Editor-in-Chief

ROBERT J. ANGELICI
Department of Chemistry
Iowa State University

REAGENTS FOR TRANSITION METAL COMPLEX AND ORGANOMETALLIC SYNTHESES

INORGANIC
 SYNTHESES

Volume 28

CONTENTS

Chapter One COMPLEXES WITH WEAKLY COORDINATED LIGANDS

1. Metal Complexes with Weakly Bonded Anions: General Considerations 1
2. Carbonyl(η^{5}-cyclopentadienyl)(tetrafluoroborato)molybdenum and -tungsten complexes: $\mathrm{CpM}(\mathrm{CO})_{2}(\mathrm{~L})\left(\mathrm{BF}_{4}\right)(\mathrm{M}=\mathrm{Mo}, \mathrm{W}$; $\mathrm{L}=\mathrm{CO}, \mathrm{PPh}_{3}$) 5
A. Tricarbonyl(η^{5}-cyclopentadienyl)(tetrafluoroborato) molybdenum and -tungsten 5
B. Dicarbonyl (η^{5}-cyclopentadienyl)(tetrafluoroborato) (triphenylphosphine)molybdenum and -tungsten, $\mathrm{MCp}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{FBF}_{3}\right)(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ 7
C. Tricarbonyl $\left(\eta^{5}\right.$-cyclopentadienyl $\left(\eta^{2}\right.$-ethene $)$ molybdenum $(1+$) Tetrafluoroborate $(1-)$ 11
D. Carbonyl(η^{5}-cyclopentadienyl)bis(diphenylacetylene) molybdenum $(1+)$ Tetrafluoroborate $(1-)$ 11
E. Carbonyl(η^{5}-cyclopentadienyl)(diphenylacetylene) (triphenylphosphine) molybdenum $(1+$) Tetrafluoroborate(1 -) 13
F. (Acetone)(tricarbonyl)(η^{5}-cyclopentadienyl)molybdenum- $(1+)$ and -tungsten $(1+)$ Tetrafluoroborate $(1-)$ 14
3. Pentacarbonyl(tetrafluoroborato)rhenium and -manganese and Reactions Thereof: $\mathrm{M}(\mathrm{CO})_{5}\left(\mathrm{BF}_{4}\right)(\mathrm{M}=\mathrm{Mn}, \mathrm{Re})$ 15
A. Pentacarbonylmethylrhenium: $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Me}$ 16
B. Pentacarbonyl(tetrafluoroborato)rhenium(I) 17
C. Pentacarbonyl $\left(\eta^{2}\right.$-ethene)rhenium $(1+)$ Tetrafluoro- borate $(1-)$: $\operatorname{Re}(\mathrm{CO})_{5}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)^{+}$ 19
D. Octadecacarbonyl-bis (μ_{3}-carbon dioxide)-tetrarhenium: $\mathrm{Re}_{4}(\mathrm{CO})_{18}\left(\mathrm{CO}_{2}\right)_{2}$ 20
4. Iridium(III) Complexes with the Weakly Bonded Anions $\left[\mathrm{BF}_{4}^{-}\right]$ and $\left[\mathrm{OSO}_{2} \mathrm{CF}_{3}^{-}\right]$ 22
A. Carbonylchlorohydrido(tetrafluoroborato)bis(tri- phenylphosphine)iridium(III): $\mathrm{Ir}(\mathrm{Cl})(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{H})\left(\mathrm{BF}_{4}\right)$ 23
B. Carbonylchloromethyl(tetrafluoroborato)bis(triphenylphos- phine)iridium(III): $\mathrm{Ir}(\mathrm{Cl})(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CH}_{3}\right)\left(\mathrm{BF}_{4}\right)$ 24
C. Chloro(dinitrogen)hydrido(tetrafluoroborato)bis(triphenyl- phosphine)iridium(III): $\operatorname{Ir}(\mathrm{Cl})\left(\mathrm{N}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{H})\left(\mathrm{BF}_{4}\right)$. 25
D. Carbonylhydridobis(trifluoromethanesulfonato)bis(tri- phenylphosphine)iridium(III): $\operatorname{Ir}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{H})\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)_{2}$ 26
5. cis-Chlorobis(triethylphosphine)(trifluoromethanesulfonato)- platinum(II) 27
6. Tricarbonyltris(nitrile) Complexes of Cr, Mo, and W : $\mathrm{M}(\mathrm{CO})_{3}(\mathrm{NCEt})_{3}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ 29
A. Tricarbonyltris(propionitrile)tungsten(0) 30
B. Tricarbonyltris(propionitrile)molybdenum(0). 31
C. Tricarbonyltris(propionitrile)chromium(0) 32
7. The Synthesis of Molybdenum and Tungsten Dinitrogen Com- plexes: $\mathrm{MoCl}_{4}(\mathrm{~L})_{2}, \mathrm{MoCl}_{3}(\mathrm{~L})_{3}(\mathrm{~L}=\mathrm{NCMe}, \mathrm{THF})$, $\mathrm{Mo}\left(\mathrm{N}_{2}\right)_{2}(\mathrm{dppe})_{2}, \mathrm{~W}\left(\mathrm{~N}_{2}\right)_{2}(\mathrm{dppe})_{2}$ 33
A. Bis(acetonitrile)tetrachloromolybdenum(IV), $\left[\mathrm{MoCl}_{4}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]$ 34
B. Tetrachlorobis(tetrahydrofuran)molybdenum(IV), $\left[\mathrm{MoCl}_{4}(\mathrm{THF})_{2}\right]$ 35
C. Trichlorotris(tetrahydrofuran)molybdenum(III), $\left[\mathrm{MoCl}_{3}(\mathrm{THF})_{3}\right]$ 36
D. Trichlorotris(acetonitrile)molybdenum(III), $\left[\mathrm{MoCl}_{3}(\mathrm{MeCN})_{3}\right]$ 37
E. trans-Bis(dinitrogen)bis[1,2-ethanediylbis- (diphenylphosphine)]molybdenum(0), trans- $\left[\mathrm{Mo}\left(\mathrm{N}_{2}\right)_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{2}\right]$ 38
F. Tetrachlorobis(triphenylphosphine)tungsten(IV), $\left[\mathrm{WCl}_{4}\left(\mathrm{PPh}_{3}\right)_{2}\right.$. 40
G. Tetrachloro[1,2-ethanediylbis(diphenyl- phosphine) $]$ tungsten(IV), $\left[\mathrm{WCl}_{4}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right]$ 41
H. trans-Bis(dinitrogen)- bis[1,2-ethanediylbis(diphenylphosphine)]tungsten(0), trans- $\left[\mathrm{W}\left(\mathrm{N}_{2}\right)_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{2}\right]$ 41
8. trans-Bis[1,2-ethanediylbis(diphenylphosphine)]bis- (isocyanomethane)tungsten(0): trans- $\left[\mathrm{W}(\mathrm{CNR})_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{2}\right]$ 43
9. Tricarbonyl(cycloheptatriene)molybdenum(0): $\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)$ 45
10. Tetracarbonyl $\left(\eta^{2}\right.$-Methyl Acrylate $) \mathrm{Ruthenium:} \mathrm{Ru}(\mathrm{CO})_{4}\left(\eta^{2}-\right.$ $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{H})\left(\mathrm{CO}_{2} \mathrm{Me}\right)$). 47
11. Reagents for the Synthesis of η-Diene Complexes of Tricarbonyl- iron and Tricarbonylruthenium 52
A. (Benzylideneacetone)tricarbonyliron(0) 52
B. (1,5-Cyclooctadiene)tricarbonylruthenium(0) 54
12. Dihydridobis(solvent)bis(triphenylphosphine)iridium(III) Tetrafluoroborates: $\operatorname{Ir}(\mathrm{COD})\left(\mathrm{PPh}_{3}\right)_{2}^{+}, \operatorname{Ir}(\mathrm{H})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L})_{2}^{+}$ ($\mathrm{L}=$ acetone, $\mathrm{H}_{2} \mathrm{O}$) 56
A. ($\eta^{4}-1,5$-Cyclooctadiene)bis(triphenylphosphine)iridium(I) Tetrafluoroborate(1 -) 56
B. Bis(acetone)dihydridobis(triphenylphosphine)iridium(III) Tetrafluoroborate(1 -) 57
C. Diaquadihydridobis(triphenylphosphine)iridium(III) Tetrafluoroborate(1 -) 58
D. (1,2-Diiodobenzene)dihydridobis(triphenylphosphine)- iridium(III) Tetrafluoroborate(1 -) 59
13. Bis(benzonitrile)dichloro Complexes of Palladium and Platinum: $\mathrm{MCl}_{2}(\mathrm{NCPh})_{2}(\mathrm{M}=\mathrm{Pd}, \mathrm{Pt})$ 60
A. Bis(benzonitrile)dichloropalladium 61
B. Bis(benzonitrile)dichloroplatinum 62
14. Acetonitrile Complexes of Selected Transition Metal Cations: $\mathrm{Pd}(\mathrm{NCMe})_{4}^{2+}, \mathrm{M}(\mathrm{NO})_{2}(\mathrm{NCMe})_{4}^{2+}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$. 63
A. Tetrakis(acetonitrile)palladium $(2+)$ Bis[tetrafluoroborate- ($1-$)] 63
B. cis-Tetrakis(acetonitrile)dinitrosylmolybdenum $(2+$) Bis[tetrafluoroborate(1-)]. 65
C. cis-Tetrakis(acetonitrile)dinitrosyltungsten $(2+$) Bis[tetrafluoroborate(1-)]. 66
