is reached when starting with several 
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different trial structures. The radius of convergence may be larger for single atoms if the 
major part of the starting model is correct. In general, many cycles of iteration steps are 
necessary to locate the true minimum of the R-factor. 

2.5. Estimating the reliability of the result 

In the case of X-rays, the reliability of the result can be checked by the difference Fourier 
synthesis, which would show missing or misplaced atoms. A comparable technique for LEED 
has not yet been established as yet and one has to rely on the comparison of the I-I’ curves 
and the plausibility of the structure. Besides the R-factor, the main criterion used in XRD to 
evaluate the quality of the structure analysis is the x2 test, which indicates with what 

probability the mean square deviation lies within the experimental errors. These are obtained 
from the counting statistics and from comparison of symmetrically equivalent reflections. 

2.6. Implications for LEED 

From the comparison with X-ray structure analysis, we learn that automatic refinement 
techniques should be very suitable for LEED, that the standard database size at normal 
incidence should be sufficient in most cases of current interest, and that one can expect a 
radius of convergence for the refinement of less than an atomic radius (smaller values are 
more likely because the LEED intensities depend more strongly on interatomic distances than 
in the kinematic theory). The relatively large computational effort required to calculate the 
LEED intensity and its derivatives, however, have led to several different developments to 
enhance efficiency. (Derivatives of intensities or R-factors are needed by some search 
algorithms, such as steepest-descent methods and least-squares fitting.) 

3. Efficient LEED calculations 

This section addresses the very important issue of efficiently evaluating LEED intensities 
(and their derivatives, if needed) for a single trial structure. These are required to obtain 
R-factor values (and perhaps R-factor or intensity derivatives) that are used in optimization 
schemes. The speed of a search is ultimately set by the speed of computing individual LEED 
intensities. 

The choice of method to evaluate LEED intensities must be made in light of the demands 
of the particular search algorithm used. Optimization algorithms seek to automatically locate 
the best-fit surface structure, by exploring the R-factor hypersurface in the neighborhood of a 
trial structure, and by making a sensible guess for an improved trial structure. 

Clearly, the tendency toward solving more complex structures with higher accuracy re- 
quires that the basic LEED-intensity calculation be as accurate as possible. Therefore, it is 
not realistic to look for increased computational speed with approximations that degrade the 
theoretical intensities. However, efficient approximations have been developed to rapidly 
obtain intensities for structures closely related to a “reference structure” for which the 
intensities have been obtained accurately, and also to obtain derivatives of intensities. 

It should be emphasized that the R-factor is not only a function of atomic positions, but 
also of non-structural parameters, such as the inner potential (more exactly the muffin-tin 
zero in electron-scattering theory), the phase shifts (i.e. scattering potential), and parameters 
related to thermal effects and damping. These may also have to be optimized; in fact, the 
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muffin-tin zero has such a strong influence on structural parameters that it is always treated 
on an equal footing with them. 

Exploring the R-factor hypersurface can be facilitated with derivatives of the R-factor 
and/or intensities with respect to the parameters to be fit. Due to the complexity of the 
LEED formalism, it is difficult to obtain explicit expressions for partial derivatives of 
intensities. And, most R-factors used in LEED being integrals over energy ranges, these have 
no closed formulas for R-factor partial derivatives. Whenever R-factor partial derivatives are 
required, they must therefore be obtained numerically from calculations for slightly different 
parameter values, or with the help of suitable expansions. Among the exceptions is the 
R-factor R,, defined later: the calculation of R-factor derivatives is straightforward in this 
case. 

In fact, a single optimization scheme may not be sufficient: structural searches near the 
refined solution may need a different method than the initial, coarser and rougher search. 
Indeed, in any search the parameter space is really explored on two different “length” scales. 
Firstly, one needs a coarse survey of the large-scale topology of the R-factor hypersurface 
which allows the search method to locate entrances into R-factor minima and distinguish 
between distinct local minima. Next, one needs to determine the exact location of a given 
minimum, for which other methods are more appropriate. 

The following methods have been proposed in conjunction with automated optimization 
schemes to efficiently obtain LEED intensities or derivatives for related structures, and will 
be described in turn in the following sections: 
. tensor LEED within directed-search schemes: this approach is most appropriate for 

structural refinement; 
. a combination of the gradient method (not too close to the minimum) and the expansion 

method (for refinement close to the minimum); 
. linear LEED: this approximate method is most appropriate for a coarse search to explore 

the existence and approximate location of different minima. 

3.1. Tensor-LEED theory 

3.1.1. Concepts 
The tensor-LEED technique (TLEED) [29-32,211 provides an efficient method for explor- 

ing the local regions of the R-factor hypersurface. In its simplest form, called linear tensor 
LEED (LTLEED), the theory provides the partial derivatives of the diffracted amplitudes 
with respect to changes in the atomic coordinates; these partial derivatives are gathered in 
tensors. In its more effective form, called simply tensor LEED (TLEED), one in essence also 
obtains partial derivatives, but now with respect to the changes in scattering potential induced 
by changes in atomic coordinates. 

The theory of TLEED, its validity and applications have been the subject of a recent 
review article [21]. TLEED is a semi-perturbative approach to the calculation of LEED 
intensities that starts from a reference structure which is a particular surface structure 
guessed to be as close as possible to the actual surface structure. This surface is distorted by 
moving some of the atoms to new positions to generate a trial surface structure which is 
related to the reference structure by a set of atomic displacements. Examples of a pair of 
reference and trial surfaces might be an unrelaxed adsorbate structure and a relaxed version 
of the same structure, or an unreconstructed surface and a particular displacive reconstruc- 
tion, respectively. 



M.A. Van Hooe et al. /Automated determination of complex surface structures by LEED 201 

The LEED Z-V spectra from the distorted reference structure are calculated by expanding 
the difference between the diffracted amplitude from the trial and reference surfaces in terms 
of the atomic displacements. This leads to a very efficient method for the repeated evaluation 
of the LEED Z-V spectra for many trial structures, since many complex trial surface 
structures can be related to a single reference structure. This approximation gives accurate 
structural solutions for atomic displacements within a few tenths of an Angstrom from the 
reference structure. Thus, TLEED allows the rapid exploration of complex surface relaxations 
and reconstructions. 

Insight into the principles behind TLEED theory can be obtained in the kinematic limit, in 
which the amplitude of diffraction from beam k to beam k’ is: 

A,(k, k’) = 5 fi el(k-k’)-r,. 
j=l 

(1) 

If some of the atoms are moved from their positions rj in the reference structure to the 
positions rj + Sri in some trial structure, then the change in the amplitude of diffraction is, 
approximately: 

6A(k, k’) = - 5 ifj(k-k’) *i3rj, jk-k’I.6rj< 1. (2) 
j=l 

3.1.2. Linear tensor LEED 
In the kinematic case, the change in amplitude is linear for small atomic displacements 8rj. 

This encourages one to seek a similar linear expansion in the fully dynamical case. This can be 
done [32] and is the linear tensor-LEED (LTLEED) approximation for the change in the 
amplitude of a diffracted LEED beam: 

N 3 

6A = c c qj6rij. 
j=li=l 

(3) 

Here, the index j is summed over all N displaced atoms in the reference surface and the 
index i is summed over the three Cartesian coordinates of each atomic displacement (i = X, y, 
2). The quantity 7 is a Cartesian tensor that can be evaluated by a single fully dynamical 
calculation (at each energy) for the reference structure only. Once 9 is determined, I-V 
spectra for many related trial structures can be evaluated by simply resumming eq. (3): a very 
efficient numerical procedure. 

3.1.3. Tensor LEED 
Clearly, this linear approximation has a limited radius of convergence [21], typically 0.2 A. 

The approximation fails because, even in the kinematic case, it inadequately represents the 
change in the surface-scattering potential, SV, produced by displacing an atom. This defi- 
ciency is corrected by a more sophisticated version of the theory, called simply tensor LEED 
(TLEED), which allows the exploration of larger displacements of up to about 0.4 A. In this 
case, the relationship between the change in amplitude and the atomic displacements appears 
in a functional, rather than linear, form in an angular momentum basis: 
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The quantity 9’ is a function of the atomic displacements alone; the tensor 7 depends only 
on the reference surface structure. 

This expression is correct to all orders of 6r and shares with LTLEED the fundamental 
computational advantage of this approach: once 7 has been calculated for the reference 
structure, it is possible to evaluate Z-V spectra from any trial structure by evaluating the 
matrix 9 for each displaced atom and resumming eq. (4). 

3.1.4. Accuracy of TLEED 

The finite radius of convergence of the more sophisticated version of the TLEED 
approximation is determined by the extent of multiple scattering correlations between 
displaced atoms in the trial structure. If the atomic displacements are small, then the 
magnitude of the change in potential produced by an atomic displacement will be much 
smaller than the full atomic potential and the neglect of such correlated paths is a good 
approximation. For displacements larger than a few tenths of an &rgstrom these paths begin 
to make an important contribution to the scattered intensity and the TLEED approximation 
worsens. Note that TLEED is exact in the kinematic limit, however, i.e. the radius of 
convergence becomes infinite in the single-scattering case. 

