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The principles of the statistical disorder theory are discussed briefly. The theory is applied 

to a model of the disordered (101)Au surface with the characteristic (1 X 2) supersstructure. A 

tit procedure is described, by which the experimental angular intensity profiles are used directly 

to determine the disorder parameters and the interaction energies between the chains of surface 

atoms. 

1. Introduction 

The results of diffraction experiments with low energy electrons on (10l)Au 
surfaces have been described in part III of this series of papers [l] . The observed 

(1 X 2) superstructure patterns and the distinct broadening of the reflexes in [OlO] 

direction can be explained only by assuming irregularities of the surface periodicity. 
This example of a one-dimensionally disordered surface structure is well suited for 

an application of the theoretical results developed in parts I and II [2,3]. The prin- 
ciples of this theory will be repeated here only very briefly. 

Using a pseudokinematic approximation the disorder parameters can be deter- 
mined directly by an analysis of the angular beam profiles. Some approximate 
assumptions have to be made in order to reduce numerical calculations. The most 
effective reduction is the limitation of the area of multiple scattering (AMS) and of 
the area of thermodynamical interactions (ATI). Only nearest neighbors are 
included in this analysis and it has been checked by model calculations with the 
multiple scattering theory [4] that this approximation is sufficient. It has been 
pointed out in part I that the inclusion of a larger AMS does not involve any diff- 
culty. Consequenctly, the data analysis outlined below remains to be valid aslong 
as the ATI is not increased. 

The (1 X 2) superstructure of the Au(ll0) surface is most probably caused by a 
rearrangement of the gold atoms in the uppermost layer. No impurities could be 
detected by Auger electron spectroscopy measurements. Several models can be 
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offered to explain the (1 X 2) superstructure. Some of them, which assume a flat 

surface i.e. a shifting of adjacent chains parallel to the surface, can be excluded by 
arguing that at constant temperature a variation of the half-wid~s of the diffuse 

beams with varying energy and angle of incidence of the primary beam is observed 
in the experiment. It may be shown that such a variation of the half-widths 
indicates a roughened or stepped surface, that means, equivalent structural elements 
with the same effective scattering amplitude occur in different heights normal to 
the surface; this is valid even in the case of a complete multiple scattering calcula- 

tion. 
Here we choose the most simple model where rows of atoms parallel to the 

[lOi] direction are missing or added. It can be understood as a first stage of 
facetting to (111) faces. Of course, with the aid of the method applied here, no 

direct structure determination is correlated. It is only the sequence of structural 

elements that is determined uniquely. Ob~ously these parameters are consistent 
with several possible structure models fulfilling the conditions mentioned above. 

2. Review of the main principles 

A detailed description of the disorder theory is given in part I and II of this 
report. All necessary assumptions have been discussed, especially for the application 
in LEED. Therefore, the general principles of this theory will only be outlined here. 

For a one-dimensionally disordered lattice the equation for the diffracted inten- 
sity is given by: 

-w2--1MNZ-1) 

I(k,k’)=R ,I?z 

i 
(N2 - ljl) (FFT(k, k’)) exp(+liz) c F(KL - K, - g,) , 

8.x 

A2 = (k’ - k) . b 2 2nK . (1) 

The vectors a and 6 of the surface unit cell are in the directions x and y, the direc- 
tion z is normal to the surface;y is chosen to be the direction of the one-dimen- 
sional disorder, the defects in the x-direction are neglected, i.e., the undisturbed 
lattice periodicity in this direction causes sharp reflexes. 

The significance of the diverse factors is explained in part I and II. The deter- 
mination of the unknown average (F7$:> is the central problem in the analysis of 
disordered structures. 

The calculation of (FFY) for a hypothetical structure model is possible in 
principle for X-rays as well as low energy electrons; however, in the case of LEED, 
the multiple scattering processes have to be considered. 

The calculation of the-angular profiles of LEED reflexes is practicable only if 
statistical parameters are determined experimentally; a trial and error determination 
of the mean value (FFi) needs too much computation effort because of the compli- 
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cated calculation of exact atomic scattering factors F, and the multiple scattering 
of slow electrons. 