15. Tetrakis(acetonitrile)copper(1 +) Hexafluorophosphate(1 -): $\left[\mathrm{Cu}(\mathrm{NCMe})_{4}\right]^{+}$ 68
16. Trifluoromethanesulfonates and Trifluoromethanesulfonato-O Complexes 70
A. Triflate Salts from Chloride Salts 72
B. Triflate Salts from Sulphate Salts 73
C. Triflate Salts Using Silver Triflate 73
D. Triflato Complexes from Chloro Complexes 74
E. Triflato Complexes from Solid State Reactions of Triflato Salts 75
F. Regeneration of Triflato Complexes 76
Chapter Two LOW-VALENT COMPLEXES OF Rh, Ir, Ni, Pd, and Pt
17. Chlorotris(triphenylphosphine)rhodium(I) (Wilkinson's Catalyst): $\mathrm{Rh}(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)_{3}$ 77
18. trans-Carbonylchlorobis(triphenylphosphine)rhodium and Related Complexes: $\mathrm{Rh}(\mathrm{Cl})(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ 79
19. Hydrido Phosphine Complexes of Rhodium(I): $\mathrm{Rh}(\mathrm{H})\left(\mathrm{PPh}_{3}\right)_{4}$, $\mathrm{Rh}(\mathrm{H})(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$ 81
A. Hydridotetrakis(triphenylphosphine)rhodium(I) 81
B. Carbonylhydridotris(triphenylphosphine)rhodium(I) 82
20. Tetracarbonyldichlorodirhodium: $\left[\mathrm{Rh}(\mathrm{Cl})(\mathrm{CO})_{2}\right]_{2}$ 84
21. Di- μ-chlorotetrakis(ethene)dirhodium(I): $\left[\mathrm{Rh}(\mathrm{Cl})\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]_{2}$ 86
22. Di- μ-chloro-bis $\left(\eta^{4}-1,5\right.$-cyclooctadiene $)$ dirhodium (I) : $[\mathrm{Rh}(\mathrm{Cl})(\mathrm{COD})]_{2}$ 88
23. Chlorobis(cyclooctene)rhodium(I) and -iridium(I) Complexes: $\left[\mathrm{M}(\mathrm{Cl})\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]_{2}(\mathrm{M}=\mathrm{Rh}, \mathrm{Ir})$ 90
A. Chlorobis(cyclooctene)rhodium(I) 90
B. Di- μ-chlorobis[bis(cyclooctene)iridium] 91
24. trans-Carbonylchlorobis(triphenylphosphine)iridium: $\operatorname{Ir}(\mathrm{Cl})(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ 92
25. $\operatorname{Bis}\left(1,5\right.$-cyclooctadiene)nickel(0): $\mathrm{Ni}(\mathrm{COD})_{2}$ 94
26. Complexes of $\mathrm{Nickel}(0): \mathrm{Ni}(\mathrm{CN}-t-\mathrm{Bu})_{4}, \mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{4}$ 98
A. Tetrakis(tert-butyl isocyanide)nickel(0) 99
B. Tetrakis(triphenylphosphine)nickel(0) 102
27. Tetrakis(triethyl phosphite)nickel(0), palladium(0), and platinum(0) Complexes: $\mathrm{M}\left[\mathrm{P}(\mathrm{OEt})_{3}\right]_{4}$ 104
A. Tetrakis(triethyl phosphite)nickel(0) 104
B. Tetrakis(triethyl phosphite)palladium(0) 105
C. Tetrakis(triethyl phosphite)platinum(0) 106
28. Tetrakis(triphenylphosphine)palladium(0): $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ 107
29. Tetrakis(tert-butyl isocyanide)di- μ-chlorodipalladium(I): $\mathrm{Pd}(\mathrm{dba})_{2}, \mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mathrm{CN}-t-\mathrm{Bu})_{4}$ 110
30. Two-Coordinate Phosphine Complexes of Palladium(0) and Platinum(0): $\mathbf{M}\left(\mathrm{PR}_{3}\right)_{2}(\mathbf{M}=\mathbf{P d}, \mathrm{Pt})$ 113
A. Bis(di-tert-butylphenylphosphine)palladium(0) 114
B. Bis(tricyclohexylphosphine)palladium(0) 114
C. Bis(tri-tert-butylphosphine)palladium(0) 115
D. Bis(di-tert-butylphenylphosphine)platinum(0) 116
E. Bis(tricyclohexylphosphine)platinum(0) 116
31. Three-Coordinate Phosphine Complexes of Platinum(0): $\mathrm{Pt}\left(\mathrm{PR}_{3}\right)_{3}$ 119
A. Tris(triethylphosphine)platinum(0) 120
B. Tris(triisopropylphosphine)platinum(0) 120
32. Tetrakis(triethylphosphine)platinum(0): $\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{4}$ 122
33. Tris- and tetrakis(triphenylphosphine)platinum(0): $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{3,4}$ 123
A. Tetrakis(triphenylphosphine)platinum(0) 124
B. Tris(triphenylphosphine)platinum(0) 125
34. Olefin Complexes of Platinum: $\mathrm{Pt}(\mathrm{COD})_{2}, \mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{3}$, $\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left(\mathrm{PR}_{3}\right)$ 126
A. $\operatorname{Bis}(1,5-c y c l o o c t a d i e n e)$ platinum(0) 126
35. (1,3,5,7-Cyclooctatetraene)dilithium $\left(\mathrm{Li}_{2} \mathrm{C}_{8} \mathrm{H}_{8}\right)$ 127
36. Tris(bicyclo[2.2.1]heptene)platinum(0) 127
37. $\operatorname{Bis}(1,5$-cyclooctadiene) platinum(0). 128
B. Tris(ethene)platinum(0) 129
C. Bis(ethene)(tricyclohexylphosphine)platinum(0) 130
38. Ethene Complexes of Bis(trialkylphosphine)platinum(0): $\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PR}_{3}\right)_{2}$ 132
A. (Ethene)bis(triethylphosphine)platinum(0) 133
B. (Ethene)bis(phosphine)platinum(0) 135
Chapter Three SUBSTITUTED METAL CARBONYL COMPLEXES
39. (η^{6}-Arene)tricarbonylchromium Complexes: $\mathrm{Cr}\left(\eta^{6}\right.$-Arene) $)(\mathrm{CO})_{3}$ 136
A. $\left(\eta^{6}\right.$-Anisole)tricarbonylchromium 137
B. Other Arenetricarbonylchromium Complexes 138
40. Zero-Valent Isocyanide Complexes of Chromium, Molyb- denum, and Tungsten: $\mathrm{M}(\mathrm{CO})_{x}(\mathrm{CNR})_{6-x}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$. 140
A. $\quad\left[\mathrm{M}(\mathrm{CO})_{6-n}\left(\mathrm{CNBu}^{t}\right)_{n}\right](\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W} ; n=1-3)$ Using Cobalt(II) Chloride as Catalyst 142
B. $\quad\left[\mathrm{M}(\mathrm{CO})_{6-n}\left(\mathrm{CNBu}^{t}\right)_{n}\right](\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W} ; n=1-3)$ Using Palladium(II) Oxide as Catalyst 144
C. Other Zero-Valent Isocyanide Complexes of Chromium, Molybdenum and Tungsten 144
41. cis-Bis(diethyldithiocarbamato)dinitrosylmolybdenum, Dibromotetracarbonylmolybdenum(II), and Di- and Tricarbonylbis(diethyldithiocarbamato)molybdenum(II): $\mathrm{Mo}(\mathrm{Br})_{2}(\mathrm{CO})_{4}, \mathrm{Mo}(\mathrm{CO})_{2,3}\left[\mathrm{~S}_{2} \mathrm{CNEt}_{2}\right]_{2}, \mathrm{Mo}(\mathrm{NO})_{2}\left[\mathrm{~S}_{2} \mathrm{CNEt}_{2}\right]_{2}$ 145
42. Hexacarbonylbis (η^{5}-cyclopentadienyl)dichromium, molyb- denum, and tungsten and Their Analogs: $\mathrm{M}_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{R}\right)_{2}(\mathrm{CO})_{6}$ ($\mathbf{M}=\mathrm{Cr}, \mathrm{Mo}$, and $\mathrm{W} ; \mathrm{R}=\mathrm{H}, \mathrm{Me}$, or PhCH_{2}). 148
43. Cyclopentadienyl Metal Carbonyl Dimers of Molybdenum and Tungsten: $\left[\mathrm{CpM}(\mathrm{CO})_{3}\right]_{2},\left[\mathrm{CpM}(\mathrm{CO})_{2}\right]_{2}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ 150
A. Hexacarbonylbis (η^{5}-cyclopentadienyl)dimolyb- denum(Mo-Mo). 151
B. Tetracarbonylbis(η^{5}-cyclopentadienyl)dimolybdenum- (Mo $\equiv \mathrm{Mo}$) 152
44. Pentacarbonylmanganese Halides: $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{X}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ 154
A. Pentacarbonylchloromanganese, $\mathrm{MnCl}(\mathrm{CO})_{5}$ 155
B. Bromopentacarbonylmanganese, $\mathrm{MnBr}(\mathrm{CO})_{5}$ 156