A primary reason for the success of the TLEED approximation is that the relative 
importance of correlated multiple-scattering paths is reduced by the limited mean free path of 
the LEED electron within the surface. This means that multiple scattering between atoms 
farther than a few ?mgstriims apart is negligible, whatever the magnitude of 6V. A similar 
argument may be applied to contributions to the scattered intensity from scattering paths on 
which an electron returns to the same displaced atom more than once. Such closed loops form 
a very small proportion of the total number of possible scattering paths and on such paths an 
electron must undergo backscattering from the atoms surrounding the displaced atom, a weak 

process. 
The radius of convergence of the TLEED approximation depends upon two factors, both 

of which influence the relative importance of the correlated multiple-scattering paths dis- 
cussed above. The approximation tends to worsen as the electron energy is increased, a 
reflection of the decreased wavelength and the increased electron mean free path in the 
surface. This effect is somewhat compensated for by the decrease in intralayer scattering for 
higher incident energies. In addition, the radius of convergence shrinks for strong scatterers 
which produce strong multiple scattering (such as high-2 atoms) and expands for weak 
scatterers (such as low-Z atoms). In practice, the radius of convergence of TLEED has been 
determined empirically from the numerous applications of the technique for typical electron 
energy ranges. For materials in the middle of the PerioOdic Table, such as Ni, Cu, Pd, MO and 
Rh, the radjus of convergence is typi?ally about 0.4 A. For heavier materials, like W, it is 
around 0.3 A, and for Pt closer to 0.2 A. For lighter atomsbsuch as C, N and 0, and especially 
H, the radius of convergence increases well beyond 0.5 A. These results indicate a general 
trend to smaller radii of convergence as one descends the Periodic Table: a straightforward 
reflection of the general increase in the atomic scattering cross-section with atomic number. 

3.1.5. Efficiency of TLEED 
The relative simplicity of the mathematical operations required to evaluate intensities for 

many trial surfaces using TLEED theory has important computational implications. Firstly, 
the calculation is very fast compared to conventional fully dynamical methods. For instance, 
by using TLEED theory, the computational time per trial structure can be reduced by a factor 
of 50 for a simple surface such as CutlOO) and by a factor of 10000 for a p(2 X 2) overlayer 



M.A. Van Hove et al. /Automated determination of complex surface structures by LEED 203 

system. Secondly, the time taken to evaluate intensities by TLEED is independent of the 
presence or lack of symmetry within any given trial structure. Therefore, one can consider 
highly asymmetric systems with no loss of efficiency. These structures are largely inaccessible 
to conventional methods due to the large volume of parameter space to be explored and the 
inability to exploit time-saving symmetries. This is especially important when using an 

automated search, since one cannot exclude that the path to be taken through parameter 
space by the optimization procedure will pass through asymmetrical trial structures, or indeed 

that the best-fit structure is asymmetrical. 

3.1.6. Applications 
To date, surface structures which have been solved with TLEED, coupled with search 

algorithms mentioned in section 4, include: 
. Mo(lOO)-c(2 x 2)-S [33,34]; 
. MO(W)-c(2 x 21-C [33]; 
. Rh(lll)-(2 X 2)-C&H, [35] (fig. 1); 
. Pt(lll)-(2 x 2)-C,H, [361; 
. Pt(lll) 1371; 
. Pt(lll)-(2 X 2)-O [37] (fig. 2); 
. Re(OOOl)-(2 X 2)-S [38]; 
. p-SiC(lOOIc(2 X 2) [39] (fig. 3); 
. p-SiC(lOO)-p(2 X 1) [40] (fig. 4). 

The number of optimized structural parameters ranged from 3 to 30 in these structural 
determinations. 

3.2. Nonlinear least-squares fit 

3.2.1. Concepts 
The least-squares optimization method is based on the minimization of the mean square 

deviation between experimental and theoretical data points. In order to determine the 
minimum of the R-factor the theoretical intensities are expanded in a Taylor series around 
the trial structure and the deviation from the trial structure is calculated from the condition 
that 

dR,/dp = 0, 

where R, is an R-factor defined later, and p is any parameter to be fit. 
In the series expansion only the linear term is used and the fact that the intensity is a 

highly nonlinear function of the parameters is overcome by iterating the process until 
convergence is reached. The method requires the knowledge of the partial derivatives of the 
intensities with respect to the variable parameters rather than the derivatives of the R-factor 
function. 

3.2.2. Calculating derivatives 
The calculation of derivatives can be done either numerically or analytically. A numerical 

calculation is in any case appropriate, but time consuming. The computing time scales linearly 
with the number of parameters and this step quickly becomes the most time-consuming part 
in the whole analysis. More advantageous would be analytic derivatives, which, however, are 
not available, but different approximations are possible. In the linear tensor-LEED method 
described above, the tensor contains in essence the derivatives and these could be used in 
connection with the expansion method. Nevertheless, to apply the method to all structural 
and non-structural parameters, e.g. inner potential, temperature factors and random alloy 
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2.66A 

0.12A 

OlOA 

Fig. 1. Side view (top panel) and top view (lower panel) of Rh(lll)-(2x2).C,H, (ethylidyne, with guessed H 

positions). Gray atoms have relaxed perpendicularly to the surface from bulk positions. Substrate relaxations are 

drawn to scale, emphasized by arrows and labeled by their magnitudes. 

concentrations, it is quite useful to have a numerical calculation. Furthermore, using linear 
expansions and approximations [41], the numerical calculation of derivatives compares favor- 

ably with the TLEED method. 
The first step for obtaining derivatives is to replace the matrix inversion, which is inherent 

in the self-consistent solution of the multiple-scattering problem [1,3], by a linear expansion of 

the matrix elements: 

[1-s(P+w-’ 
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a) 

d,,= 1.18 + 0.02 

1 b, = 0.07 +0.03 6 
d,,= 2.29 k 0.03 

1 b2= 0.09 kO.10 ;i 

d,,= 2.26 k 0.05 

b) 
rI = 0.025 f 0.1 d 

a,=2.3+5" 
0 

(displ, = 0.07 A) 

r, = 0.035 kO.1 A 

az= 3.0&S" 

(displ, = 0.09 A) 

Fig. 2. Schematic side view (a) and top view (b) of Pt(lll)-(2X 2)-O, including various tested symmetrical distortions. 
The full bucklings b, and b2 in the two Pt layers can be decomposed in 1: 3 proportions to indicate displacements of 
individual atoms above and below their average planes (shown as full lines in (a)). Vector r, represents radial and 
rotational displacements of the triangles of white Pt atoms which are nearest neighbors to the 0 adsorbates (shown 
black) in fee hollow sites, while vector r2 represents the corresponding displacements in the second metal layer 

(cross-hatched Pt atoms); the radial components of these vectors are labeled displ, and displ,. 

Here S is a matrix representing contributions from multiple-scattering paths. This expression 
can be inserted in the calculation of layer-scattering matrices and in the layer-doubling 
method [1,3]. The matrix inversion must be performed only once and the related vectors can 
be stored and re-used again. Only the increment of the lattice sum needs to be recalculated 
for each positional parameter and one can take advantage of several approximations [41]. The 
calculation of derivatives does not require the same accuracy as the full calculation of the 
intensities for the reference structure. The derivatives give the direction in which the atoms 
must be shifted and the full calculation is repeated for each iteration step. It is therefore 
sufficient to reduce the number of phase shifts and to reduce the number of lattice points in 
the lattice sum. A similar reduction is also possible for the set of plane waves in the 
layer-doubling scheme. The total time required to calculate derivatives then depends only 
weakly on the number of free parameters. 

3.2.3. Applications 
This optimization method has been applied to a number of structure analyses: 

. Pt,,Fe,,(llOMl x 2) [42]; 

. Ni(llOM2 x 11-O [201; 

. c0(ioio) [431; 
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from C2H4 exposure from St sublimatton 

(b) 

Fig. 3. Two closely related structures for p-SiC(lOO)-cc2 X 2), both carbon-rich: (a) as obtained from C,H, deposition, 
and therefore possibly including hydrogen; (b) as obtained by Si sublimation, and therefore hydrogen-free. Different 
relaxations are found, especially in the second (Si) layer. Note the formation of symmetrical carbon pairs, 
qualitatively different from the Si dimers in the Si-rich version of this structure (cf. fig. 4). in that each carbon in a 

pair has cwo bonding neighbors. 

Ru(OOOl)-(fi x fi)R30”-Cs and (2 x 2)Cs [44]; 

Cu(l lOM6 x 2)-O [451; 
Ru(OOOl)-(6 x fi)R30”-0 + Cs [46] (fig. 5); 
Ni(llO)-(1 X 2)-H [19]; 
Al(lll)-(6 x &)R30”-K [47]; 
Cu(llO)-(1 x 2)-H [48]; 
cm1 1 OM8 x 21-s 1491. 
The number of optimized structural parameters ranged from 6 to 26 in these structural 

determinations. 

3.3. Linear LEED 

3.3.1. Concepts 
Very recently, a new approximate method has been developed, called linear LEED 

(LLEED), that will be useful to explore larger areas of the structural-parameter space [50]. Its 
principles are described in more detail elsewhere in this volume [51]. LLEED is aimed 
particularly at exploring combinations of atomic displacements, where several atoms or rigid 
groups of atoms are displaced simultaneously. These displacements are treated as indepen- 
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2.31 A 

0.43 A 0.23 A 

I I 

L 
Fig. 4. Side view (top panel) and top view (lower panel) of p-SiC(lOO)-p(2x l), which is Si-rich as obtained by Si 

deposition. Note the formation of asymmetrical silicon dimers, similar to those on Si(lOO)-(2 X 1) (Si is shown as open 

circles, C as gray circles); the Si dimers are qualitatively different from the C pairs in the C-rich reconstructions (cf. 

fig. 3), in that each silicon in a dimer has three bonding neighbors. 

dent and therefore with great computational advantage. (Note that this advantage disappears 
for displacements of single atoms alone.) 

