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Low-energy electron diffraction from disordered surfaces 

W Moritz 
Institut für Kristallographie und Mineralogie, Universität München, Theresienstrasse 41, 
8000 München 2, Federal Republic of Germany 

Abstract. Model calculations are presented of L E E D intensities diffracted by a one-
dimensionally disordered overlayer adsorbed on a well ordered substrate. Multiple 
scattering amplitudes are calculated by an extension of Beeby's multiple scattering 
method. The surface layers are divided into overlapping configurations of atoms, the 
diffraction of each of which is described by individual scattering amplitudes. In this 
way the surrounding of each adsorbed atom is divided into two parts: the immediate 
vicinity, in which multiple scattering is treated self-consistently, and the outer region 
which is represented by an averaged Τ matrix. The results of the model calculations 
indicate that the intensities are not correctly described if only averaged Τ matrices are 
used, and that in a first approximation the half-widths of the diffuse streaks observed 
in the experiment can be analysed using the kinematic theory. 

1. Introduction 

The investigation o f adsorption phenomena on surfaces and surface reactions by means 
o f low-energy electron diffraction shows that disordered structures are predominant. 
L E E D provides a readily accessible tool in the experimental observation of lateral 
interactions between adsorbed atoms and two-dimensional phase transitions, which 
have recently become o f theoretical interest (Doyen and Er t l 1975, Binder and Landau 
1976). However, there remain some uncertainties in the usual interpretation o f diffuse 
L E E D patterns which neglect multiple scattering effects. I t has been assumed that 
multiple scattering effects are unimportant as long as only the half-widths o f the diffuse 
peaks are studied as a function o f temperature and coverage wi th fixed energy and 
angles of incidence o f the primary beam (Estrup and Anderson 1967, McKee et al 
1973,Gerlach andRhodin 1969, Carroll 1972, Ertl and Plancher 1975, Park and Houston 
1969, Houston and Park 1970,1971, Cowley and Shuman 1973, Ert l and Küppers 
1970). The results of a few model calculations presented in this paper show that this 
assumption is rather well justified, and to a first approximation the half-widths o f the 
strong peaks remain unchanged compared to the kinematic calculation and can be 
used to determine the statistical parameters by direct evaluation o f the measured 
reflex profile. The shape of the angular profile may be strongly deformed by multiple 
scattering effects and, o f course, a multiple scattering theory is necessary to get a 
correct description o f the intensities (e.g. o f the intensity changes during a phase 
transition) or i f the calculated intensities o f diffuse streaks have to be compared wi th 
the experiment in order to decide between two or more possible structure models. 

The calculation of multiple scattering amplitudes from disordered surfaces can be 
done by an extension o f Beeby's Τ matrix formalism (Beeby 1968). The surface layers 
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are divided into overlapping configurations o f atoms; the diffraction of each configuration 
is described by individual scattering amplitudes. In this way multiple scattering wi th in 
the ordered substrate and the area o f the adsorbed layer (as described above) is treated 
self-consistently, while an averaged scattering amplitude is taken for the remaining 
contributions. The use o f configurations o f atoms also has the advantage that statistical 
models, including nearest-neighbour and next-nearest-neighbour interactions, and even 
interactions between atoms further apart, can be used in the multiple scattering 
formalism. 

Once the scattering amplitudes are calculated, the determination o f the intensities 
and the angular reflection profiles follows the same lines as already described in the 
theory o f diffuse x-ray diffraction (Jagodzinski et al 1978). 

2. Model of the surface 

The lattice-gas model is a reasonable model to describe a disordered adsorbed over-
layer, and the specific model used here shows disorder in one direction only for the 
sake o f simplicity (figure 1). The restriction to one-dimensional disorder is advantageous 
in that the correlation functions can be calculated analytically and an analytical 

Figure 1. Model of the one-dimensionally disordered surface. 

expression exists for the backscattered intensity. I t is not believed that two-dimensional 
disorder produces completely new effects in the angular profiles. In addition, one-
dimensionally disordered overlayers are quite frequently realised, such as oxygen on 
W ( l 12) (McKee et al 1973, Er t l and Rancher 1975) and A g ( l 10) (Bradshaw et al 
1972), Na on N i ( l 10) (Gerlach and Rhodin 1969), and the clean A u ( l 10) surface 
(Wolf et al 1978). 