C. Pentacarbonyliodomanganese, $\mathrm{MnI}(\mathrm{CO})_{5}$ 157
D. Pentacarbonyliodomanganese, Alternate Procedure 158
45. Pentacarbonylrhenium Halides: $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{X}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ 160
A. Pentacarbonylchlororhenium, $\left[\mathrm{ReCl}(\mathrm{CO})_{5}\right]$ 161
B. Pentacarbonylchlororhenium (Alternate Procedure) 161
C. Bromopentacarbonylrhenium, $\left[\operatorname{ReBr}(\mathrm{CO})_{5}\right]$ 162
D. Pentacarbonyliodorhenium, $\left[\operatorname{ReI}(\mathrm{CO})_{5}\right]$ 163
46. Pentacarbonylhydridorhenium: $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{H}$ 165
47. Tetracarbonyliron(0) Complexes Containing Group V Donor Ligands: $\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{PR}_{3}\right)$ 168
A. Tetracarbonyl(triphenylphosphine)iron(0) 170
B. Other Tetracarbonyl(Group V Donor Ligand)iron(0) Com- plexes 170
48. Bis(phosphine) Derivatives of Iron Pentacarbonyl and Tetracarbonyl(tri-tert-butylphosphine)iron(0): $\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{PR}_{3}\right)_{2}$. 173
A. Tricarbonylbis(triphenylphosphine)iron(0) 176
B. Tricarbonylbis(tricyclohexylphosphine)iron(0). 176
C. Tricarbonylbis(tri- n-butylphosphine)iron(0) 177
D. Tricarbonylbis(trimethylphosphine)iron(0) 177
E. Tetracarbonyl(tri-tert-butylphosphine)iron(0) 177
49. Zero-Valent Iron Isocyanide Complexes: $\mathrm{Fe}(\mathrm{CO})_{x}(\mathrm{CNR})_{5}$ 179
A. Tetracarbonyl(2-isocyano-1,3-dimethylbenzene)iron(0) 180
B. Tricarbonylbis(2-isocyano-1,3-dimethylbenzene)iron(0) 181
C. Dicarbonyltris(2-isocyano-1,3-dimethylbenzene)iron(0) 182
D. Carbonyltetrakis(2-isocyano-1,3-dimethylbenzene)iron(0) 183
E. Pentakis(2-isocyano-1,3-dimethylbenzene)iron(0) 184
50. Dicarbonyl $\left(\eta^{3}\right.$-cyclopentadienyl)(thiocarbonyl)iron($1+$) Tri- fluoromethanesulfonate ($1-$) and Dicarbonyl $\left(\eta^{5}\right.$ - cyclopentadienyl)[methylthio)thiocarbonyl]iron: $\mathrm{CpFe}(\mathrm{CO})_{2}(\mathrm{CS})^{+}, \mathrm{CpFe}(\mathrm{CO})_{2}[\mathrm{C}(=\mathrm{S}) \mathrm{SMe}]$ 186
51. Tetracarbonylbis(η^{5}-cyclopentadienyl)diruthenium: $\left[\mathrm{CpRu}(\mathrm{CO})_{2}\right]_{2}$ 189
Chapter Four METAL CARBONYL ANION COMPLEXES
52. Sodium Hexacarbonylniobate($1-)^{2} \mathrm{Nb}(\mathrm{CO})_{6}^{-}$ 192
53. Dicarbonyl (η^{5}-cyclopentadienyl)nitrosyl Complexes of Chromium, Molybdenum, and Tungsten: $\mathrm{CpM}(\mathrm{CO})_{3}^{-}$, $\mathrm{CpM}(\mathrm{CO})_{2}(\mathrm{NO})(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ 196
54. Acetylpentacarbonylmanganese and Acetylpentacarbonylrhen- ium: $\mathrm{M}(\mathrm{CO})_{5}^{-}, \mathrm{M}(\mathrm{CO})_{5}[\mathrm{C}(=\mathrm{O}) \mathrm{Me}](\mathrm{M}=\mathrm{Mn}, \mathrm{Re})$ 199
A. Acetylpentacarbonylmanganese 199
B. Acetylpentacarbonylrhenium 201
55. Sodium Carbonyl Ferrates, $\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CO})_{4}\right], \mathrm{Na}_{2}\left[\mathrm{Fe}_{2}(\mathrm{CO})_{8}\right]$, and $\mathrm{Na}_{2}\left[\mathrm{Fe}_{3}(\mathrm{CO})_{11}\right]$. $\mathrm{Bis}[\mu$-nitrido-bis(triphenylphosphorus) $(1+)]$ Undecacarbonyltriferrate $(2-),\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{~N}\right]_{2}\left[\mathrm{Fe}_{3}(\mathrm{CO})_{11}\right]$ 203
56. Dicarbonyl $\left(\eta^{5}\right.$-cyclopentadienyl)(2-methyl-1-propenyl- κC^{1})iron and Dicarbonyl $\left(\eta^{5}\right.$-cyclopentadienyl) $\left(\eta^{2}-2\right.$-methyl-1- propene)iron $(1+)$ Tetrafluoroborate($1-$): $\mathrm{CpFe}(\mathrm{CO})_{2}^{-}$, $\mathrm{CpFe}(\mathrm{CO})_{2}\left[\mathrm{CH}_{2}=\mathrm{CMe}_{2}\right]^{+}$ 207
A. Dicarbonyl η^{5}-cyclopentadienyl)(2-methyl-1-propenyl- κC^{1})iron 208
B. Dicarbonyl $\left(\eta^{5}\right.$-cyclopentadienyl) $\left(\eta^{2}-2\right.$-methyl-1- propene)iron(1+) Tetrafluoroborate 210
57. μ-Nitrido-bis(triphenylphosphorus)(1+) Tetracarbonyl- rhodate ($1-$) and μ-Nitrido-bis(triphenylphosphorus) $(1+$) Tetracarbonyliridate $(1-)$: $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{~N}\right]\left[\mathrm{M}(\mathrm{CO})_{4}\right](\mathrm{M}=\mathrm{Rh}, \mathrm{Ir})$ 211
A. $\quad \mu$-Nitrido-bis(triphenylphosphorus)($1+$) Tetracarbonyl- rhodate(1 -) 213
B. μ-Nitrido-bis(triphenylphosphorus)($1+$) Tetracarbonyl- iridate(1 -) 214
Chapter Five METAL CLUSTER COMPLEXES
58. Polynuclear Ruthenium Complexes: $\mathrm{Ru}_{3}(\mathrm{CO})_{12}, \mathrm{H}_{4} \mathrm{Ru}_{4}(\mathrm{CO})_{12}$ 216
A. Dodecacarbonyltriruthenium, $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ 216
B. Dodecacarbonyltetra(μ-hydrido)tetraruthenium, $\mathrm{Ru}_{4}(\mu \text { - } \mathrm{H})_{4}(\mathrm{CO})_{12}$ 219
59. Tri- and Tetranuclear Carbonyl-Ruthenium Clusters Contain- ing Isocyanide, Tertiary Phosphine and Phosphite Ligands. Radical Ion-Initiated Substitution of Metal Cluster Carbonyl Complexes Under Mild Conditions: $\mathrm{Ru}_{3}(\mathrm{CO})_{12-x}(\mathrm{~L})_{x}$, $\mathrm{H}_{4} \mathrm{Ru}_{4}(\mathrm{CO})_{12-x}(\mathrm{~L})_{x}$ 221
A. Sodium Benzophenone Ketyl Solution 222
B. Undecacarbonyl(dimethylphenylphosphine)triruthenium, $\mathrm{Ru}_{3}(\mathrm{CO})_{11}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)$ 223
C. Decacarbonyl(dimethylphenylphosphine)(2-isocyano-2- methylpropane)triruthenium, $\mathrm{Ru}_{3}(\mathrm{CO})_{10}\left(\mathrm{CNBu}^{t}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)$ 224
D. Decacarbonyl[methylenebis(diphenylphosphine)]tri- ruthenium, $\mathrm{Ru}_{3}(\mathrm{CO})_{10}\left[\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}_{2}\right]$ 225
E. [μ-Ethynediyl- bis(diphenylphosphine)]bis[undecacarbonyltriruthenium], $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{11}\right]_{2}\left[\mu-\mathrm{C}_{2}\left(\mathrm{PPh}_{2}\right)_{2}\right]$ 226
F. Undecacarbonyltetrahydrido[tris(4-methylphenyl) phosphite]tetraruthenium, $\mathrm{Ru}_{4} \mathrm{H}_{4}(\mathrm{CO})_{11}\left[\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)_{3}\right]$ 227
G. Decacarbonyl(dimethylphenylphosphine)tetrahydrido[tris- (4-methylphenyl)phosphite]tetraruthenium, $\mathrm{Ru}_{4} \mathrm{H}_{4}(\mathrm{CO})_{10}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)\left[\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)_{3}\right]$ 228
57 Dodecacarbonyltriosmium: $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ 230
60. Some Useful Derivatives of Dodecacarbonyltriosmium: $\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{NCMe}), \mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}$ 232
A. (Acetonitrile)undecacarbonyltriosmium 232
B. Undecacarbonyl(pyridine)triosmium 234
C. Bis(acetonitrile)decacarbonyltriosmium 234
61. μ-Nitrido-bis(triphenylphosphorus)($1+$) μ-carbonyl- decacarbonyl- μ-hydridotriosmate $(1-)$: $\mathrm{HOs}_{3}(\mathrm{CO})_{11}^{-}$ 236
62. Decacarbonyldi- μ-hydridotriosmium: $\mathrm{Os}_{3}(\mu-\mathrm{H})_{2}(\mathrm{CO})_{10}$ 238