The label “linear” in linear LEED describes the basic assumption (or approximation) of 
the method, namely that independent atomic displacements have linearly independent effects 
on LEED amplitudes (it does not in any way imply a linear expansion for small atomic 
displacements). 

In LLEED a fully dynamical LEED calculation is performed for a particular reference 
structure, giving an amplitude A, for a given diffracted beam. Additionally, a trial structure is 
considered in which several atoms (or groups of atoms, like molecules), labeled 1, 2,. . . , N, 
have been displaced by arbitrary amounts. As an example with N = 2, consider the coadsorp- 
tion of C and 0 atoms on NitlOO): assume that in the reference structure the two atoms are in 
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Ru100011/Cs-i~~~$3)R30° Ru~OOOl)/Cs 12x21 

Fig. 5. Side views (top 
and (b) 0 = : l/4. Note 

-i 

& radius. 2.2A 

?- 

panels) and top views (lower panels) of Cs overlayers on Ru(O001) at coverages of 

the change in adsorption site from hollow to top with increasing coverage, and 

buckling of the metal under the top site. 

(a) H = l/3 
the inward 

hollow sites, while in the trial structure both atoms are in top sites. The objective is to obtain 
the new beam amplitude A,,,,. N for that trial structure. To that end, one makes exact fully 
dynamical LEED calculations of the diffraction amplitudes for a set of N related structures: 
in each such related structure only one of those atoms (or groups of atoms) is displaced to its 
trial position. In the current example, one would displace the C atom alone to the top site 
(leaving the 0 atom in the hollow site), yielding beam amplitude A,, and separately move 0 
to the top site (leaving C in the hollow site), yielding beam amplitude A,. In general, N such 
calculations are needed, yielding N amplitudes A,, j = 1, 2,. . . , N for the beam in question. 

Now the LLEED amplitude for the trial structure with all displacements is, by definition, 
the following simple linear combination, which is an approximation to the correct amplitude: 

A tz...,v=A~+ IE (Aj-Ao). (5) 
j=l 

(This equation holds for the beam of interest, other beams being treated in exactly the same 
way.) In our example, the equation would read 

Ai, =A,, + (A, -4,) + (4 -4). (6) 

Thus far, the computation has been made N + 1 times more demanding than apparently 
necessary: one could have computed A,,. N in one single calculation. However, the advan- 
tage of the LLEED method emerges when one allows sequences of atomic or group 
displacements and then combinations thereof. One generates exact multiple-scattering ampli- 
tudes A> for sequences of single-atom or single-group displacements labeled kj = 1, 2,. . , 
M, (such as a sequence of C positions and a sequence of 0 positions in our example). One can 
then use LLEED to scan very many combinations of atomic displacements, by the repeated 
use of eq. (5), which takes negligible computing time. Thus, all pairwise combinations of C 
and 0 positions obtained from their two individual position sequences can be rapidly 
generated. 
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Now the big savings in computing time have emerged, and they grow rapidly with the 
number of parameters to be fit. For instance, consider the case of a simple clean surface in 
which the top 5 interlayer spacings are varied, with each spacing taking on 10 trial values. 
Conventional LEED requires fully dynamical calculations for lo5 different structures. By 
contrast, LLEED would first calculate and tabulate diffracted-beam amplitudes when only the 
first of the five spacings is changed, and then when only the second spacing is changed, etc., 
requiring only 5 X 10 = 50 fully dynamical calculations. The 10’ different relaxed structures 
are then generated by simple linear combinations of these 50 tabulated terms. The gain in 
efficiency is more than three orders of magnitude in this instance. 

The magnitude of the displacements from the reference structure to the trial structures is 
largely unlimited (except for the requirement that two displaced atoms should not move so 
close together that multiple scattering between them becomes extremely strong). In fact, 
moving atoms far away from each other is advantageous. As a result, LLEED is ideally suited 
for examining large displacements and thus large sections of parameter space. As a conse- 
quence, one can efficiently explore on a coarse parameter grid the presence and approximate 
locations of different R-factor minima. The exact minima locations can then be determined 
with other refinement techniques that are more effective on the fine scale. 

Note that (in contrast to TLEED, for instance) LLEED cannot treat different coordinates 
of the same atom as independent parameters: LLEED requires one fully dynamical calcula- 
tion for each three-dimensional position of an atom (or group). 

3.3.2. Accuracy of LLEED 
The LLEED approximation involves only the neglect of corrections to certain multiple- 

scattering paths: those with two or more scatterings from different displaced atoms (TLEED 
neglects corrections to these and further multiple-scattering paths, and is therefore slightly 
less accurate for comparable structures). The fact that these paths contribute relatively little 
ensures that LLEED performs with remarkable accuracy. Note that LLEED becomes exact in 
the kinematic limit. Tests have shown the approximation to be remarkably good even for 
surfaces composed of such strongly scattering atoms as Pt. The LLEED approximation 
improves when the independently moving atoms are distant from each other (since no 
multiple-scattering paths connect them). As a function of at?mic displacements, the LLEED 
error increases to a relatively small value after perhaps 0.5 A, which error remains approxi- 
mately constant thereafter. 

3.3.3. Potential applications 
LLEED promises to be particularly useful in at least the following three separate areas of 

research. Firstly, as explained above, the method serves as an ideal complement to those 
perturbative schemes, like TLEED, which perform best at small atomic displacements: 
LLEED works best for a coarse and wide-ranging exploration of parameter space. The 
LLEED scheme has, however, so far not been applied in any structural determination, so its 
exact practical potential remains to be studied. 

Secondly, the LLEED method offers the prospect of studying new classes of complex 
structures previously beyond the reach of LEED. These include systems with compositional 
and lateral disorder. For example, consider an epitaxial system in which the overlayer grows 
as islands small relative to the coherence length (i.e. instrumental response function) of the 
LEED beam, and such that the internal structure of the islands is incommensurate with the 
substrate lattice. Unlike conventional LEED, the LLEED method can be used to investigate 
such systems. The LEED electronic state generated by the islands can be constructed as a 
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linear combination of amplitudes resulting from overlayer atoms being placed further and 
further away from their equilibrium position, with unknown coefficients to be fit to the data. 
This should enable the extraction of information about properties such as the maximum 
island size [52]., 

Thirdly, a more tentative possibility exists. Methods such as direct inversion of electron 
holography rely on the linearity of the underlying mathematical schemes. The introduction of 
a linear approximation into conventional dynamical LEED may open up new and exciting 
prospects of directly inverting conventional LEED data [51]. 

4. Search algorithms 

4.1. Types of search methods 

The objective of structural optimization is to find the minimum of a LEED R-factor as a 
function of the structural parameters, and as a function of non-structural parameters (such as 
the muffin-tin zero). Many optimization algorithms have been introduced over the years: they 
differ in their requirements (e.g. possible need for partial derivatives of R-factors or 
intensities) and performance (e.g. efficiency on complicated hypersurfaces and near minima). 
Since R-factor partial derivatives cannot be obtained analytically in LEED, only optimization 
methods can be applied which tolerate numerically computed derivatives or do not require 
derivatives. Derivatives are also sensitive to effects like experimental noise and computational 
truncations, thereby endangering any search based on derivatives. 

Regarding performance, it is likely that a combination of optimization methods will be 
best, as in the Marquardt approach (see section 3.2): one method first explores wider areas of 
parameter space, then another refines parameters closer to the preferred minimum. Methods 
to explore different minima in order to select out the global minimum are available (such as 
simulated annealing [53], which makes large random jumps in parameter space), but are likely 
to be efficient only in combination with very rapid LEED approaches, at this point in time 
perhaps only LLEED. However, the issue of finding the global minimum will always remain 
difficult (as it is in X-ray crystallography with structures of a complexity such that its direct 

methods cannot be applied). 
For LEED analyses, the following optimization schemes have been implemented, which we 

shall discuss in this section: 
. direct methods [54]; 
. the least-squares approach [55,531; 
. the simplex method [53]; 
. the Hooke-Jeeves algorithm [15,16], a form of steepest descent [53]; 
. the Rosenbrook algorithm [56], and a modification of the Rosenbrook algorithm 1531; 
. the direction-set method 153,571. 

4.2. Direct methods in LEED 

Compared to LEED, an advantage of X-ray crystallography is its ability to exploit direct 
methods which originate from the simple analytic relationship between the diffracted ampli- 
tude and the crystal structure [58]. However, until recently, LEED had resisted the applica- 
tion of direct methods, due to strong elastic multiple scattering and the complex nature of 
electron-atom scattering. In particular, LEED spectra are not amenable to Fourier synthesis 
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because, in X-ray terms, the effective form factors of the surface atoms are complex and have 
a different phase for each inequivalent atom in the surface. Thus the Fourier-transform 
methods interpret phase differences introduced by atomic and elastic multiple scattering as 
changes in atomic coordinates. This gives rise to spurious features in real-space transforms 

[591. 
Recently, however, Pendry and co-workers have proposed a direct method for LEED, 

based upon tensor-LEED theory [60-63,541. The fundamental idea is not to attempt a 
complete inversion of a set of Z-V spectra, but instead to consider the difference between the 
measured Z-V spectra and those calculated for a guessed reference surface. The direct 
method then takes the difference between the measured 1-V spectra and those calculated for 
the reference structure and uses it to directly determine how the actual surface structure 
deviates from that of the reference surface. 