The disorder theory applied here to LEED results contains a procedure for the 
experimental determination of the statistical parameters by intensity measure- 
ments. It may be shown that this approach is valid as long as a linear expansion of 
the averaged structure factor CF,F,f(k, k’)) at the position of the maximum of the 
beam profile is a good approximation to its dependence on the scattering angle. 
This assumption is valid approximately in a certain range of the intensity curve I 
versus the scattering angle 8. 

For the calculation of the average (FF;) at first the probabilities pmn( 1) for the 
succession of chains with the generalized structure amplitude F(k, k’) are defined. 
The F(k, k’) contain the sum over layers: 

F,(k, k’) = cf,,,(k, k’) exp[i(k - k’) . d,] . 
” 

The average we are looking for may be expressed in the following form: 

(F,F;(k, k’))= c c P,P,,O~ FmF, @, k’l , 
m n 

(2) 

with the parameters: pm = probability to find a chain with the-generalized structure 
amplitude F,,, , and pmpmnt’j) = probability to find a pair of chains with structure 
amplitudes F,,, and F, at the distance j 6, where b is the lattice spacing in the direc- 
tion of disorder for which the general relations derived in part I are valid. 

The probabilities p&j) are related to the sequence of chains and depend on the 
number of different configurations, that is, how many different F,,, are used in the 
data analysis. On the other hand, the sequence of chains is a function of the inter- 
action energies and the temperature. To avoid confusion with employed probabili- 

ties pmn introduced above, we shall call this set of probabilities, which is deter- 
mined by thermodynamical quantities, (Y,. The probabilities 01, describe the state 
of order of the surface. Of course, a simple relation exists between the pmn and (Y,. 

The probabilities p&j) can either be calculated according to the method of the 
difference equation, i.e., by determining a recursive formula for the p,,(l), or 

according to the matrix method, i.e., by the formation of a matrix from the 

sequence probability [5,6]. The two methods lead to the inhomogeneous equation 
of the degree r: 

(3) 

in which X, are the eigenvalues of the matrix p(1). The constants C$k are given in a 
complicated manner by products of the pmn and X, divided by products of the 
differences of h, - A,.. Consequently, the constants may have the value O/O. These 
cases need a detailed investigation of the range of diffraction angles and electron 
energies concerned. The reconsideration yields a solution of the problem in any 
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case. The degree r of the inhomogeneous equation depends on the parameters pmn 
as well as on the area of direct thermodynamical interaction of the different chains 
in the structure model. Solving the homogeneous equation 

P(1) - W = 0 ) 

the eigenvalues Xr to XN are determined. 
Hence follows the general solution for the average (FF~): 

(FFy(k, k’)) = c Kdk, k’) A’, , A,.= I h,l exp(i&) = P,. exp(i&) , 
r 

Kr(k, k’) = c ~~~F~F~(k, k’) = B,(k, k’) + iD,(k, k’) . 
m,n 

(4) 

The final formula for the intensity backscattered from a one-dimensionally 
disordered surface lattice is obtained inserting (4) into (1) 

B,- 
1 - IhA 

1 - 2 IX,“1 cos(A* + @,) + IX,12 

I &I sin642 + 9%) 
- 2Dr 1 - 2 I x,1 cos(A* f #,) f I h,12 )I WG - K:+sx>. 

If one eigenvalue is 1X I = + 1 at the position of maximum, the corresponding term of 
the sum represents a sharp spot according to the two-dimensional lattice factor of 
the undisturbed lattice; the first term in the sum of (5) represents a symmetric part 
of the profile of the diffuse interferences; the second one describes an asymmetric 
contribution. At the transition into the undisturbed or strictly ordered atomic 
arrangement, all non-vanishing eigenvalues h, will become 1, and the equation 
changes to the well known expression for the diffracted intensity backscattered 
from ideal crystals 

with the usual lattice factor G and the generalized structure amplitude F. 
Therefore, the intensity distribution of the beam profiles of disordered surfaces 

depends on the following disorder parameters: 
(a) The functions B and D, containing the generalized structure amplitude F of the 
scattering complexes, have an essential influence upon the intensity distribution. As 
far as X-ray diffraction is concerned, the disorder problem is generally solved with 
the aid of the F data available, i.e., theoretical curves can be compared with 

experiments measurements. In the pseudo~nematic analysis of LEED data the 
parameters B and D are approximated as described below, over the angular range of 
the beam profile. The eigenvalues h, are derived from the full width at half maxi- 
mum and the parameters B and D are determined by fitting the experimental beam 
profile. 
(b) The eigenvalues X, are connected with the sequence probabilities arm, which 
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determine the width of the intensity profiles. The relation, 