63. Dodecacarbonyltetra- μ-hydrido-tetrahedro-tetraosmium: $\mathrm{H}_{4} \mathrm{Os}_{4}(\mathrm{CO})_{12}$ 240
64. Tri- μ-carbonyl-nonacarbonyltetrarhodium: $\mathrm{Rh}_{4}(\mathrm{CO})_{1}$ 242
65. Dodecacarbonyltetrairidium: $\mathrm{Ir}_{4}(\mathrm{CO})_{12}$ 245
Chapter Six CYCLOPENTADIENYL COMPLEXES
66. Dicarbonylbis (η^{5}-cyclopentadienyl) Complexes of Titanium, Zirconium, and Hafnium: $\mathrm{Cp}_{2}^{\prime} \mathrm{M}(\mathrm{CO})_{2}\left(\mathrm{Cp}^{\prime}=\mathrm{C}_{5} \mathrm{H}_{5}, \mathrm{C}_{5} \mathrm{Me}_{5}\right.$; $\mathrm{M}=\mathrm{Ti}, \mathrm{Zr}, \mathrm{Hf})$. 248
A. Dicarbonylbis(η^{5}-cyclopentadienyl)titanium 250
B. Dicarbonylbis(η^{5}-cyclopentadienyl)zirconium 251
C. Dicarbonylbis (η^{5}-cyclopentadienyl)hafnium 252
D. Dicarbonylbis $\left(\eta^{5}\right.$-pentamethylcyclopentadienyl)titanium 253
E. Dicarbonylbis $\left(\eta^{5}\right.$-pentamethylcyclopentadienyl)zirconium. 254
F. Dicarbonylbis(η^{5}-pentamethylcyclopentadienyl)hafnium 255
67. (η^{5}-Cyclopentadienyl)hydridozirconium Complexes: $\mathrm{Cp}_{2} \mathrm{ZrH}_{2}$, $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H})(\mathrm{Cl})$ 257
A. $\operatorname{Bis}\left(\eta^{5}\right.$-cyclopentadienyl)dihydridozirconium 257
68. μ-Oxo-bis[chlorobis(η^{5}-cyclopentadienyl)zirconium]. 257
69. $\operatorname{Bis}\left(\eta^{5}\right.$-cyclopentadienyl)dihydridozirconium 258
B. Chorobis(η^{5}-cyclopentadienyl)hydridozirconium 259
70. Cyclopentadienyl Complexes of Titanium(III) and Vanadium(III): $\mathrm{Cp}_{2} \mathrm{MCl}(\mathrm{M}=\mathrm{Ti}, \mathrm{V})$. 260
A. Chlorobis(η^{5}-cyclopentadienyl)titanium(III) 261
B. Chlorobis(η^{5}-cyclopentadienyl)vanadium(III) 262
71. Vanadocene, $\operatorname{Bis}\left(\eta^{5}\right.$-cyclopentadienyl)vanadium: $\mathrm{Cp}_{2} \mathrm{~V}$, $\mathrm{V}_{2}(\mu-\mathrm{Cl})_{3}(\mathrm{THF})_{6}^{2+}$ 263
72. Dichlorobis(η^{5}-cyclopentadienyl)niobium(IV): $\mathrm{Cp}_{2} \mathrm{NbCl}_{2}$ 267
73. Chloro(η^{5}-cyclopentadienyl)bis(triphenylphosphine)- ruthenium(II): $\mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ 270
74. (η^{5}-Pentamethylcyclopentadienyl)cobalt Complexes: $\mathrm{Cp}^{*} \mathrm{Co}(\mathrm{CO})_{2}, \mathrm{Cp}^{*} \mathrm{Co}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$ 273
A. Dicarbonyl $\left(\eta^{5}\right.$-pentamethylcyclopentadienyl)cobalt(I) 273
B. Carbonyldiiodo(η^{5}-pentamethylcyclopenta- dienyl)cobalt(III) 275
C. Di- μ-iodo-bis[iodo(η^{5}-pentamethylcyclopenta- dienyl)cobalt(III)]. 276
D. $\operatorname{Bis}\left(\eta^{2}\right.$-ethene) $\left(\eta^{5}\right.$-pentamethylcyclopentadienyl)cobalt(I) 278
75. Cyclopentadienylbis(trimethylphosphine) and Cyclopentadienylbis(trimethylphosphite) Complexes of Co and $\mathrm{Rh}: \mathrm{CpM}\left(\mathrm{PMe}_{3}\right)_{2}, \mathrm{CpM}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh})$ 280
A. (η^{5}-Cyclopentadienyl)bis(trimethylphosphine)rhodium(I) 280
B. $\left(\eta^{5}\right.$-Cyclopentadienyl)bis(trimethylphosphine)cobalt(I) 281
C. $\left(\eta^{5}\right.$-Cyclopentadienyl)bis(trimethylphosphite)cobalt(I) 283
D. $\left(\eta^{5}\right.$-Cyclopentadienyl)bis(trimethylphosphite)rhodium(I). 284
Chapter Seven LANTHANIDE AND ACTINIDE COMPLEXES
76. Lanthanide Trichlorides by Reaction of Lanthanide Metals with Mercury(II) Chloride in Tetrahydrofuran: $\mathrm{LnCl}_{3}(\mathrm{THF})_{x}$ 286
A. Ytterbium Trichloride-Tetrahydrofuran ($1 / 3$) 289
B. Erbium Trichloride-Tetrahydrofuran (2/7) 290
C. Samarium Trichloride-Tetrahydrofuran (1/2) 290
D. Neodymium Trichloride-Tetrahydrofuran (2/3) 290
77. (η^{5}-Cyclopentadienyl)lanthanide Complexes from the Metallic Elements: $\mathrm{Cp}_{3} \mathrm{Ln}(\mathrm{Ln}=\mathrm{Nd}, \mathrm{Sm}), \mathrm{Cp}_{2} \mathrm{Y}(\mathrm{DME})$ 291
A. Tris(η^{5}-cyclopentadienyl)(tetrahydrofuran)neodymium(III) 293
B. Tris(η^{5}-cyclopentadienyl)(tetrahydrofuran)samarium(III) 294
C. $\operatorname{Bis}\left(\eta^{5}\right.$-cyclopentadienyl)(1,2-dimethoxyethane)- ytterbium(II). 295
78. $\operatorname{Bis}\left(\eta^{5}\right.$-pentamethylcyclopentadienyl)bis(tetrahydrofuran)- samarium(II): $\mathrm{Cp}_{2}^{*} \operatorname{Sm}(\mathrm{THF})_{2}$ 297
79. Chlorotris $\left(\eta^{5}\right.$-cyclopentadienyl) Complexes of Uranium(IV) and Thorium(IV): $\mathrm{Cp}_{3} \mathrm{MCl}(\mathrm{M}=\mathrm{U}, \mathrm{Th})$ 300
A. Chlorotris $\left(\eta^{5}\right.$-cyclopentadienyl)uranium(IV) 301
B. Chlorotris (η^{5}-cyclopentadienyl)thorium(IV) 302
Chapter Eight LIGANDS AND OTHER TRANSITION METAL COMPLEXES
80. Trimethylphosphine: PMe_{3} 305
81. Phosphorus Trifluoride: PF_{3} 311
82. Cyclopentadienylthallium: CpTl 315
83. 1,2,3,4,5-Pentamethylcyclopentadiene: $\mathrm{C}_{5} \mathrm{Me}_{5} \mathrm{H}$ 317
84. Anhydrous Metal Chlorides 321
85. Tungsten and Molybdenum Tetrachloride Oxides: $\mathrm{MOCl}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ 323
A. Tungsten Tetrachloride Oxide. 324
B. Molybdenum Tetrachloride Oxide 325
86. Tungsten Chloro Phosphine Complexes: $\mathrm{WCl}_{4}\left(\mathrm{PR}_{3}\right)_{2,3}$, $\mathrm{WCl}_{2}\left(\mathrm{PR}_{3}\right)_{4}$ 326
A. Tetrachlorotris(trimethylphosphine)tungsten(IV) 327
B. Tetrachlorobis(diphenylmethylphosphine)tungsten(IV) 328
C. Dichlorotetrakis(trimethylphosphine)tungsten(II) 329
D. Dichlorotetrakis(dimethylphenylphosphine)tungsten(II) 330
E. Dichlorotetrakis(methyldiphenylphosphine)tungsten(II) 331
87. Tetrabutylammonium Octachlorodirhenate(III): $\mathrm{Re}_{2} \mathrm{Cl}_{8}^{2-}$ 332
88. Di- μ-chloro-bis[tricarbonylchlororuthenium(II)]: $\left[\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{Cl}_{2}\right]_{2}$ 334
89. Dihydridotetrakis(triphenylphosphine)ruthenium(II): $\mathrm{H}_{2} \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{4}$ 337
90. Tris(2, 2'-bipyridine)ruthenium(II) Dichloride Hexahydrate: Ru(bipy) ${ }_{3}^{+}$ 338
91. Dichlorobis[μ-methylenebis(diphenylphosphine)]- dipalladium(I) $(\mathrm{Pd}-\mathrm{Pd}): \mathrm{Pd}_{2}(\mathrm{dppm}){ }_{2} \mathrm{Cl}_{2}$ 340
92. (η^{3}-Allyl)palladium(II) Complexes: $\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{Pd}_{2} \mathrm{Cl}_{2}$, $\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Pd}$. 342
A. $\operatorname{Bis}\left(\eta^{3}\right.$-allyl)di- μ-chloro-dipalladium(II) 342
B. $\quad\left(\eta^{3}\right.$-Allyl) $\left(\eta^{5}\right.$-cyclopentadienyl)palladium(II) 343
93. Cyclic Diolefin Complexes of Platinum and Palladium: $\mathrm{MCl}_{2}(\mathrm{COD})(\mathrm{M}=\mathrm{Pd}, \mathrm{Pt})$ 346
A. Dichloro($\eta^{4}-1,5$-cyclooctadiene)platinum(II). 346
B. Dichloro($\eta^{4}-1,5$-cyclooctadiene)palladium(II). 348
94. Potassium Trichloro(ethene)platinate(II) (Zeise's Salt): $\mathrm{K}\left[\mathrm{PtCl}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ 349
Index of Contributors. 353
Subject Index 361
Formula Index 387