I f only nearest-neighbour interactions are assumed, the statistical distribution o f the 
adsorbed chains o f atoms is completely described by two parameters ax and a 2 , 
P A A O ) = 0 - < * I ) , P A B O ) = <*i > P B A O ) = <*2 > P B B O ) = 0 - « 2 ) , where A denotes 

an adsorbed chain and Β a vacancy. P A A O ) denotes the probability that one chain o f 
adsorbed atoms is followed by another one. The a priori probabilities pn are given by the 
eigenvalue equation 

£ PmPmnW = Pn 
m 
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and the correlation functions for all distances ja are simply given by pmn{j)- [?{\)Vmn 

(where / = 1, 2 . . . ) using the matrix 

P ( 1 ) JPAA PAB\ ( 1 ) 

\PBA PBB / 

The correlation functions pmn(j) may also be expressed in terms o f the eigenvalues 
Xr o f the matrix P ( l ) (Jagodzinski 1949, 1954) 

PmnU)= IctfnH (2) 
r 

in order to render summable the expression for the interference o f amplitudes. The 
k ind and position of diffuse peaks in the diffraction pattern is determined by the 
eigenvalues λ, which are generally complex and of modulus |λ| < 1. A detailed dis
cussion on that topic is given by Jagodzinski et al (1978). In order to include next-
nearest-neighbour interactions, four parameters are needed for describing the distri
bution of adsorbed chains: PAAA = Ä I » P A B A = ( * 2 > P B A A = ( * 3 > P B B A = < * 4 · This 

results in an enlarged matrix P ( l ) and four eigenvalues λ, by which a 4 χ 1 super
structure can be described. 

The probabilities mentioned above are related to the occupancy o f lattice sites by 
adsorbed atoms and can be used as input parameters in a kinematic theory o f diffraction. 
The multiple scattering theory described below needs probabilities as input parameters, 
which are related to configurations o f atoms, as the effective scattering amplitude 
is influenced by its neighbourhood. The effective scattering amplitude represents all 
scattering processes which end in that atom. In a first approximation only the nearest 
neighbours are included in these configurations and the disordered surface is con
structed by overlapping configurations 

ι A I Β J A I L A . I I Α μ Β | L B | | A J Β J Α ι 

each one getting a different scattering amplitude which is related to the central atom 
of the configuration. The matrix o f probabilities described above has therefore to be 
re-defined as the set o f configurations: 

p(D = 

A A A A A B BAA BAB ABA ABB BBA BBB 

A A A ( 1 - a L) 0 0 0 0 0 0 

A A B 0 0 0 0 ( l - a 2 ) 0 0 

BAA ( 1 - a ! ) 0 0 0 0 0 0 

BAB 0 0 0 0 ( l - a 2 ) 0 0 

A B A 0 0 ( l - a 3 ) <*3 0 0 0 0 

ABB 0 0 0 0 0 0 a 4 0 - O 4 
BBA 0 0 0 - < * 3 ) <*3 0 0 0 0 

BBB 0 0 0 0 0 0 <*4 ( l -<*4 

(3) 

http://ilA.ii
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This matrix becomes degenerate, still having the same eigenvalues X t to λ 4 , while λ 5 

to λ 8 vanish. O f course, this is independent o f the size o f the configuration and the 
dimensions o f the matrix, as long as the same surface is described. 

The connection between the probabilities or correlation functions and thermo
dynamic quantities like interaction energies etc wi l l not be discussed here, as we only 
need those probabilities which can be determined by comparison wi th the experimental 
diffraction picture. 

3. Multiple scattering theory 

Since the details o f the theory are given elsewhere (Moritz et al 1978), only a brief 
description wi l l be outlined here. As mentioned above, the effect o f multiple scattering 
is that each atom wi th a different neighbourhood gets a different scattering amplitude, 
which becomes explicitly dependent on the incoming and outgoing wave vectors k and 
k'. Within a single layer the contribution from the neighbouring atoms to the total 
scattering amplitude is so strong in most cases that a series expansion fails, while between 
the layers the strong damping above the plasmon threshold permits perturbative methods 
(Pendry 1971). For intra-layer scattering the sum over lattice points is best done in 
direct space and, usually, all lattice points wi th in a circle of about 10—15 interatomic 
distances have to be included to reach convergence. However, the main contribution 
arises from single scattering and multiple scattering between nearest or next-nearest 
neighbours (Moritz et al 1978). These principles remain valid in the case o f both 
ordered and disordered surfaces. 