QI = exp(-AV,lk7’)/2 cosh(AVfkT) , 

describes the probabilities (Y, with the difference of the interaction energies V ot 

the s~atte~ng complexes; consequently, a direct relation between interaction ener- 
gies and profile width exists [2]. 
(c) Each beam corresponds to an eigenvalue X,; 

AZ + @, = (k’ .- k) . b + $+ = 27rk f 4, , 

q5,. determines the positions of the difiuse beams in relation to the integer order 
beams; k is the usual Miller index in the b* direction of the reciprocal lattice. In the 
case of half-order reflections, & = TI, and X, is negative. 

These principles of the disorder theory - which had originally been developed 
for the analysis for the diffuse X-ray diffraction patterns - are extensively 
described in the corresponding special literature [5,6], and with modifications for 
LEED in Parts I and II. 

3. Model of a roughened (101) surface 

LEED observations of the (101)Au surface show a (1 X 2) superst~~ture with 
diffuse reflexes. Since no surface contamination by impurity atoms could be 
detected with the aid of Auger electron spectroscopy, the following surface model 

can be suggested. 
The (101) surfaces of the face-centered cubic gold consist of rows of atoms 

parallel to the [ 1 Oi] direction, fig. 1 a. 
By addition or removal of single chains the surface will be roughened, fig. 1 b. As 

a consequence of this rou~ening process the rows of atoms may occur in different 
heights. The (1 X 2) superstructure is caused by periodic gaps in the arrangement of 
chains. Chains of impurity atoms filling the gaps with a corresponding scattering 
factor cannot be excluded, but will not be taken into consideration at the moment. 

Along the close-packed [ lOi] direction the rows are almost perfectly ordered. 
The lattice constant is doubled in the [OlO] direction by removing every second 
chain, however, no strict periodicity is realised because of statistical faults in the 
sequence of rows. 

Assuming only nearest neighbor interactions and, that the area of multiple 
scattering is restricted to the same range, the disorder problem can be formulated as 
follows: 

The statistics of the surface model contain four different types of chains, which 
may occur in different heights above or below the average level of the surface. The 
type of the chain is determined by its surroundings. The probability that one chain 
with the scattering factor F, is followed by another one with F2 is given by 
pr,(l) = ai; then pr&) = 1 - cyl is the probability for a succession F,F3. All 
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0 go) 0 (0) 0 0 
F;(O) $c) 5(-cl q-4 

0 a 0 qw ,t- 0 0 

b 

Fig. 1. (Ok0 cross section of the (10l)Au surface: (a) ordered structure; (b) roughened surface. 

further cy,, which are necessary for the calculation of the beam profile, are defined 
analogically. In addition to the partial waves, a phase factor 

[exp(iu)) = exp [i&l -- k;) C] 

must be added to such chains which are shifted against the normal positions on the 
zero line level; c is the distance between the layers which is postulated to be 
constant. It is practical to include the phase factor ei@ in the matrix of probabilities, 
that means, the matrix p( 1) becomes complex. 

The dependence of interaction energies Vi, and the probabilities are given by: 

o, = exp(-AV,)/2 cash AI’, 1y2 = exp(-AV3)/2 cash AVa , (7) 

with 

AVr = (V,a - I’r&?lkT, AV, = (I’aa - I’32)/2kT. 

A simplified solution of the problem can be obtained, if the interaction energies are 

considered to be symmetrical, fig. lb: 

Y,, = v,, , v,3 = t/24, T/3, = v4, f v33 = v44. 