2. CARBONYL ($\boldsymbol{\eta}^{5}$-CYCLOPENTADIENYL)(TETRAFLUOROBORATO)MOLYBDENUM AND -TUNGSTEN COMPLEXES

Submitted by WOLFGANG BECK, KLAUS SCHLOTER, KARLHEINZ SÜNKEL, and GÜNTER URBAN* Checked by THOMAS FORSCHNER, ALICIA TODARO, and ALAN CUTLER \dagger

A. TRICARBONYL $\left(\boldsymbol{\eta}^{5}\right.$-CYCLOPENTADIENYL)
 (TETRAFLUOROBORATO)MOLYBDENUM AND -TUNGSTEN ${ }^{1 a}$

An efficient method for the preparation of tetrafluoroborato complexes is hydride abstraction from metal hydrides using triphenylmethylium \ddagger tetrafluoroborate. ${ }^{1 a}$ This method has been first reported by Sanders for hydridoruthenium complexes. ${ }^{2}$

$$
\begin{aligned}
{\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{BF}_{4}\right]+\mathrm{MCp}(\mathrm{CO})_{3} \mathrm{H} \rightarrow } & \mathrm{MCp}(\mathrm{CO})_{3}\left(\mathrm{FBF}_{3}\right)+\mathrm{Ph}_{3} \mathrm{CH} \\
& \mathrm{M}=\mathrm{Mo}, \mathrm{~W}
\end{aligned}
$$

In a similar way, the hexafluoroarsenato and hexafluoroantimonato complexes $\mathrm{MCp}(\mathrm{CO})_{3} \mathrm{FEF}_{5}(\mathrm{M}=\mathrm{Mo}, \mathrm{W} ; \mathrm{E}=\mathrm{As}, \mathrm{Sb})$ have been prepared from $\mathrm{MCp}(\mathrm{CO})_{3} \mathrm{H}$ and $\left[\mathrm{CPh}_{3}\right]\left[\mathrm{EF}_{6}\right] .{ }^{1 \mathrm{~b}}$

An alternative method for the preparation of $\mathrm{MCp}(\mathrm{CO})_{3}\left(\mathrm{FBF}_{3}\right)$ $(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ is protonation of $\mathrm{MCp}(\mathrm{CO})_{3} \mathrm{CH}_{3}$ by $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O} .{ }^{1 \mathrm{c}}$

Procedure

Tritylium tetrafluoroborate is commercially available (Fluk a AG) and should be freshly recrystallized from dichloromethane or dichloromethane-ethyl acetate prior to use. The hydrido complexes, $\mathrm{MCp}(\mathrm{CO})_{3} \mathrm{H}^{3}$ should be purified by sublimation or by chromatography (neutral alumina, activity 3, pentane eluant) prior to use. All solvents must be rigorously dried and handled under an inert atmosphere, see the preceding general comments.

A quantity of $\left.\mathrm{Ph}_{3} \mathrm{C}^{2} \mathrm{BF}_{4}\right](0.33 \mathrm{~g}, 1.0 \mathrm{mmol})$ is dissolved in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a $50-\mathrm{mL}$ Schlenk tube, under an inert atmosphere. The solution is

[^0]cooled to $-40^{\circ} \mathrm{C}$ (using Dry Ice-acetone and a low-temperature thermometer). To this is added $\mathrm{MoCp}(\mathrm{CO})_{3} \mathrm{H}$ (Ref. 3) $(0.22 \mathrm{~g}, 0.89 \mathrm{mmol})$ or $\mathrm{WCp}(\mathrm{CO})_{3} \mathrm{H}$ (Ref. 3) $(0.30 \mathrm{~g}, 0.90 \mathrm{mmol})$. An immediate color change from yellow to purple-red is observed. After stirring for $10 \mathrm{~min}, 0.2 \mathrm{~mL}$ of the solution is syringed into an infrared (IR) solution cell and a spectrum is taken. If a more or less intense band is observed at $\sim 1355 \mathrm{~cm}^{-1}$, indicating the presence of unreacted tritylium salt, small amounts of the corresponding hydrides are then added via a spatula. After stirring for 5 min , the IR spectrum is recorded for another solution aliquot. The addition of hydride is repeated until the IR spectrum of the solution shows no band at $1355 \mathrm{~cm}^{-1}$. As soon as this equivalence point is reached, a sudden color change from dark red to lilac or violet is observed (see the solution in Section A). If this color change does not occur, the presence of moisture can be suspected. In this case the solution may be used for a reaction with stronger ligands than water, otherwise the preparation has to be tried again.

Two procedures are given for the treatment of the solution in Section A. In the first the solution is cooled down to $-60^{\circ} \mathrm{C}$, and 20 mL of hexane is added. Careful evaporation under vacuum to $\sim 20 \mathrm{~mL}$ removes most of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The lilac precipitate is isolated by centrifugation ($\sim 2 \mathrm{~min}$ at 1500 rpm) and decanting off the solution. Hexane $(20 \mathrm{~mL})$ is added at $-60^{\circ} \mathrm{C}$ and the suspension is stirred for 10 min . Centrifugation, decanting, and washing are repeated three times. Then the product is dried at $-20^{\circ} \mathrm{C}$ for 8 h on a highvacuum line (10^{-3} torr).