Pendry and co-workers have applied this approach to the determination of the interlayer 
spacings and adsorption heights for several simple systems: Rh(1 lo), Rht 1 lo)-(1 X l)-2H, 
W(100) [60], Ni(lOOM2 X 21-O [54,63], NitlOO)-p(2 X 2)-O [631 and Ni(lOO)-c(2 X 2)-S 1631. In 
each of these cases the reference structure was the bulk termination of the solid and the 
displacements directly determined were 0.1 A or less. This was necessary because this version 
of the direct method employs the linear version of tensor-LEED theory which fails for larger 
displacements. A more sophisticated scheme, based on the full tensor-LEED theory, has been 
proposed and applied to one test case [64]. In principle, this development should enable the 
application of the direct method to surfaces in which the actual atomic positions deviate by 
more than 0.2 A from their positions in the reference structure. 

Despite this development, the direct methodology has a number of disadvantages com- 
pared to more conventional methods. Firstly, it requires the comparison of absolute experi- 
mental and theoretical intensities, a generally undesirable procedure since it is well known 
that static and dynamic disorder within the surface usually leads to significant disagreement 
between the absolute intensity of calculated and experimental Z-V spectra. While this 
deficiency can be overcome by using R-factor methods, this would add significantly to the 
complexity of the method and the inversion procedure. In addition, the direct method 
requires the solution of an overdetermined set of simultaneous equations which relate the 
intensity differences to the atomic displacements (typically there are many times more 
experimental energy points than structural parameters to be determined). This represents a 
difficult and unstable numerical problem which has no exact solution. Its solution requires 
sophisticated and time-consuming computational techniques. 

A potential advantage of these direct methods is that, in principle, they avoid the problem 
of local versus global minima. Thus, although the initial results of this approach appear 
promising [651, the direct method requires further development before it can be considered as 
a reliable alternative to trial-and-error or optimization methods. 

4.3. Marquardt approach 

A very efficient optimization scheme is the so-called expansion method which is routinely 
applied in many fields and is also the standard method used in X-ray structure refinement. It 
is based on the minimization of a fitting function which is usually the mean square deviation 
between experimental and theoretical data points. It requires the knowledge of the derivatives 
of the intensities with respect to the variable parameters. In its original form it works well 
near the optimum where the gradient is small, because it is based on a linear expansion of the 
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intensities as a function of the variable parameters. Far away from the optimum, the gradient 
methods usually work better. 

Therefore, a combination of both methods has been developed by Marquardt [55] and his 
approach has in fact become the standard method for optimization. With LEED it has been 
successfully applied in a number of structure analyses [19,20,42-481. Detailed descriptions of 
the procedure can be found in most textbooks [53]; we outline the method below. 

The quantity which is minimized is the mean square deviation between the normalized 
intensities, summed over energies: 

R,= x(&j-I;)‘. 

A linear expansion of the intensity function in terms of a change in a parameter p to be fit, 

Z(p,+Ap,) =I(P,) + &A&> 
m 

can be inserted into the minimum condition, 

W/dp,,, = 0, 

leading to a set of linear equations which defines the change Ap: 

or, in short form: 

Pm = CAP,“jm, 

Replacing the coefficients aj,,, by aim ” = a,,(1 + aj,h), allows a continuous transition from a 

gradient-method-like behavior (large values of A) to the expansion method (small values of A). 
The parameter A is dynamically adjusted. 

It should also be noted that the method is not limited to minimizing the mean square 
deviation as described above. One may also use the Y-function as defined by Pendry [66] (see 
section 5.4). In that case it is necessary to use a step width on the energy scale which is 
sufficiently small to calculate the Y-function, since the Y-function requires the derivatives of 
the intensities with respect to energy. The Y-function is defined for single energy points and 
the derivatives dY/dp can be calculated numerically using a small increment in the parame- 
ters. Using the Y-function as criterion, the method is closely related to the direct method in 
combination with the linear tensor-LEED method [29]. The results should be close and a 
detailed study comparing both methods is in progress. 

4.4. Simplex method 

Among the simplest optimization algorithms is the simplex method [53,37]. It does not 
require derivatives at all, but uses a “simplex” (set of vertices) of N + 1 points in parameter 
space, if there are N parameters to fit. At each iteration step, the vertex with the highest 
R-factor is replaced by a new vertex guessed to provide a lower R-factor. It is a very robust, if 
not rapid method: in test cases, it seems to be considerably slowed down by the presence of 
long, shallow, twisting valleys in the R-factor hypersurface. 



M.A. Van Hove et al. /Automated determination of complex surface structures by LEED 213 

4.5. Direction-set method 

A more effective algorithm is the direction-set method [53,57,37], which minimizes the 
R-factor along a set of independent directions which are updated as the search proceeds. The 
minimization along each direction is done independently, by parabolic interpolation if the 
function is tested to be parabolic in the region of interest, or by simple bracketing if such a 
test fails. In order to optimize the efficiency of this step the algorithm updates the directions 
by trying to converge on a set of so-called conjugate directions, which are such that 
minimization along one does not spoil the subsequent minimization along another. As an 
example, if we consider minimizing a positive, quadratic function, a possible set of conjugate 
directions (but not the only one) corresponds to the eigenvectors of the matrix A defining the 
quadratic function. If these, say N, eigenvectors are identified, the problem is reduced to N 
one-dimensional independent minimizations along each direction. 

4.6. Rosenbrook method 

The Rosenbrook algorithm [56,33], as well as its modification [.53], is best used when the 
search has already reached the vicinity of a local minimum. It identifies a set of conjugate 
directions by periodically computing the Hessian matrix of the R-factor (the Hessian is the 
matrix of partial second derivatives) and by updating the set of conjugate directions to the set 
of principal directions of the Hessian. This option returns the position of the minimum 
together with the principal directions and the corresponding curvatures of the R-factor at the 
minimum: these are useful information for evaluating the uncertainties of the structural 
determination. 

4.7. Hooke-Jeeues method 

The Hooke-Jeeves approach [15,16] is a form of steepest-descent method [531. It explores 
the local shape of the R-factor hypersurface in the immediate vicinity of a given structure, 
and deduces from it the best direction in which to move in order to reduce the R-factor value. 
The search proceeds in that direction until the R-factor no longer diminishes. The scheme is 
then repeated from the new point reached in this manner. This scheme was employed in a 
LEED structural determination which used full-dynamical calculations for all R-factor 
evaluations needed in the process [16]. It could be considerably accelerated by applying 
TLEED or other methods. 

5. Practical issues 

In this section, we address the practical use of the methods described above, with emphasis 
on experience gained with them in determining actual surface structures with LEED. These 
issues are important in view of the increasing automation of structural determination and in 
view of the resulting reliability that one may expect. 

A first issue is the level of automation that one can hope to achieve. Complete automation 
is not possible, as shown with the case of X-ray crystallography. We expand on this in section 
5.1. 

Solving structures in much more detail than before (e.g. fitting 30 structural parameters) 
raises the question of the achievable accuracy. Clearly, fitting many parameters allows a closer 
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fit between theory and experiment, but this is only meaningful if the theoretical ingredients 
are accurate enough, as discussed below in section 5.2, and if the experimental database is 
adequate, as discussed in section 5.3. 

There is also the question of which R-factors are appropriate for the task, an issue we 
address in section 5.4. The practical performance of optimization methods is reviewed in 
section 5.5. And finally, in section 5.6, we discuss the difficult problem of assigning an 
uncertainty to the best-fit parameters. 

5.1. Achieruble lecel qf automation 

It is important to realize that a structure determination never can be a fully automated 
process. Instead, a human being must first be closely involved in the generation and selection 
of model structures to try out. Such models will be based on accumulated knowledge about 
the structure, as obtained by all sorts of methods. For instance, knowledge of the chemical 
composition of the surface is essential (from Auger electron spectroscopy or thermal desorp- 
tion spectroscopy). Topography may be available from scanning tunneling microscopy. Molec- 
ular-species identification and approximate molecular orientation may be given by vibrational 
measurements. Bond lengths and angles have to satisfy well known criteria. Previous struc- 
tural determinations and theory, for the same or similar systems, may provide models or 
model ingredients for investigation. 

Then, the fitting of parameters is often done in separate stages: one would first fit 
parameters on which the diffraction intensities depend strongly (like coordinates perpendicu- 
lar to the surface), and one would only then add other less sensitive parameters in one or 
more new fitting processes. One may also start with optimizations that maintain a high 
structural symmetry, before exploring lower-symmetry structures in separate optimizations. 

Often, searches based on the initial list of models do not yield any acceptable structure. 
Then one must go back to propose other models, question any assumptions, or perhaps check 
the surface preparation and the experimental methods. 