These symmetry relations are not valid if the surface is contaminated by foreign 
atoms with different sticking coeffients for the various types of chains, i.e. an atom 
is adsorbed more probably on a chain F1 than on F2 or F3, 

The phase factors of the probabilities (Y, are changed if the statistical order of 

succession is inverted. 
Therefore, two different schemes for the sequence probabilities CC, can be 

defined: 
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(a) for the positive direction: 

tb) 

F9F2 FpF1 
3w e@F, ‘> e-i9F3 

Of course both schemes result in the same equation for the eigenvalues: 

-h a1 1 -or 0 

Ql -A 0 1 -cYr 

0 ei9a 2 -At(l -az)ei9 0 

e-i9 
a2 0 0 -X + (1 - a=) eWip 

The solution of this determinant leads to the equation: 

x4 - 2(1 - a,*) cos $0 x3 - [a: - (1 - Q#] A2 

t2cYr((Yr-cZ2)COSIph-(((Y2-Q,)==0. 

= 0. 

(8) 

(9) 

The eigenvalues X, as a function of the probabilities (or and (Y~ have been calculated 
solving eq. (9) numerically. Comparison with the observed eigenvalues IA, ohs I 
determines the experimental values (Y~ and (Ye. Ih, ohs 1 were obtained fitting the 

theoretical beam profiles to the experimental ones. 
Four different types of order may be defined by variation of aI and QIZ: 

(l)a, +o,(Yz+ 1: 
a periodic structure F1F3F2Ff11F2F3F4 . . . is approached; 
(2)a1+1,cY2+1: 
a periodic structure FIF2F1F2 . . . is realized, which corresponds to the normal 

(1 X 1) structure of the (101) surface; 

(3) Ql + 0,012 + 0: 
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we have a mixture of periodic sequences F3F3... and F4F4.._; 
(4)(X, -+ l,a2+0: 
a mixture of 3 periodic structures FlF2F1F2 _...? F3F3... , and Fp4 is approached 
(facets and periodic microfacets). 

In intermediate states of disorder a more or less statistical or even random order 
of chains is realized. Because of the surface equilibrium condition large step heights 

are excluded. Apparently the probability a2 must be given by 0.5 < a2 < 1, other- 
wise a completely disordered surface structure or another superstructure with a 
different lattice constant would be observed, that means, the surface roughening is 
small and the probabilities for chain sequences F3-F3 and F4-F4 are low. 

4. Analysis of the beam profiles 

The eigenvalues X, and the sequence probabilities CX, have been determined by 
analyzing the deconvoluted beam profiles (see part III). 

The functions 

U(P> = 
1 -p2 

1 - 2p cos(2nk +@) + P2 ’ 
(12) 

V(P) = 
P sin(2nk t a) 

1 - 2p cos(2nk t a) + p2 ’ 

are used to fit the experimental profiles by variation of p. 
From eq. (8) we get four eigenvalues X, = pvexp(i%); two of them are real, the 

remaining two imaginary. The periodicity in [OlO]” is doubled, as we took in eq. 
(5) the distance between the chains as lattice constant. 

Therefore the eigenvalues generate for Q = n/2, 3n/2, . . . the (0, k/2) superstruc- 
ture beams in the positions k = l/2, 3/2, . . . . For Cp = 0, 71, 2n, . . . the eigenvalues h 

become real and describe the (0, k) beams in the positions k = 0, 1,2, . . . . 
The diffuseness of the reflections is a function of the energy and changes from 

the (0, k/2) superstructure beams to the integer order beams and vice versa, if the 
energie varies. Here only the measurements at constant energy are evaluated. 

First of all, eigenvalues h, have been estimated by calculating the values of the 
function u(p) in the range 0.1 < p G 0.9 and plotting the curve versus k (A, = 271 k) 
(fig. Za). With the full width at half m~imum (FW~~ of these curves a calibra- 
tion curve ~(FW~~) has been determined (fig. 2b); analogically the calibration 
curve for the maximum position of the asymmetric function u (p) has been ascer- 
tained (figs. 2c and 3d). 