Alternate Procedure for Treatment of the Solution in Section A

The lilac-colored reaction mixture is transferred into a second Schlenk flask (100 mL) using a double-ended stainless steel cannula. The second flask contains hexane previously cooled to $-78^{\circ} \mathrm{C}$ (Dry Ice-acetone bath). A lilac colored solid precipitates. The solvent is siphoned off and the solid is washed three times with hexane (20 mL) previously cooled to $-78^{\circ} \mathrm{C}$ and transferred into the flask using the double ended cannula technique. The wash solvent is siphoned off and remaining solid is dried under vacuum (10^{-3} torr, oil pump) at $-40^{\circ} \mathrm{C}$ for 8 h . Yields: for $\mathrm{MoCp}(\mathrm{CO})_{3}\left(\mathrm{FBF}_{3}\right): 282-319 \mathrm{mg}(85-96 \%)$, for $\mathrm{WCp}(\mathrm{CO})_{3}\left(\mathrm{FBF}_{3}\right): 357-378 \mathrm{mg}(85-90 \%)$.

Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{BF}_{4} \mathrm{MoO}_{3}: \mathrm{C}, 28.95 ; \mathrm{H}, 1.52$. Found: C, 28.27; $\mathrm{H}, 1.64$. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{BF}_{4} \mathrm{O}_{3} \mathrm{~W}$: C, 22.28; H, 1.20. Found: C, 23.63; H, 1.39.

Properties*

[^1]
B. DICARBONYL($\boldsymbol{\eta}^{5}$-CYCLOPENTADIENYL)(TETRAFLUOROBORATO)(TRIPHENYLPHOSPHINE)MOLYBDENUM AND -TUNGSTEN, $\operatorname{MCp}(\mathbf{C O})_{2}\left(\mathbf{P P h}_{3}\right)\left(\mathrm{FBF}_{3}\right)(\mathbf{M}=\mathbf{M o}, \mathbf{W})^{4}$

Substitution of a CO group by a phosphine ligand makes the metal center electron-richer and therefore less Lewis acidic. This weakens the coordination of the $\left[\mathrm{BF}_{4}\right]^{-}$ion. In addition, steric interactions with the phosphine ligands, the possibility of cis-trans isomerism in the complexes with "four-legged piano stool" geometry, ${ }^{5}$ and the introduction of the ${ }^{31} \mathrm{P}$ nucleus as another sensitive NMR probe make this variation of the synthesis described in Section A, an interesting field of further investigation. The preparation described here for the PPh_{3} compounds, can also be used with other PR_{3} ligands such as $\mathrm{PMe}_{3}, \mathrm{PEt}_{3}, \mathrm{P}(\mathrm{OPh})_{3}$, or $\frac{1}{2}$ (dppe) [dppe $=1,2$-ethanediyl-bis(diphenylphosphine)]. \dagger

Dicarbonyl (η^{5}-cyclopentadienyl)hydrido(triphenylphosphine) molybdenum and -tungsten

$$
\begin{aligned}
\mathrm{MCp}(\mathrm{CO})_{3} \mathrm{H}+\mathrm{PPh}_{3} & \rightarrow \mathrm{MCp}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{H}+\mathrm{CO} \\
\mathrm{M} & =\mathrm{Mo}, \mathrm{~W}
\end{aligned}
$$

Monophosphine substituted carbonylcyclopentadienylhydrido complexes of molybdenum and tungsten have been obtained by protonation of the anions $\left[\mathrm{MCp}(\mathrm{CO})_{2}\left(\mathrm{PR}_{3}\right)\right]^{-6}$, or by substitution of CO with phosphines in the hydrides $\mathrm{MH}(\mathrm{CO})_{3} \mathrm{Cp} .^{7}$ The straightforward synthesis of the hydrides $\mathrm{MH}(\mathrm{CO})_{3} \mathrm{Cp}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})^{3}$ makes the latter procedure preferable, at least for $\mathrm{PPh}_{3}, \mathrm{P}(\mathrm{OPh})_{3}, \mathrm{PMe}_{3}$, and PEt_{3}, where fast reactions and good yields can always be obtained. For the analogous syntheses of PMe_{3} or PEt_{3} substituted hydrides, special precautions for handling these highly toxic, malodorous, and highly inflammable phosphines must be taken. ${ }^{8}$

Procedure

A quantity of freshly sublimed $\mathrm{MCp}(\mathrm{CO})_{3} \mathrm{H}(0.49 \mathrm{~g}, \mathrm{M}=\mathrm{Mo}$ or 0.66 g , $\mathrm{M}=\mathrm{W}$, each 2.0 mmol) is dissolved in 15 mL of hexane at room temperature in a $100-\mathrm{mL}$ Schlenk flask. To this is added $\mathrm{PPh}_{3}(0.58 \mathrm{~g}, 2.1 \mathrm{mmol})$ under vigorous stirring. The Schlenk tube is then connected to a mercury bubbler and a stream of argon ($0.5 \mathrm{~L} \mathrm{~min}^{-1}$) is passed over the solution for 2 h (it is not necessary to bubble the argon through the solution). Soon a white precipitate

[^2]forms, which is isolated by filtration under argon and washed twice with 5 mL of hexane. The product is dried at room temperature for 6 h in vacuo. It may be recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane. Yields: $\mathrm{MoCp}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{H}, 625 \mathrm{mg}$, 65%; $\mathrm{WCp}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{H}, 636 \mathrm{mg}(56 \%)$.

Properties

The hydrides $\mathrm{MCp}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{H}$ are yellowish-white powders. They are air stable for several minutes exposure as solids, however, for extended storage they should be kept under argon. IR spectra (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): $v_{\mathrm{CO}}=1936$, $1856 \mathrm{~cm}^{-1}$ (Mo); 1923, $1835 \mathrm{~cm}^{-1}$ (W); ${ }^{1} \mathrm{H}$ NMR [in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (Mo), CDCl_{3} $(\mathrm{W})]: \delta_{\mathrm{C}_{5} \mathrm{H}_{5}}=5.08(\mathrm{Mo}) ; 5.10 \mathrm{ppm}(\mathrm{W}) ; \delta_{\mathrm{M}-\mathrm{H}}=-5.56(\mathrm{Mo}),-7.06 \mathrm{ppm}(\mathrm{W})$, "doublets" ${ }^{2} J_{\left({ }^{3} \mathrm{P}^{1} \mathrm{H}\right) \mathrm{av}}=47 \mathrm{~Hz}(\mathrm{Mo}), 55 \mathrm{~Hz}(\mathrm{~W}) ;{ }^{31} \mathrm{P}$ NMR (in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta_{\mathrm{PPh}_{3}}=74.3(\mathrm{Mo}), 40.9 \mathrm{ppm}(\mathrm{W})$ (relative to $\mathrm{H}_{3} \mathrm{PO}_{4}$). A fast equilibrium between the cis and trans isomers ${ }^{5}$ leads to averaging of the signals and coupling constants at room temperature. Both isomers can be distinguished by low-temperature ${ }^{1} \mathrm{H}$ NMR $\left[\delta_{\mathrm{Mo}_{\mathrm{2}}-\mathrm{H}}:-5.33 \mathrm{~d}\right.$ and $-6.14 \mathrm{~d} ;{ }^{2} J_{3_{1 / \mathrm{P}^{1} \mathrm{H}}}=64$ and $21.4 \mathrm{~Hz} ; \delta_{\mathrm{w}-\mathrm{H}}:-6.90 \mathrm{~d},-7.36 \mathrm{~d},{ }^{2} J_{3_{1 \mathrm{P}^{1}}}=65$ and 22 Hz .