When an acceptable structure is obtained, it is still advisable to iterate the optimization 
process at least once in order to make sure that any approximations used in the LEED 
calculations (as in TLEED and expansion methods) have not shifted the R-factor minimum 
away from the actual correct location. It is also necessary to verify that the search has actually 
reached a minimum (rather than a saddle point allowing further minimization). This involves 
running a sequence of similar parameter optimizations starting from different trial structures 
in the neighborhood of the presumed correct structure. 

Also, it is advisable to perform further optimizations with different atomic scattering 
potentials and other non-structural parameters (if not fit previously). 

Full automation applies thus only to the process of optimizing once a set of structural 
and/or non-structural parameters. Many such optimization processes are involved in a typical 
structural determination, and they must be selected by a human being as the analysis 
proceeds. Human intervention also provides a frequent and beneficial check on the progress 
of the search. 

5.2. Required quality of LEED theory 

5.2.1. Quick and rough searches 
It can be profitable to perform a quick and rough structural determination on the basis of a 

less-than-accurate theory, especially in the early stages of a coarse search for approximate 
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structures to be refined later. (This could be usefully combined with the LLEED scheme.1 
Such an approach can drastically cut the computing time, e.g. when a smaller angular- 
momentum cut-off I,,, or fewer plane waves are used than otherwise needed. For instance, 
with Pt(lll), cutting I,,, from 9 to 6 for the ecergy interval 50-250 eV affects the best-fit 
topmost interlayer spacing by less than 0.02 A, although intensities change appreciably. 
However, one must then be cautious not to reject structures giving apparently incorrect local 
minima: the intentional theoretical inaccuracies can easily make the correct global minimum 
look like a local minimum. 

5.2.2. Lattice parameters 
Rarely discussed, and never explored to our knowledge, is the uncertainty in the lattice 

parameters used in LEED analyses to set the unit-cell parameters in the surface plane: one 
normally takes bulk-lattice constants from structural tables, but such tabulated values can vary 
by 1% or more (representing a variation by 0.02-0.03 A for the interatomic distance between 
close-packed atoms). The resulting uncertainty on atomic locations could be comparable to 
this lattice-constant uncertainty. This obvi$usly could have serious implications on refined 
structure determinations approaching 0.01 A in accuracy. 

This issue may become even more dramatic in situations where epitaxially grown films are 
investigated. A lattice misfit leads to stress and gradual change of the lattice parameter with 
film thickness. In such cases the lattice parameters may have to be included among the search 
parameters. 

5.2.3. Atomic scattering amplitude 
Recent work is pointing to the need to pay closer attention than heretofore to the atomic 

scattering amplitude (phase shifts) used in LEED, when trying to optimize many structural 
parameters with high accuracy [37]. It is, however, not yet possible to systematically quantify 
the effects of theoretical uncertainties on the best-fit atomic coordinates. We shall in this 
section review some findings in this domain. 

A number of investigations fortunately point to a lesser sensitivity of best-fit structural 
parameters to the atomic scattering than do the LEED intensities themselves. For instance, 
substituting Co for Ni phase shifts (Co and Ni are adjacent in the Periodic Table) would have 
a negligible effect on the best-fit structure 1671. However, the method of preparing the atomic 
scattering potential could introduce larger uncertainties. For example, using a free-atom 
potential as opposed to a solid-state atom could introduce structural errors in excess of 0.02 
A. Experience with Pt indicates that structural parameters can vary by 0.01-0.03 A, as one 
varies the method of calculating the exchange contribution. 

Relativistic effects have always been known to play a role in LEED for heavy elements, e.g. 
in the 5d row of the Periodic Table, especially as far as LEED intensities are concerned. Such 
effects should enter at least at two stages in the calculation: in the computation of the atomic 
charge densities needed to obtain the muffin-tin potential, and in the calculation of the phase 
shifts from the muffin-tin potential. It is now routine to include relativistic effects by solving 
the Dirac equation for the free atom (or ion) rather than the Schriidinger equation within the 
Hartree-Fock approximation. (The codes available today for the free-atom problem do not 
even require a local-exchange approximation, but treating atomic exchange exactly does not 
make any appreciable difference, if one is simply interested, as we are, in the total charge 
density.) Phase shifts can be obtained by solving again the Dirac equation in the presence of 
the spherical muffin-tin potential (a spin average is needed in this case to produce the phase 
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shifts used in LEED programs, which, for the most part, do not include spin dependence in 
the LEED wavefunctions). 

We find that relativistic effects may not change the optimal structure of a heavy element 
itself, but that they can markedly change the positions of light atoms in the same structure. 
For instance, for clean Pt(lll), one finds that the inclusion of relativistic effects does not 
change the optimum structure by more than about 0.01 A, while it can considerably improve 
the I-V curve fit. It turns out that the most important step is the relativistic phase-shift 
calculation, as can be inferred by the values 0.3, 0.32, and 0.19 for R, (the Pendry R-factor) as 
we progressively include the effects previously mentioned. By contrast, the effect on the 
structure of Pt(l1 l)-(2 X 2)-O is much larger: the best-fit Pt-0 spacing decreases from I .26 to 
1.19 A, a change of 0.07 A. 

At present, practically all LEED calculations are performed within the muffin-tin approxi- 
mation. It makes the assumption that the atomic ion cores do most of the scattering and that 
the interstitial potential is sufficiently slowly varying that it may be averaged to a constant (the 
muffin-tin zero). This approximation becomes less accurate as the electron energy decreases, 
but is nevertheless successful even near and below the Fermi level, where it forms the basis of 
the KKR [68,69] and SW-Xa methods [70] for the evaluation of the electronic structure of 
solids and molecules. Where the muffin-tin approximation is least accurate is in the treatment 
of the molecular scattering, because in molecules a substantial fraction of the total electronic 
charge density resides between the ion cores. Accuracy of molecular coordinates will there- 
fore lag behind that of more close-packed materials; one should expect a several-fold 
reduction in accuracy, unless more complex non-spherical scattering potentials are intro- 
duced. 

5.2.4. Relathe importance of non-structural parameters 
For the other non-structural parameters, an older, detailed study of Pttlll) [71] gives a 

useful idea of their relative importance. The relative error bars quoted for the one structural 
parameter and three non-structural parameters were: 0.44% for the topmost interlayer 
spacing, 10.5% for the muffin-tin zero, 8.1% for the imaginary part of the inner potential and 
5.3% for the Debye temperature. Thus, the sensitivity to non-structural parameters can be as 
much as 10 times lower than that to structural parameters. This, on the other hand, of course 
means that their influence on the structural search result is relatively small. 

5.2.5. Muffin- tin zero 
The muffin-tin zero (often loosely termed inner potential) is always used as a fit-parameter 

and is included in the optimization procedure as a simple relative shift of the experimental 
and theoretical I-V spectra (for this reason it is advisable to compute the theoretical I-V 
spectra over a wider range of energies than provided by the experiment, in order not to lose 
data at the end points). Usually an energy-independent muffin-tin zero is assumed, resulting 
in a rigid shift. It is important not to constrain the muffin-tin zero to a coarse grid of values, 
but to allow continuous changes; otherwise multiple closely spaced minima may result. 

An optimization of the weak but accepted energy dependence of the muffin-tin zero has 
not been tried with an automatic fit procedure. With the conventional trial-and-error 
approach, this fitting usually leads to an improvement of the R-factor, but has little influence 
on the structural parameters. 

5.2.6. Damping 
Structure determination by LEED is quite insensiticvz to uncertainties in the imaginary part 

V& of the inner potential (i.e. the damping, also described by the mean free path). AS an 
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example, varying Voi from - 1 to - 10 eV (its optimum value being abtut -5 eV> affects the 
Pendry R-factor, but not the structure of Pt(ll1) on the scale of 0.01 A. 

5.2.7. Thermal vibrations 
Thermal vibrations have been optimized in LEED within the familiar Debye approxima- 

tion. One finds considerable structural insensitivity to uncertainties in thermal effects, 
especially at low temperatures. For instance, with Pt(lll), a change $f as much as 60 K in the 
Debye temperature has no effect on structure on the scale of 0.02 A. (However, one cannot 
draw conclusions about thermal vibrations from such results, because the treatment of 
thermal vibrations in the multiple-scattering theory is inadequate. For instance, correlations 
in the vibrations between atoms are neglected, although they are known to be strong 111.) 

By comparison, in X-ray structure analysis the structure refinement usually starts with an 
overall isotropic temperature factor and determines the positional parameters. If reflections 
with high momentum transfer are measured, these may be omitted at this stage, because 
wrong temperature factors have a strong influence on the high-index reflections. After 
determining the positional parameters, isotropic thermal vibrations are refined and only then 
anisotropic vibrations for each atom. At this stage the high-index reflections must be included. 
The intensity R-factors may drop from 0.1-0.2 for an overall isotropic temperature factor to 
about 0.02-0.05 for individual anisotropic temperature factors. The initially determined 
positional parameters change very little in the final refinement. However, if the high-index 
reflections were included in the initiaj stage, the influence on the positional parameters would 
be larger and may reach, say, 0.05 A. It must also be mentioned that the determination of 
thermal vibrations with X-rays has its limitations: the high-index reflections which are 
required for this analysis frequently have systematic errors due to absorption effects and need 
to be corrected. 