By comparing the FWHM fl of the deconvoluted experimental profile with the 
p(FWHM) curve an approximate X value may be estimated. Refined eigenvalues 
X = 0 ei9 have been determined by fitting the theoretical to the experimental 
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0 006 012 a-1 
Fig. 2. Calibration curves for p and the full width at half maximum of the reflex profiles. 

curves. Two examples for crystal temperatures of T = 25°C and T = 140°C are 
shown in fig. 3. 

The maximum of u(h) is calibrated to the maximum of the deconvoluted beam 
profile; by a similar fit to the experimental curve the asymmetric contribution to 

the beam has been determined from the function u (A). 

In this way eight intensity profiles of the (01) and the (0;) beams respectively 
have been evaluated for crystal temperatures within the range of 298 to 858 K. The 
data for the eigenvalues IA(T),,,,, 1 and the calibration factors B and D are given in 
table 1. Within the range of crystal temperature 298 < T< 670 K, the eigenvalues 

I bobs I correspond to the Acat; for temperatures T > 670 K the (0;) beam disappears 
gradually and the validity of the surface model becomes doubtful. This point is 
carefully discussed in the next section. 

The factor cos cp in eq. (9) is determined by p = (kl - k;)c. 
The phase factor cp is a critical variable for the beam profile which broadens or 

sharpens as a function of energy, what may well be observed in the LEED pattern. 
The inner potential and the upmost layer distance as well change the phase factor cp. 
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0 25 0.5 0.75 1 125 * 

0.061 0.122 0.164 0.245 0 306 II-’ 

-11 
‘10 A 01 - refler 

crystal -tsmptrature = 140 *c 

a FWHM f 0.007 8-’ 
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: _ 
J 
5 FWHM 2 0.014 8-l 

O- 
, . 

0 25 0.5 0 75 I 1.25 L 

0.061 0.122 0.184 0.245 0.306 rc-’ 

Fig. 3. Comparison of two deconvoluted experimental beam profiles with the fitted curves. 

Crystal temperatures 25 and 140°C. 

Assuming an inner potential,. V, = 5 eV and the bulk distance c = 1.44 a, the best 
fit was achieved. It should be noted that no exact determination of the binding 
distances of the surface atoms has been tried here. This would indeed include the 
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exact calculation of multiple scattering amplitudes and the comparison of cal- 
culated I(E) curves with measured ones. Here only the statistical parameters are 
determined. 

The calculated values for X, theor and al, a2 are summarized in table 1. The 
probabilities a, describe the degree of the surface disorder quantitatively. There- 
fore the values cz, of the (0, k) and the (0, k/2) beams must agree within the 

experimental limit of error. Only in this case the two disorder parameters deter- 
mined separately describe the same order. 

5. Conclusions 

The dependence of the integrated intensity of the (01/2) reflex as a function of 

the temperature can be extrapolated to an approximate critical temperature T,x 

420°C (713 K) (fig. 4). 
The exponential relation (6) modified here by substituting AV: 

~(73 = 
exp [-L(T) AF/2kT] 

2 cash L(T) AF/2kT’ 
(13) 

where AF= AU - TAS, F = free energy, U = potential energy, and S = entropy, is 
confirmed by the probability ar; L(T) is a factor, which corresponds to the aver- 
aged chain length, which has to be introduced on account of the simpli~ed one- 
dimensional model. The entropy S may represent some disorder on internal heat. In 
a strict sense U and S are temperature dependent. A logarithmic plot of cur(r) 
versus T shows a straight line with a changed slope at T> Tcril. For temperatures 

above 740 K the surface state changes drastically and other interaction energies 
result. The ordinate value of the straight line fig. 5 can be explained only by intro- 
ducing the free energy F, if U is considered to be independent of T in a first 
approximation; consequently the entropy term plays an important role and cannot 
be neglected as originally assumed. From the slope and the ordinate intersection of 

I 100 

-0% 10 C 

temperature 

Fig. 4. Integral intensity of the 04 beam as a function of temperature and reduced temperature. 