On a disordered surface there are no equivalent sites and the scattering from a 
layer or a subplane cannot be represented by a single Τ matrix. In order to facilitate 
the solution of the problem the averaged Τ matrix approximation (Ehrenreich and 
Schwartz 1976) - well known in the theory o f the electronic structure of binary alloys — 
could be used. I t is also employed by Duke and Liebsch (1974) in their application to 
disordered overlayers. In their work the main difficulty arises in trying to incorporate 
correctly short-range order in the multiple scattering series. In the method used here 
the surrounding o f an atom is divided into an 'area o f multiple scattering', which 
includes nearest or next-nearest neighbours, and the outside region, which is represented 
by an averaged Τ matrix. For each o f the possible configurations inside the 'area of 
multiple scattering' a different scattering amplitude is calculated. In this way two 
main difficulties are overcome. First, the most important part o f the multiple scattering 
amplitude (caused by the immediate vicinity o f an atom) is treated self-consistently, 
and second, there is no restriction to a random distribution of the adsorbed atoms 
(high-temperature l imi t ) as any statistical model is easily incorporated in the multiple 
scattering formalism. 

The formalism best suited for introducing disorder is the Τ matrix method as given 
by Beeby (1968), where the sum over lattice points and layers is done in real space, 
which has the advantage that the Τ matrices themselves depend only on the incoming 
wave vector k, and the set o f equations has to be solved only once to get the intensities 
in all outgoing directions k'. 
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The final formula is given by 

Tm'v(k) = <„,,„(*) + r m > „ ( * ) χ Σ ^ ( k ) 

W = Ύ ' G ( R + dM ~ <U e x P Η k ( R + dM - d „ ) ] P f f l l I ( R ) 
R 

l /2 |>r 
+ Σ G i R + ^ - d ^ e x p H k C R + ^ - d , ) ] pn (4) 

/? 

where the indices ν, μ denote the different layers, and the indices ny m stand for the 
different configurations. pmn(R) are the sequence probabilities as given in equation (3) 
and, for convenience, the angular momentum indices L , L ' o f the electron propagator 
matrices and the scattering matrices have been suppressed. For the special model of a 
half-covered surface, one sort o f adsorbate atoms and Ν possible configurations, the 
atomic scattering matrices are 

(tA = (l/k) exp(i δ / < Α ) sin SlfA δ L L> (y = 1, m = 1 , . . . ,N/2) 

tm,v{k)= 0 (y=l, m= ( A 7 2 )+ l , . . . ,N) 

US

 = 0/*) e xP0 5/,s) S i n 5/,S 8 L , L ' ( V > 2 ) · ( 5 ) 

A and 5 / ( S are the phase shifts of the adsorbate and substrate respectively. The 
system o f equations (4) is not solved directly because of the dimension o f the matrix 
to be inverted. Therefore a perturbative solution has been used in which first an 
averaged Τ matrix is calculated and then the deviations from the average are obtained 
by an iteration scheme described in the appendix o f the work by Moritz et al (1978). 
The diffracted intensity can be written (Jagodzinski et al 1978) as 

/(k, k') = RMZFFJ exp [ - i(k - k') . a/] (6) 

where R L is a normalisation factor, Μ the number o f unit cells, and FFJ* the averaged 
structure factors 

FF,* = 1 P M P M N Q ) F M ^ ' ) F * n ( k X ) . (7) 
m, η 

Fm(k, k') represents a generalised structure amplitude and contains the sum over layers: 

F m ( k ' k ' ) = I ^ ~ l Σ ^ ( n k o ^ ( k ) r ; - ( n k ) e x p [ i O < - k X ] . (8) 
A k l ν L,L' 

Using equation (2) 

™7 = Σ Σ C$N λ> F M F * N = Σ + i DR) λ> (9) 
m, η r 
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the final formula for the diffracted intensity from the surface disordered in the 
JC direction only is given (Jagodzinski 1949, 1954) by 

I(Kk') = RRM ( £ Bt 

ι - IX,I: 

l - 2 | X , | c o s ( ^ 1 + 0/.) + X , | 2 

|X r| s i n ( i4i +0 r ) 
-2D 

r l - 2 | X r | 2 cos 04, . r r r i . v l , 

where 

Al = ( k - k ' ) . a 

X r = | λ Γ | exp( i φ,) 

4. Results and discussion 

Two different models o f disorder have been studied. In the first model oci = a2 -
a3 = a 4 = 0-8 is assumed, which represents a half-covered surface wi th repulsive inter
actions between the adsorbed atoms (AW interactions only) and results in a (2 χ 1) 
superstructure w i t h broadened half-order and sharp integer-order reflections. In the 
second model, interactions between next-nearest neighbours have been added by 
setting αχ = a 4 = 0-8 and a2 = a 3 = 0-4. The surface is still half-covered and mainly 