A comparison with LEED, where because of the backscattering geometry a high momen- 
tum transfer normal to the surface normally exists, leads to the conclusion that the precision 
of the analysis done with isotropic thermal vibrations is an underestimate. In the case of 
X-rays the R-factor drops significantly after introducing anisotropic thermal vibrations. We 
can expect the same for LEED. How much this influences the interatomic distances, layer 
spacings, etc., needs to be investigated and cannot be seriously evaluated today. 

52.8. Optimizing non-structural parameters 
Given the influence of certain non-structural parameters in the LEED determination, one 

possible way forward is to attempt to include these quantities in the optimized search. In 
doing this we are faced with the same problem encountered when searching for structural 
parameters: we require an efficient method of evaluating 1-V spectra as the non-structural 
parameters are varied. In many cases, TLEED theory provides a means of doing this since a 
change in the non-structural parameter can be interpreted as a change in the scattering 
potential of the surface amenable to the type of perturbation approach exemplified by 
TLEED. A good example is that of anisotropic vibrations of surface species which can be 
directly treated with linear TLEED [72]. In principle, it also possible to use TLEED to treat 
variations in the atomic scattering potential. In this way, the atomic scattering amplitude 
could be refined within an optimized search. A nice feature of the TLEED approximation is 
that there is no requirement for the potential variation to be spherically symmetric. Thus 
TLEED may allow us to go beyond the muffin-tin approximation towards a full-potential 
LEED theory. TLEED can also be extended to other perturbations, such as weak-atom 
scattering and spin-dependent scattering. 



Derivatives of the intensities with respect to non-structural parameters can also be 
calculated numerically or using combinations of numerical and analytical methods, depending 
on the type of the parameter [41]. Thermal vibrations within the Debye model, variation of 
the scattering potential and a variation of the concentration within the average t-matrix 
approximation (ATA) are relatively simple to calculate because the main effort lies in the 
calculation of the interatomic electron propagators which are unaffected by a variation of the 
atomic t-matrices. 

5.3. Required experimental database 

The most critical experimental conditions affecting LEED-intensity measurements and 
having consequences on structure determination include: 
. the angle of incidence (and its dependence on magnetic fields); this may be one of the most 

important causes of systematic experimental errors in LEED, particularly for off-normal 

incidence; 
. cleanliness and purity of adlayers (when impurities affect the structure); 
. coexistence of other phases, especially such phases containing the same periodicities as the 

phase of interest; 
. preferential domain orientations that lower the symmetry of the LEED pattern. 

Less critical conditions are: 
. the surface temperature (as long as no phase transitions are inadvertently introduced); 
. defects such as ordered or disordered steps and impurities that do not affect the structure. 

We next discuss several aspects of experimental data that affect structure determination. 

5.3. I. I- V-curL)e smoothing 
Smoothing experimental Z-V curves to reduce random noise is usually necessary, especially 

when R-factors are used that require the first or second energy derivatives of the intensities. 
Generally speaking, however, the primary effect of smoothing is to markedly lower the 
R-factor, with relatively little impact on the best-fit structure. One or two successive smooth- 
ings generally suffice. Some methods of smoothing not only remove noise, but also modify the 
underlying curve shape: one may therefore, for consistency in such cases. smooth the 
theoretical Z-V curve in the same manner (this should be done on the same energy grid). 

5.3.2. Database size 
As mentioned before, the number of significant data points in I-V curves is often taken to 

equal the number of maxima. Using data at normal incidence over a typical energy range (e.g. 
SO-200 eV), one usually gets an overdetermination of parameters by a factor S-10, which is 
comparable to the case of X-ray crystallography. Thus, such an overdetermination factor can 
be safely adopted in automated structure analysis by LEED. 

It should be noted that the number of free parameters is given by the structure and the 
penetration depth, i.e. by the number of independent atoms sensed by the LEED experiment. 
Determining only a few parameters, e.g. only one or two interlayer spacings, does not imply 
that fewer data points should be used, since that would reduce the precision in addition to the 
loss of accuracy due to artificially fixing certain parameters. 
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5.3.3. Off-normal incidence 
If more data are desired than are available at normal incidence, one can turn to off-normal 

incidence and record many times more data points. One present problem with this is that 
off-normal incidence angles are difficult to measure accurately enough with current equip- 
ment: goniometers would be needed, or else the incidence direction should be made 
adjustable in the search procedure. (Normal incidence is relatively easily set when the LEED 
pattern exhibits sufficient symmetry; but this is not the case for low-symmetry structures like 
stepped surfaces, for instance, where no symmetrically equivalent domains exist to symmetrize 
the observed pattern.) Another disadvantage of off-normal incidence relates to domains: 
LEED calculations must then be performed separately for each equivalent domain orienta- 
tion and then averaged together, since the incidence directions on different domains will no 
longer be equivalent. This complicates an automated search procedure considerably. 

It should be noted that measuring at two slightly different angles of incidence gives data 
that are not fully independent. In practice, one can expect strong dependence between Z-V 
curves taken at angles that differ by an amount that can be generally characterized as follows: 
less than a tenth of the angles between adjacent integer-order beams on common close-packed 

metal surfaces [731. 

5.3.4. Use of subsets of data 
There are cases where a subset of data can be used profitably in a structural determination. 

One instance is to independently optimize the structure with different subsets of beams or 
different energy ranges and to contrast the results: the discrepancy between results provides 
an estimate of structural error bars and of the reliability of the structural determination. 

Another example is the analysis of hydrogen superstructures which only weakly influence 
the integer-order beams but strongly the fractional-order beams. The analysis of the frac- 
tional-order beams then enhances the significance for the correct structure model. 

Similar findings apply to superstructure-inducing displacive relaxations, such as layer 
bucklings and periodicity-breaking lateral relaxations. The integer-order beams are often 
relatively insensitive to relaxations induced by adatoms, while fractional-order beams are 
strongly affected. In fact, optimizing the structure on the basis of integer-order beams only 
may yield a poor fit for the fractional-order beams, whereas an all-beam optimization can give 
good fits in all beams [37]. 

5.4. R-factors 

In contrast to the case with X-ray crystallography, many different R-factor definitions have 
been used in LEED [3,74], there being no consensus on which is most appropriate. In 
combination with search algorithms, the primary R-factors used so far have been R, (the 
Pendry R-factor), and R, (the most common X-ray R-factor). The otherwise popular 
Zanazzi-Jona R-factor, R,, suffers from higher computational costs and has been found to 
behave somewhat less predictably than other R-factors in conventional structural determina- 
tion: it may therefore be less safe to use in an automated search algorithm. 

5.4.1. R-factor definitions 
We here briefly define the R-factors referred to in this article; more complete explanations 

can be found in the literature [3,741. One R-factor is simply defined as: R,, = fraction of 
energy range with experimental and theoretical slopes of opposite signs. Others are: 

R,=A,/(Z,-cl,1 dE, 



220 Tutorials on Selected Topics in Modern Surfaw Science 

R,=A, (I,-cl,)‘dE, 
i 

x2 =A,l(l, - ZQ’ dE, 

with 

c =/I, dE/ jI, dE 

(where c is beam-dependent, while C is beam-averaged), 

A, = l/(/(1; - ?I[)’ dE). 

Here the average (indicated by angled brackets) is taken over all available beams. Note that 
R,, R, and x2 can also be defined as finite sums over discrete energy points rather than as 
integrals, since they do not involve intensity derivatives. R, has been found to be quite 
reliable even when using large energy steps and to give about the same numbers as Pendry’s 
R-factor [19]. R, has been denoted as R,, in this context. 

R,,, and R,, are similar to R, and R,, but use the energy derivative I’ of the intensity 
rather than the intensity I itself. The reduced Zanazzi-Jona R-factor additionally uses the 
second energy derivatives I “: 

with 

A, = l/ 0.027/I, dE . 
t 1 

The Pendry R-factor uses a Y-function, which is a modification of the logarithmic 

derivative L = I ‘/I of the intensity: 

/ 
(Y,-y,)*dE 

R,= 
j(K’+yt’) dE 

with 

Y=L/(l-t v,iL2). 

In addition, a series of metrics has been defined by Philip and Rundgren [27,3]: these 
metrics compare the integral functions of the experimental and theoretical intensity curves. 

These R-factors apply to Z-V curves for individual beams; a weighted average over 
different beams gives the final R-factor for a particular structure. One may also use an 
average over different R-factors to combine their individual sensitivities to different features 

of I-V curves [3]. 
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5.4.2. Using multiple R-factors 
There is an advantage in simultaneously using more than one R-factor in a given study. It 

has been observed that in the near neighborhood of a global minimum (i.e. near a correct 
structure), all R-factors agree closely on the best-fit coordinates. By contrast, near local 
minima (i.e. near incorrect structures), the minimum locations of different R-factors deviate 
rather more from each other [74]. Thus, discrepancies between different R-factors can 
indicate an incorrect structure. Also, the scatter of the different best-fit coordinates corre- 
sponding to different R-factors will give a heuristic measure of the uncertainties associated 
with that structure. 

As an example, one may compare R, and R, applied to the case of Pt(lll) and 

Pt(lll)-(2 X 2)-O, with full relaxation down to the sec?nd metal layer: it is found that both 
R-factors give best-fit structures that agree within 0.01 A for coordinates perpendicular to the 
surface. An incorrect structure (e.g. wrong adsorption site) gives structures that differ by as 
much as 0.1 A from one R-factor to the other. 