I 

(3.030 

/ 

01 

reduced temperature 
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10 a2 

01 ! 
0 100 200 300 LOO 500 “C 

temperature 

Fig. 5. Sequence probabilities cx1 and “2 as a function of temperature. 

the straight line the energy values summarized in table 2 have been determined. 
The difference of free energies AF as a function of temperature is shown in 

fig. 6. We notice that the model of the roughened (101) gold surface is valid 
unrestrictedly for temperatures below Twit or L(T) = constant; energy values 
determined above this temperature are not relevant to the model, i.e., because of 
the dissociation of the chains, that means a decrease of the aver.age chain length. 
This is in agreement with the diffraction pattern, which shows a sudden increase of 
the line width of the diffuse streaks, what has to be interpreted in terms of a 
corresponding decrease of the chain length L(T). 

The energy values AF, as determined from the beam profiles, confirm the 
model: 

As mentioned above, the probabilities (Y 1, (1~~ are functions of the differences in 
free energy AFi of the complexes; the slope and ordinate value of the straight line 
cy(F’,) plotted IogarithmicaIly are proportional to the interaction energy AU and the 
entropy AS respectively. According to eq. (13), AUand AS should be proportional 

01 

01 0.2 0.3 .@ K-’ 

temperature 

Fig. 6. Free energy AF of the chains as a function of temperature. 
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to the average length L(T) of the chains parallel [loll, which is temperature 

dependent. Now we discuss the meaning of the average chain length in our 
disordered model structure. 

As shown in fig. 7, the ordered superstructure may be realized in two ways 
differing by a translation of the unit length in [OlO] of the surface lattice. In terms 
of the description for three-dimensional crystals these domains are antiphase 
domains with a translation vector [OIO] of the supercell. Below the critical temper- 
ature T,, the length of these chains should therefore be infinite (no antiphase 

domains). Therefore, we should have (Y~ + 0 below the critical temperature. As CY~ is 
approximately 0.2 at room temperature, there is a considerable number of defects 
even at temperatures appreciably lower than T,. This can only be explained by 
assuming antiphase domains or other types of defects destroying the long-range 
order of chains. The application of a one-dimensional Ising model can only be justi- 
fied with this assumption. In this particular case, L(T) may be considered to be 
temperature-independent up to a temperature of T, below T,. Assuming that this 
condition is valid, we can form 

--%- =exp[-AFiF)] orlog&, =-CL(TL)[T-‘AU-AS]. 
1 - @I 

The assumption seems to be justified as long as the plot log[(ll-- CU~)/LY~] versus T 

Fig. 7. Model of (110)Au surface: (a) ordered structure; (b) roughened surface; (c), fd) two 
types of antiphase domains. 
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yields a straight line, fig. 8. The first significant deviation from a straight line occurs 
at T=6OOK. 

If this deviation is caused by a decrease of L(7), should be decided by a measure- 
ment of the broadness of diffuse lines in the LEED pattern. Unfortunately, the 
diffuse intensity profiles could only be measured quantitatively parallel to [OlO]* 

for technical reasons. Therefore, the observable change of the diffuseness into 
[ lOi]* can be given qualititatively only. Above T = 670 K the broadening effect, 
according to eq. (26) in part I (L(r) = Nz), has been observed experimentally by 
film methods. On the other hand it is possible to extend the plot log[( 1 - ar)/cur] 
versus T above the critical temperature. As shown in fig. 8, a straight line with 
another slope can be detected in this way; the intersection of both lines indicates 
either a change in the chain length or in the differences of the energies AU or the 
entropies ds. This intersection takes place at about T = 680 K, at a temperature 

appreciably below T,, indicating a change of ACJ and AS. According to present 
order-disorder theories the temperature dependence of the integrated intensity of 
the (0:) reflex can be used to fix a critical temperature T,. 

From a logarithmic plot of the relation 

I = C[(T - Tc)/Tc]2p, 

the critical temperature T, and the critical point exponent p can be determined. 
This plot is shown in fig. 4; it fixes T, = 713 % 10 K and P =S 0.30. Obviously this 
plot can only be justified if the critical temperature is known accurately. On the 

other hand it is well known that the integral intensity may be changed by the 
temperature factor. 