The analogous PMe_{3} and PEt_{3} containing hydrides tend to form oils and decompose quickly on contact with air; the tungsten compounds are more stable than the molybdenum analogs. Their spectral properties are similar to those of the PPh_{3} compounds. The best yields are obtained with the $\mathrm{P}(\mathrm{OPh})_{3}$ ligand, which leads exclusively to the stable cis isomers. ${ }^{5}$

Dicarbonyl(η^{5}-cyclopentadienyl)(tetrafluoroborato)(triphenylphosphine)molybdenum and -tungsten ${ }^{4}$

$$
\begin{aligned}
{\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{BF}_{4}\right]+\mathrm{MCp}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{H} } & \rightarrow \mathrm{MCp}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{FBF}_{3}\right) \\
& +\mathrm{Ph}_{3} \mathrm{CH} \\
\mathrm{M} & =\mathrm{Mo}, \mathrm{~W}
\end{aligned}
$$

Procedure

Generally, the same guidelines as described in Section A have to be followed. A quantity of $\operatorname{MoCp}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{H} \quad(0.45 \mathrm{~g}, \quad 0.94 \mathrm{mmol})$ or $\mathrm{WCp}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{H}(0.55 \mathrm{~g}, 0.97 \mathrm{mmol})$ is added to a solution of $\left[\mathrm{Ph}_{3} \mathrm{C}\right]$ [BF_{4}] $(0.33 \mathrm{~g}, 1.00 \mathrm{mmol})$ in $10 \mathrm{mLCH} \mathrm{Cl}_{2}$ at $-40^{\circ} \mathrm{C}$ contained in a Schlenk flask (100 mL) equipped with a magnetic stirring bar. The mixture is stirred for 20 min , after which an IR spectrum is recorded of an aliquot $(0.2 \mathrm{~mL})$ to inspect the intensity of the band at $1355 \mathrm{~cm}^{-1}$. Small amounts of the hydride
are added until the IR spectrum, recorded at 5 -min intervals shows no band at $1355 \mathrm{~cm}^{-1}$. Usually, a lilac precipitate forms before the equivalence point is reached. The equivalence point is again indicated by a lilac color of the solution. Complete precipitation of the product is obtained by addition of 20 mL of hexane at $-60^{\circ} \mathrm{C}$, or by transfer of the complete reaction mixture to another Schlenk flask containing the hexane cooled to $-60^{\circ} \mathrm{C}$ (see the procedure in Section A). Isolation of the product is the same as described in Section A. Yields: $\mathrm{MoCp}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{FBF}_{3}\right) \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} 632 \mathrm{mg}$. (86%); $\mathrm{WCp}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{FBF}_{3}\right) 556 \mathrm{mg}(85 \%)$.

Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{BF}_{4} \mathrm{MoO}_{2} \mathrm{P} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 44.1; H, 3.29. Found: C, 45.0; H, 3.32.

Properties

All tetrafluoroborato complexes are very sensitive to moisture. Schlenk tubes used for storage therefore have to be heated to $400^{\circ} \mathrm{C}$ or more under vacuum for several hours; O-ring stopcocks or similar grease-free stopcocks are superior to the usual ground-glass stopcocks. Although the phosphine containing BF_{4} complexes are thermally more stable than the unsubstituted compounds, storage at temperatures below $-25^{\circ} \mathrm{C}$ under Ar is recommended for all these compounds. They dissolve in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and CHCl_{3} below $-40^{\circ} \mathrm{C}$ without decomposition, while solvents with donor properties like acetone or acetonitrile dissolve these complexes under substitution of tetrafluoroborato ligands by the solvent to give ionic complexes, for example, $\left[\mathrm{MoCp}(\mathrm{CO})_{3}(\right.$ acetone $\left.)\right]\left[\mathrm{BF}_{4}\right]$. They can be characterized by their IR spectra in the region from 1200 to $700 \mathrm{~cm}^{-1}$ and by their low-temperature ${ }^{19} \mathrm{~F}$ and, where appropriate, ${ }^{31} \mathrm{P}$ NMR spectra. ${ }^{9}$

TABLE I. Spectroscopic Data of $\operatorname{MoCp}(\mathrm{CO})_{2} \mathrm{~L}\left(\mathrm{FBF}_{3}\right)$

TABLE II. Spectroscopic Data of $\mathrm{WCp}(\mathrm{CO})_{2} \mathrm{~L}\left(\mathrm{FBF}_{3}\right)$

Coordination of the BF_{4} ion lowers the T_{d} symmetry of $\left[\mathrm{BF}_{4}\right]^{-}$and makes the fluorine atoms nonequivalent. Therefore the IR spectra show three instead of one $v_{1_{1}-F}$ absorptions ${ }^{1.4}$ (Tables I and II); the low-temperature ${ }^{19} \mathrm{~F}$ NMR spectra ${ }^{9}$ show two distinct fluorine resonances, a high-field quartet (which may be split by coupling to the phosphorus in the PR_{3} substituted compounds and a doublet at lower field, close to the resonance of free $\left[\mathrm{BF}_{4}\right]^{-} ;{ }^{13}$ the ${ }^{31} \mathrm{P}$ NMR spectrum shows at low temperature a pseudodoublet, produced by coupling with the coordinated fluorine (Tables I and II). Compounds $\mathrm{MoCp}(\mathrm{CO})_{2}\left(\mathrm{PR}_{3}\right)\left(\mathrm{FBF}_{3}\right)$ are obtained as cis and trans isomers. In $\mathrm{WCp}(\mathrm{CO})_{2}\left[\mathrm{P}(\mathrm{OPh})_{3}\right]\left(\mathrm{FBF}_{3}\right)$ total isomerization from the pure cis hydride to the pure trans- BF_{4} compound could be followed via NMR. ${ }^{9}$

Reactions of Tetrafluoroborato Complexes with Ethylene, Diphenylacetylene, and Acetone

General Remarks

The tetrafluoroborate ligand of these highly reactive complexes can be easily substituted by a series of $\mathrm{N}, \mathrm{O}, \mathrm{P}$, and $\mathrm{S} \sigma$ donors ${ }^{1 \text { a. 4. 10.11 }}$ and π donors (see Sections C-F).

As described in Sections A and B, a lilac solution of the corresponding tetrafluoroborato complex is prepared at $-30^{\circ} \mathrm{C}$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Complete reaction of the tritylium salt is verified by checking for the disappearance of the $1355 \mathrm{~cm}^{-1}$ absorption in the IR spectrum of the solution. This solution is used for the following reactions without isolation of the tetrafluoroborato complex.

C. TRICARBONYL($\boldsymbol{\eta}^{5}$-CYCLOPENTADIENYL) $\left(\boldsymbol{\eta}^{2}\right.$-ETHENE)MOLYBDENUM $(1+)$ TETRAFLUOROBORATE $(1-)^{\text {1a }}$

$$
\mathrm{MoCp}(\mathrm{CO})_{3}\left(\mathrm{FBF}_{3}\right)+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow\left[\mathrm{MoCp}(\mathrm{CO})_{3}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]\left[\mathrm{BF}_{4}\right]
$$

The title compound can be obtained in three ways. One method starts from $\mathrm{Mo}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{3} \mathrm{Cl}$, which is reacted with $\mathrm{C}_{2} \mathrm{H}_{4}$ at a pressure of 70 bar in the presence of AlCl_{3} and consecutive precipitation with ammonium salt. ${ }^{12} \mathrm{~A}$ second method involves β-hydride abstraction from the ethyl group in $\mathrm{MoCp}(\mathrm{CO})_{3}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)$ by $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{BF}_{4}\right] .{ }^{13}$ The third method, described here, has the advantage of mild reaction conditions and a good overall yield. Analogous complexes with other olefins have been prepared similarly. ${ }^{4}$

Procedure

Ethylene (1 bar), dried over $\mathrm{P}_{2} \mathrm{O}_{5}$, is bubbled through a vigorously stirred lilac solution of $\mathrm{MoCp}(\mathrm{CO})_{3}\left(\mathrm{FBF}_{3}\right)(1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a Schlenk flask $(50 \mathrm{~mL})$ cooled to $-30^{\circ} \mathrm{C}$. With continuous ethylene bubbling, the cooling bath is removed and the flask is permitted to warm up to $+20^{\circ} \mathrm{C}$ over a 4 -h period. The flow of ethylene is then stopped, and the reaction mixture stirred under argon for another 30 min . The yellow precipitate is isolated by centrifugation or filtration under Ar. After washing four times with 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the product is dried 1 h at $+40^{\circ} \mathrm{C}$ on a high-vacuum line. It may be recrystallized from acetone-diethyl ether. Yield: $282 \mathrm{mg}(79 \%)$.

Properties

The compound decomposes on heating at $102-108^{\circ} \mathrm{C}$. Infrared spectra (in Nujol): $v_{\mathrm{co}}=2104,2053,2001 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (acetone- d_{6}) $\delta=6.35 \mathrm{ppm}$ $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$.