5.4.3. Clusters of R-factor minima 
From the foregoing discussion, it appears that the appearance of clusters of shallow 

minima (for a single R-factor) is a signal of an incorrect structure: it may be sufficient to relax 
more atoms or coordinates (if one is near the global minimum), or it may be necessary to 
investigate a much different structure (if one is near a local minimum). 

5.4.4. Avoiding fine-scale roughness of R-factors 
When optimizing surface structures, it is important to have a smooth R-factor behavior, so 

that it does not exhibit fine noise or ripples in which a search algorithm can get trapped. Any 
R-factor can show fine-scale roughness, if the LEED calculations are not fully converged, if 
the integration is performed on too coarse an energy grid, or if edge truncation effects occur 
when the muffin-tin zero is varied. 

For instance, R, can be rough on a very short length scale (0.005 A), when using an energy 
integration grid with 2 eV spacing. The logarithmic derivative used in R, varies rapidly with 
energy at low-intensity points of an Z-V curve, requiring a denser integration grid. To avoid 
the much higher computational costs due to a sufficiently fine energy grid, one may 
alternatively impose a uniform shift upward of both experimental and theoretical intensities 
by 5% of the average intensity, combined with a grid step of 0.25 eV. This smoothes R, and 
solves the problem of numerical convergence. The automated search algorithms greatly 
benefit from this smoothing because more sophisticated and effective algorithms than the 
simplex method can be used effectively to locate the minimum. The smoothing accomplished 
by the shift also has the beneficial effect of eliminating spurious local minima which are 
inevitably associated with a rough R-factor hypersurface. 

5.4.5. Sensitivity to experimental errors 
Another critical issue is the sensitivity of different R-factors to experimental errors in the 

data. Ideally, one wants an R-factor which tolerates small systematic errors in the data, 
meaning that such errors raise the R-factor minimum but do not give rise to spurious or 
displaced minima corresponding to structural artifacts. If one has such an R-factor, then one 
can include the non-structural parameters in the structure search and be confident that the 
search algorithm will not drop into a spurious minimum. 

An example of this is provided by considering the effect of an error in the angle of 
incidence, which, if unnoticed, leads to artificial lateral displacements of atoms in the surface. 
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By comparing model calculations for the Ni(lOO)-c(2 X 2)-O system, it has been shown [75] 
that an unknown error of a few tenths of a degree in the angle of incidence can lead to a 
best-fit, but purtly artificial, asymmetric adsorption site in which the 0 atom is displaced 
laterally by 0.05 A from the symmetric hollow site. (Note that such an error in lateral position 
will often fall within the error bars [76,771, in which case the uncertainty in angle of incidence 
is acceptable.) 

Of the seven R-factors investigated, R,, R,,,, R,,, and R,, tend to interpret this error as a 
spurious lateral displacement of the adsorbate. R, is particularly poor in this regard, the 
value at the artificial R-factor minimum being 18% below that of the symmetric site. 
Especially significant is the fact that the artificial minima are correlated: all four of these 
R-factors produce the same “best-fit” structure. In contrast, R,, R,, and R, do not produce 
such structural artifacts. These R-factors locate the correct best-fit structure, the angle of 
incidence leading only to a raising and broadening of the R-factor minimum. Thus R,, Ros 
and R, are quite stable with respect to small errors in the angle of incidence. 

5.4.4. Theoretical energy steps 

We next address the question of the optimal energy step used in the theory, with larger 
steps reducing the computational effort, while reducing the quality of interpolation. If one 
uses an integral R-factor (as opposed to one which does not rely on continuous curves and 
uses discrete summation), then one needs to calculate intensities on a grid which is dense 
enough compared to the typical peak width of 2VUi. Then higher-order polynomial interpola- 
tion can be used to whatever denser grid a given R-factor requires. The 2& criterion implies 
that a grid step of about 3-5 eV is sufficient in most cases. This applies for the commonly 
used R-factors R,, R,, and metric distances. 

Other R-factors, such as R, and R,, do not require the derivatives nor continuous I-V 

curves (they can be defined as sums over discrete energies rather than as integrals) and 
therefore allow a larger step width. In a detailed analysis [7X] the effect of increasing the step 
width was investigated. It was found that R, and R, led to the same result, which agrees well 
with previous investigations [31. A step width of up to 15-20 eV could be used without loss of 
precision. Further R-factors using fi rather than I (as for X-rays) have been studied as well, 
with no significantly different results. In general, R, (called R,, in this case of discrete 
energies) was found to be the most reliable. Experience in a number of structural analyses has 
shown that the optimum step width depends on the number of beams and the energy range of 
the I-V curves. For short I-V curves, i.e. less than 100 eV, and a small number of beams, i.e. 
fewer than 8-10, it seems that a step width of 15 eV is too large, since the available database 
shrinks unacceptably. A step width of 5 eV is preferred in such a case. 

In the nonlinear least-squares fit, R, rather than R, is minimized, because R, is not 
differentiable at the minimum. R, overestimates the misfit at strong peaks and the fit 
procedure always first tries to fit the prominent intensity maxima. It is therefore preferable to 
monitor the minimum of R,, (= R,), which is calculated simultaneously, while it is actually 
R, that is minimized. 

5.4.7. Required number of R-factor evaluations 
As a comment on the efficiency of search methods, we ask what is the smallest possible 

number of functional evaluations that will be needed to find a local minimum? To be certain 
that a minimum has been reached, one needs to at least explore its neighborhood enough to 
determine the shape of the R-factor hypersurface there. In the best possible scenario, in 
which there is only one minimum and the R-factor is well approximated by a simple quadratic 
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function of the coordinates, the number of parameters defining the quadratic form is 
approximately proportional to N*/2, where N is the dimensionality of the parameter space, 
i.e. the number of parameters being fit. Therefore, at least of order N*/2 functional 
evaluations will be needed to locate the minimum with certainty. (It is true that fewer 
evaluations may be sufficient to locate the minimum, but without providing certainty that it is 
really a minimum.) Quite generally, we empirically find that this number scales like cN2, 
where c is a constant of order 10. In practical terms, using a concrete example: given a time 
on the order of a second or less for a single R-factor evaluation using TLEED for a particular 
structure on an IBM RISC 320E workstation, searches in which 30 to 40 parameters are 
relaxed simultaneously are readily feasible; on a supercomputer, 100 parameters could be fit 
today with a few hours of CPU time. 

5.5. Optimization strategies 

5.51. Optimizing subsets of parameters 
In LEED optimization, the R-factor generally will depend more strongly on some parame- 

ters than on others. For instance, LEED R-factors vary more rapidly with changes in 
coordinates perpendicular to the surface than in those parallel to the surface (because of the 
usual near-normal momentum transfer), and depend more on coordinates near the surface 
than deep below the surface (because of the damping). Thus we divide parameters into 
sensitive - those that have a strong influence on intensities - and insensitive - those that only 
weakly influence intensities. 

Due to the finite mean free path in LEED, one must limit the fitting of coordinates to 
atoms near the surface. ft is useless to try fitting coordinates of atoms deeper than twice the 
mean free path (- 10 A): otherwise deep atoms will artificially move by large amounts to 
compensate for any deficiencies in theory or experiment. 

If one allows all parameters to vary at the same time, especially in initial stages of a search, 
any error in the guess of sensitive parameters can cause wild initial changes in the insensitive 
parameters. These changes must then be largely reversed in later stages of the search, slowing 
down the search considerably. Generally, these insensitive parameters can be recognized by 
the large error bars associated with them (see section 5.6). 

Experience in X-ray crystallography has shown that it is often more efficient to first 
optimize sensitive parameters, while keeping insensitive parameters fixed. Applied to LEED, 
this means first fitting coordinates perpendicular to the surface (together with the muffin-tin 
zero), then in addition coordinates parallel to the surface, and finally (if desired) fitting all 
coordinates and various non-structural parameters at the same time. 

An additional option is to relax the surface symmetry in gradual steps. One might start with 
a guessed initial structure that has the highest symmetry compatible with the substrate 
symmetry and the observations (e.g. high-symmetry adsorption site), and restrict the search at 
first to structures which maintain that symmetry. In subsequent optimizations, the symmetry 
constraints could be gradually lifted. 

Here caution must be exercised with equivalent domains of different orientation, called 
twinning in the three-dimensional bulk case: one should average over such domains; this also 
maintains compatibility with diffraction patterns that exhibit higher symmetry than the trial 
structures have. It is important to realize that in X-ray crystallography, the structural analysis 
is often seriously hindered by twinning of the crystal, the equivalent of surface domains. 

An advantage of gradual symmetry breaking is that the dimensionality of the parameter 
space is kept to a minimum, thus allowing a more effective and faster search. A danger, 
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however, is that one could get trapped in a local minimum. One must in particular make sure 
that the chosen search algorithm actually explores lower-symmetry structures: methods like 
least-squares fit and steepest descent will not break the symmetry of the initial structure; for 
these one must therefore provide an asymmetrical initial structure to start with. 

Given real data and allowing the search to explore low-symmetry structures, the optimum 
structure will in fact most likely exhibit no symmetry at all. Even when the actual structure is 
in fact symmetrical, the fitting process will break that symmetry to some extent because of 
experimental noise and because of imperfect convergences in the calculation. It is then 
impossible to tell whether the actual structure in fact retains any symmetry: one’s knowledge 
is limited by the error bars. It may be tempting to accept a lower-symmetry model that gives a 
better fit (thanks to its additional parameters) than a higher-symmetry model, but one has to 
accept that the symmetry breaking may be due to imperfections in theory or experiment. 