Figure 2. Kinematically calculated intensities showing the influence of the atomic differ
ential cross section on angular reflection profiles. al = a2 = <*3 = a 4 = 0-8, £ p = 50 eV, 
V{ - 4 eV, normal incidence: 1 phase shift (s-wave s c a t t e r i n g ) t h r e e phase shifts; 

four phase shifts. The position of the sharp integer-order reflections is indicated by 
the vertical lines. 
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Figure 3. Dynamically calculated angular profiles for same model as in figure 2, taking 
into account four phase shifts and five layers: nearest neighbours are included in the 
configurations for the uppermost three layers; — averaged Τ matrices are used for all 
layers; as in figure 2, without intensity scale. 

pairs o f chains are formed, resulting approximately in a (4 χ 1) superstructure. The 
(110) face o f silver has been chosen as substrate and the same phase shifts have been 
used for adsorbate and substrate, as different phase shifts do not seem to be relevant 
in these model calculations. Up to four phase shifts have been taken in to account, 
which should be sufficient at 50 eV primary-beam energy. The crystal consists o f 
five layers, o f which the uppermost three are divided into configurations as described 
above; the damping parameter has been set at V-x = 4 eV. 

Figure 2 shows the calculated reflection profiles with different numbers o f phase 
shifts used. The suppression o f the (3 /2 ,0 ) reflection corresponds to a deep minimum 
in the atomic scattering amplitude o f silver at θ = 140 0 and £ p = 50 eV. The dotted 
lines in diagrams 2 - 4 are obtained by single scattering and s-wave scattering only 
(i.e. i t is simply the Fourier transform o f the correlation functions and represents the 
'state o f order' of the surface, lacking any individual scattering properties). Figure 3 
shows that through the influence o f multiple scattering the (3/2, 0) reflection appears 
again, but this is not the case i f averaged Τ matrices only are used (broken curve). 
In that approximation the size of the configurations has shrunk to a single atom and 
the scattering properties o f an adsorbed atom are described by a single Τ matrix. This 
approximation is not sufficient to describe the intensities correctly. 

For comparing the width o f line profiles at half-intensities, even a kinematic cal
culation is sufficient. A l l prominent peaks show mainly the same shape; the very weak 
peaks are not used anyway in an experimental investigation. The same features are 
obtained wi th the second statistical model shown in figure 4. Wi th different energies, 
rather different peak profiles are obtained. Nevertheless, the conclusion may be drawn 
that in an experiment the proper half-widths (that of the dotted l ine) could be measured 
approximately. However, the correct description of the intensities is only possible 



268 W Moritz 

• · · · 
ΊοοΓίϊο) ί \ 

I ! 

0-10-

ί I 
ι ι 
ι ι 
f I 
Ι ι • 1 
f 1 
1 \ 
t ι 

A A ί 1 
f \ 
' ι 
' W · * 

0 05- A / A 
. . · * ^ Ν 

χ λ · I 
: ·. y / f ; \ · » 

/ v / k 
'TT*' / \ ·· 

(00) (10) (20) 
0° 25-f 58° 

Figure 4. Dynamically calculated angular profiles at two different energies of the incident 
beam. Nearest neighbours are included in the configuration for the first three layers, and 
three phase shifts are used. Ep = 50 eV; — Ep = 70 eV. The statistical model includes 
next-nearest-neighbour interactions α x = a 2 = 0-8, α 3 = a 4 = 0-4. • ·· kinematic calculation 
with s-wave scattering. 

w i t h a rather lengthy multiple scattering formalism in which the neighbourhood o f an 
atom is considered explicitly in different configurations and is not replaced by an 
average. The averaged Τ matrix is the starting value in the iteration scheme (Moritz 
et al 1978) used here to solve equation (4) . This iteration scheme turned out to be 
poorly convergent; 5—8 iterations were necessary to reach convergence wi th in an 

1-0 -

(00) (10) (20) 

Figure 5. Convergence of the iteration procedure by which equation (4) is solved (same 
conditions as in figure 3): · · · four iterations; — five iterations; seven iterations. 
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accuracy of 10%, which means that a direct solution would have been more efficient. 

The convergence of the iteration procedure is shown in figure 5. 

In the few model calculations presented here only the nearest neighbours are in

cluded and this is probably not sufficient. Inclusion o f the next-nearest neighbours is 

possible by making use o f the symmetry properties of the propagator matrices at 

normal incidence and the degeneracy of the matrix of probabilities. 
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