The exact factor cannot be given as long as the theoretical treatment of the 
scattering problem, including the lattice dynamics at the surface, has not been done 

successfully. 
In a first approximation the integration for reciprocal vectors parallel to the sur- 

face should not vary with the temperature; this does not apply to the integrated 

measurement vertical to the surface. 
This is the reason why the usual plot used for X-ray and neutronscattering can- 

not be applied to LEED patterns unrestrictedly. Therefore, the meaning of P in 

temperature 

Fig. 8. 
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comparison ot these measurements must not be overestimated. 
Another argument against this plot is the fact already discussed above, that the 

one-dimensional model may be applied to this transformation, although this model 
has its critical temperature at T, = 0 K. On the other hand, the critical behaviour of 
the integral reflex intensity can easily be seen on the diffraction pattern. For this 
reason it seems to be justified to assume that this critical behaviour is not too much 
different from the ideal infinite surface. Taking into account all these restrictions 
one can use the extrapolated curve of log[a,/(l -al)] versus T for setting the 
critical temperature T,. Within the limit of experimental error we get for the critical 

point exponent 

0.23 < /3 < 0.37 , 

a range which is clearly above the value 13 = 0.125 typical for a two-dimensional 
model. 

Buth there is another reason to doubt that the two-dimensional Ising model of 
disorder is suited to describe disorder phenomena at the surface quantitatively. 

As will be shown later, the disorder problem described in this paper may be 
reduced to the two-dimensional Ising model (rhombic, square lattice) with 
different, very anisotropic interaction energies AU and AU’. The critical tempera- 
ture of this model is given by [7] : 

sinh(AU’/kT) sinh(AU/kT) = 1 . (14) 

Now we can estimate the average chain length L(T) in the following way: L(T) 
must be larger than 30 unit cells (no observable line broadening in [OlO] *) because 
of the resolution power of the LEED apparatus; the upper limit is unimportant for 
this discussion. 

The maximum energy per unit cell is therefore 

lJ’=2.18X10-2eV/30~7X10-4eV; 

with 

kT, = 5 X lo-* eV , we get U,lkT, < 1.3 X 1 O-* . 

In order to fullfill eq. (14), sinh(Au/kT,) must be larger than lo*. This again 
gives a probability of a fault within the approximately ordered chain at T, of 10e4, 
which should not change appreciably above T,. (The short-range order parameter 
correlated with o1 is continuous even at T,.) Buth this small probability is in con- 
tradiction - at least by three orders of magnitude -to the diffuseness of reflec- 

tions observed in [OlO] * above T,, which yields a probability larger than 0.1. A 
more detailed explanation of this argument will be given in a later paper. 

This discussion shows that the entropy term introduced in the one-dimensional 
model structure cannot be assigned to the configurational entropy, caused by the 
disorder within the chains. Therefore, the only conclusion left is, that the vibra- 
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tional part of the energy (vibrational entropy) plays an important role in the trans- 
formation. 

According to table 2 the contribution -TAS to the free energy eF of the chains 
reaches at T, the same order of magnitude as the contribution of AU to aF. This 
means, that at transformation OF * 0; this again is in agreement with the argument 

that the surface energies between the two ordered surface states should be equal. 
This is a ciassical description of a phase-transformation and means that the free 
energies assigned to the important ~orl~gurations are typical for the two structures 
under discussion. It is also shown experimentally that the surface of a crystal may 
be regarded as separable thermodynamical phase. 

6. Summary 

Diffuse LEED intensity profiles of the disordered (1 X 2) superstructure of the 

(101)Au surfaces are interpreted in terms of a roughened surface. By means of an 
extended one-dimensional Ising model the intensity profiles of reflections have 
been calculated and compared with experimental ones. The underlying order- 

disorder parameters and interaction energies between the chain complexes have 
been determined as a function of the surface temperature. Below a critical temper- 
ature TC the superstructure is found to be stable; above T, the chains dissociate and 
the chain atoms are statistically disordered on a bulk structure substrate. 

This method may be generalized for any disorder problem on the surface if the 
number of scattering complexes involved does not become too Iarge. 
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