5.52. Iterating the search 
It is advisable to iterate any search process at least once; a completely fresh search 

(including a new dynamical LEED calculation as needed) should be started from the best 
structure found in the last search. This is clearly necessary when the best structure deviates 
from the initi$ guess by a distance comparable to the convergence radius of the approxima- 
tion (e.g. 0.2 A in the case of TLEED). 

The situation will also arise in which a search runs away from the initial guess towards a 
relatively distant minimum. If the search reaches too far for the approximation to be reliable, 
it is necessary to restart the procedure at the last point reached. This may have to be iterated 
more than once, depending on the distance to the nearest minimum. However, this situation 
has not yet occurred in our experience. 

5.5.3. Checking for a minimum 
With an optimization algorithm, it is valuable to be able to explicitly check that the search 

has indeed found a minimum, rather than a saddle point, say. A very convenient method is 
simply to plot the R-factor along the set of all the principal directions (i.e. not necessarily the 
Cartesian or other physical coordinates): if and only if we have located a local minimum will 
all these curves show a minimum at the best-fit positions. 

To improve confidence it also helps to restart the search from different initial positions in 
the neighborhood of the minimum found and to check that the same best-fit structure is 
obtained in each case. However, there is no avoiding the dangers of local minima distant from 
the desired global minimum. It is also impossible to guarantee that a given minimum is the 
global minimum and not a local minimum. The more extensive the search (through assuming 
a variety of initial trial structures), the higher the confidence in the result. 

It is helpful that local minima are often (but not always) characterized by unphysical bond 
lengths and bond angles: as in X-ray crystallography, this is a powerful criterion. Such a 
criterion has so far not been formalized as a “penalty function” in LEED R-factors, but could 
easily be built in. This assumes knowledge of certain structural preferences for surfaces, which 
are emerging from the hundreds of surface structures determined to date. 

5.6. Structural precision and accuracy 

56.1. Accuracy poorly known 
Structural uncertainties arise from random errors (corresponding to precision) and system- 

atic errors (corresponding to accuracy). As mentioned in section 2 for the case of X-ray 
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crystallography, systematic errors are very difficult to estimate: this holds true at least as 
strongly in the case of LEED. And since the systematic errors in XRD often lead to error 
bars which are an order of magnitude larger than do the random errors, one should expect 
the same in LEED. For this reason, a statisticaf analysis of error bars in LEED is in principle 
not very meaningful. As a result, there is, unfortunately, no agreed upon scheme for 
determining error bars in LEED crystallography. 

It is useful to realize that in X-ray diffraction the same discussion about systematic errors 
and model assumptions has been carried on for a long time [79]. 

5.6.2. Estimating error bars 
Nonetheless, several relatively objective schemes have been proposed within LEED to 

determine the statistical error bars, i.e. precision. They yield reasonable error-bar values in 
part because they make certain independent assumptions about the number of data points 
used. Specifically, it is not the total number of measured intensities that is counted, but rather 
the number of peaks in Z-V curves. 

Among these schemes, we mention Pendry’s RR-factor which measures the reliability of 
the R-factor [80], and Adams’ standard deviations [81]. In addition, one may use the scatter in 
best-fit coordinates due to different R-factors or different subsets of the database as a 
heuristic measure of the error bars [74]. 

5.6.3. Correlated parameters 
Error bars are only well defined for the principal directions discussed previously, rather 

than for the initial Cartesian coordinates. This is because of correlations between parameters: 
in Cartesian coordinates, one would obtain a full error matrix with off-diagonal terms due to 
these correlations [81]. Only in the case of uncorrelated parameters do the principal direc- 
tions and associated error bars coincide with the Cartesian coordinates and does one get a 
diagonal error matrix, i.e. independent uncertainties in the individual Cartesian coordinates. 

Once diagonalized, the error matrix does provide meaningful information, namely error 
bars on certain linear combinations of the parameters: unfortunately, it is not very useful to 
tabulate these linear combinations. Error matrices are also too cumbersome and uninforma- 
tive to publish. As a result, the custom in X-ray crystallography is to ignore off-diagonal terms 
of the error matrix and publish the diagonal terms of the undiagonalized matrix, as if there 
were no correlations (a full discussion of this issue can be found in the literature [28]). The 
same practice can therefore also be adopted in LEED crystallography. 

5.6.4. Error bar definitions 
In both Adams’ and Pendry’s approaches, the error bar corresponding to a certain 

coordinate is given by the curvature l/c of the R-factor at the minimum measured along that 
coordinate, by the minimum R-factor value R, itself, as well as by the number of independent 
data points available: 

UA’ = eR,/N, 

up” = eR,/JN/8. 

While Adams takes for N the number of kinematic Bragg peaks contained within the 
energy range of the measurements AE, Pendry estimates the number of peaks including 
multiple scattering effects and takes N = A E/4 I Voi I, where Voi is the imaginary part of the 
inner potential [82,80]. 
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Generally speaking, because of different assumptions, the Adams error bar tends to be 
optimistic, and the Pendry error bar conservative for the same structure determination; a 
factor of 3 between them is typical, but not systematic. 

5.65. Examples 
It is not surprising to find in practice that the error bars become larger for atoms that are 

deeper in the solid (due to damping) and for coordinates parallel to the surface (due to the 
momentum transfer having its largest component perpendicular to the surface). For example, 
buckling in the topmost metal layer of Pt(l1 lM2 X 2)-O causes a drop in Pendry R-factor 
from 0.267 to 0.193; the Pendry error bar on the optimal buckling of 0.08 A is 0.04 A, making 
the buckling significant. By contrast, the inclusion of lateral relaxation in the same Pt layer 
pauses a small further drop of the R-factor to 0.176, while the corresponding error bars CO.!4 
A) are larger than the measured lateral displacement from the bulk position (0.03 A), 
rendering it possibly insignificant. However, the significant buckling is a robust property: it is 
not sensitive to using a different R-factor, a different energy range, or for example integer or 
fractional beams. 

It is also of interest to compare the error bars on various non-structural parameters. This 
was discussed in section 5.1 under the heading: Relative importance of non-structural 
parameters. 

6. Application to other spectroscopies 

Besides LEED, a number of other techniques are used to determine surface structures. 
With those techniques which are based on electron scattering, it is in principle possible to 
automate the process with the same methods described here for LEED. This is especially true 
of techniques like photoelectron diffraction (PED) [83], Auger electron diffraction (AED) 
[83], high-resolution electron energy-loss spectroscopy (HREELS) [84] and near-edge X-ray 
absorption fine structure (NEXAFS) [85]. All of these involve multiple-scattering effects for 
which the methods developed for LEED are perfectly suitable. In fact, these techniques 
already utilize computational methods derived in large part from or similar to conventional 
LEED theory. 

As an example, the TLEED formalism can be applied quite straightforwardly to photoelec- 
tron diffraction and then combined with an automated search scheme. The TLEED formal- 
ism, thanks to its flexibility, does not depend on the electron source being a plane wave, or on 
the surface being periodic: point-source emission can easily be accommodated, as can 
disordered layers. 

7. Conclusions and outlook 

The recent developments in LEED theory have pushed the technique very close to the 
level of automation of surface-structure determination known in X-ray crystallography. This 
has been accomplished both by introducing more efficient methods for computing LEED 
intensities, and by using search algorithms that allow many structural (and non-structural) 
parameters to be determined. This development is of great importance: it will soon be 
possible to perform LEED crystallography without the need for a theoretician, a great 
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advantage, by using “black-box” LEED programs similar to those available in X-ray crystal- 
lography. However, improvements are still needed, including: 
. expert dynamical LEED programs that organize themselves to most efficiently handle more 

complex surface geometries, e.g. programs that automatically decide which layers to 
combine within the spherical-wave representation rather than the plane-wave representa- 
tion (in the combined-space method), and that automatically choose among such schemes as 
layer doubling and renormalized forward scattering; 

. automated treatment of symmetries; 

. better treatment of atomic scattering potentials, thermal vibrations and defects; 

. user-friendliness of programs. 

Automatic refinement has already allowed far more complex surface structures to be 
solved than before. This cap$bility also permits higher-accuracy determinations, perhaps on 
the picometer scale of 0.01 A. It may be possible to achieve even higher accuracy: this is 
found in X-ray crystallography to require anisotropic vibrations. The same improvement is a 
clear possibility in LEED (despite the added complication of correlations in vibrations of 
nearby atoms, sensed through multiple scattering). But other non-structural parameters 
probably will need to be improved. For instance, it may become necessary to use non-spheri- 
cal scattering potentials, which may add considerably to the computational cost. It is 
nevertheless possible that such non-structural parameters could be routinely fit to experiment 
in the same process as the structure determination. 

Badly lacking in LEED is an analogue of the direct method of X-ray crystallography for 
directly determining a structure without a trial-and-error search, or even a method (analogous 
to the Patterson transform) to produce a rough model of the structure. 

Finally, the automated methods developed for LEED can easily be adapted to other 
electron-based techniques, like photoelectron and Auger electron diffraction, high-resolution 
electron energy-loss spectroscopy and near-edge X-ray absorption fine structure. 
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