D. CARBONYL $\boldsymbol{\eta}^{5}$-CYCLOPENTADIENYL)BIS(DIPHENYLACETYLENE)MOLYBDENUM(1+) TETRAFLUOROBORATE $(1-)^{1 a}$

$\mathrm{MoCp}(\mathrm{CO})_{3}\left(\mathrm{FBF}_{3}\right)+2 \mathrm{PhCCPh} \rightarrow\left[\mathrm{MoCp}(\mathrm{CO})(\mathrm{PhCCPh})_{2}\right]\left[\mathrm{BF}_{4}\right]$

$$
+2 \mathrm{CO}
$$

Other syntheses of cationic bis(alkyne) complexes of molybdenum and tungsten of the same type include AgBF_{4} oxidation of the dimer [$\left.\mathrm{MoCp}(\mathrm{CO})_{3}\right]_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the presence of diphenylacetylene or several
other alkynes. ${ }^{14}$ Protonation of $\mathrm{MoCp}(\mathrm{CO})_{3} \mathrm{CH}_{3}$ with $\mathrm{CF}_{3} \mathrm{COOH}$ and consecutive addition of 2-butyne in acetonitrile, followed by precipitation with a methanolic solution of $\left[\mathrm{NH}_{4}\right]\left[\mathrm{PF}_{6}\right]$ gives the corresponding 2-butyne complex. ${ }^{15}$ Refluxing a solution of $\mathrm{MoCp}(\mathrm{CO})_{3} \mathrm{Cl}$ with $\left(\mathrm{HOCH}_{2}\right) \mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{OH}\right)$ leads to an analogous compound. ${ }^{16}$ The method described here uses very mild conditions and can be applied also for other alkynes, like 2-butyne or acetylene. ${ }^{17}$

Procedure

Diphenylacetylene ($535 \mathrm{mg}, 3.0 \mathrm{mmol}$) is added to a lilac solution of $\mathrm{MoCp}(\mathrm{CO})_{3}\left(\mathrm{FBF}_{3}\right)\left(1 \mathrm{mmol}\right.$ in $10 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, prepared as described above) at $-30^{\circ} \mathrm{C}$ under vigorous stirring in a Schlenk flask (50 mL) equipped with a magnetic stirring bar. The flask is connected to a mercury bubbler and flushed by a constant flow of argon or nitrogen gas. After 30 min , the gas flow is stopped and the cooling bath removed. Stirring is continued for 4 days at room temperature, over which time a yellow precipitate is formed. Diethyl ether (20 mL) is added and the yellowish-red suspension is filtered under argon. The residue on the frit is extracted three times with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts are evaporated to 5 mL , to which is added diethyl ether (20 mL). The orange-yellow precipitate is isolated by centrifugation or filtration under argon, washed three times with $10-\mathrm{mL}$ aliquots of diethyl ether, and then dried for 1 h in vacuo at $40^{\circ} \mathrm{C}$. The product may be recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-pentane. Yield: $235 \mathrm{mg}(37 \%)$.

Anal. Calcd. for $\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{BF}_{4} \mathrm{MoO}: \mathrm{C}, 64.58 ; \mathrm{H}, 3.99$. Found: $\mathrm{C}, 63.98 ; \mathrm{H}, 4.09$.

Properties

The yellow compound is soluble in polar solvents such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, acetone, or acetonitrile. Although prolonged exposure to air leads to decomposition, the compound can be handled in air for short periods of time. Its IR spectrum in Nujol shows one $v_{12 \mathrm{co}}$ vibration at $2088 \mathrm{~cm}^{-1}$ and a weak $v_{13 \mathrm{co}}$ band at $2040 \mathrm{~cm}^{-1}$. Also a weak absorption at $1741 \mathrm{~cm}^{-1}$ occurs, which may be due to the $v_{\mathrm{C}=\mathrm{c}}$ band of the coordinated alkyne. The ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ has a sharp singlet for the $\mathrm{C}_{2} \mathrm{H}_{5}$ protons at $\delta=6.20 \mathrm{ppm}$, besides the broad resonance of the phenyl protons of the diphenylacetylene. Interestingly, KBr pellets of the compound several hours after initially formed show a bathochromic shift of the v_{co} band, which is also observed with other cationic alkyne complexes. ${ }^{17}$

E. CARBONYL($\boldsymbol{\eta}^{5}$-CYCLOPENTADIENYL)(DIPHENYLACETYLENE)(TRIPHENYLPHOSPHINE)MOLYBDENUM(1 +) TETRAFLUOROBORATE $(1-)^{18}$

$$
\begin{gathered}
\mathrm{MoCp}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{FBF}_{3}\right)+\mathrm{PhCCPh} \rightarrow \\
{\left[\mathrm{MoCp}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{PhCCPh}^{2}\right)\right]\left[\mathrm{BF}_{4}\right]+\mathrm{CO}}
\end{gathered}
$$

Green and coworkers ${ }^{19}$ prepared the title compound and other related monoalkyne complexes by reaction of the corresponding bis(alkyne) complex with triphenylphosphine (or other phosphines) in good yields. The method described here works for several alkynes, for example, 2-butyne or phenylacetylene, and also for phosphines, for example, PEt_{3} or $\mathrm{P}(\mathrm{OPh})_{3}$.

Procedure

Diphenylacetylene ($1.78 \mathrm{~g}, 10.0 \mathrm{mmol}$) is added to a magnetically stirred lilac suspension of $\mathrm{MoCp}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{FBF}_{3}\right)\left(1.0 \mathrm{mmol}\right.$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, as described previously) in a Schlenk flask $(50 \mathrm{~mL})$ cooled to $-30^{\circ} \mathrm{C}$. The flask is connected to a mercury bubbler and purged with argon for 15 min . The gas flow is stopped and the cooling bath is allowed to warm up to room temperature. Stirring is continued for 2 days, during which time the flask is purged several times with argon to remove the carbon monoxide evolved in the reaction. Then hexane (20 mL) is added. Stirring is continued for another day at ambient temperature, after which the dark green suspension is filtered under argon. The residue on the filter is washed four times with $15-\mathrm{mL}$ aliquots of hexane and then dried 3 h under vacuum at $25^{\circ} \mathrm{C}$. Yield: 408 mg (57\%).

Anal. Calcd. for $\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{BF}_{4} \mathrm{MoOP}: \mathrm{C}, 63.7 ; \mathrm{H}, 4.22$. Found: $\mathrm{C}, 62.8 ; \mathrm{H}, 4.15$.

Properties

The title compound is soluble in polar organic solvents, for example, acetone, acetonitrile, or dichloromethane. Although storing under inert gas is recommended, no decomposition can be observed when handled as a solid in air for short periods of time. IR (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): $v_{1^{2} \mathrm{CO}}=1987 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta_{\mathrm{C}_{5} \mathrm{H}_{5}}=5.77 \mathrm{ppm}, \delta_{\left.\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{Pl}_{6} \mathrm{H}_{5}\right)_{3}} 8-7 \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR (in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta_{\mathrm{PPh}_{3}}=54.8 \mathrm{ppm}$.

The crystal structure of this compound shows a slightly elongated $\mathrm{C} \equiv \mathrm{C}$ bond of the alkyne and the usual deviation from linearity at the two carbon atoms of the triple bond. ${ }^{18,19}$.

F. (ACETONE)(TRICARBONYL) $\left(\boldsymbol{\eta}^{5}\right.$-CYCLOPENTADIENYL)MOLYBDENUM(1 +) AND -TUNGSTEN(1 +) TETRAFLUOROBORATE $(1-)^{1 \mathrm{a}, 10}$

$$
\begin{aligned}
& \mathrm{MCp}(\mathrm{CO})_{3}\left(\mathrm{FBF}_{3}\right)+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO} \rightarrow\left[\mathrm{MCp}(\mathrm{CO})_{3} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right]\left[\mathrm{BF}_{4}\right] \\
& \mathrm{M}=\mathrm{Mo}, \mathrm{~W}
\end{aligned}
$$

Procedure

A lilac solution of the tetrafluoroborato complex $\mathrm{MCp}(\mathrm{CO})_{3}\left(\mathrm{FBF}_{3}\right)$, $\mathbf{M}=\mathbf{M o}$ or $\mathbf{W}\left(1 \mathrm{mmol}\right.$ in 10 mL of $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ is prepared as indicated above in a Schlenk flask (50 mL) and cooled to $-30^{\circ} \mathrm{C}$. To this is added acetone ($0.1 \mathrm{~mL}, 1.38 \mathrm{mmol}$). An immediate color change to red occurs, and stirring is continued for 3 h . Hexane (15 mL) is then added. The solution is cooled to $-78^{\circ} \mathrm{C}$ (Dry Ice) and stored overnight, giving a dark red precipitate. This is isolated by centrifugation and washed twice with 19 mL of hexane at $0^{\circ} \mathrm{C}$. Alternatively, the supernatant solution may be removed by a stainless steel cannula fitted with a sintered-glass frit. The solids are washed with two aliquots of cold $\left(0^{\circ} \mathrm{C}\right)$ hexane $(19 \mathrm{~mL})$, each removed by use of the stainless steel cannula fitted with the glass frit. The product is then dried for 6 h at $0^{\circ} \mathrm{C}$ on a high-vacuum line. Yield: $\mathrm{MoCp}(\mathrm{CO})_{3}\left(\mathrm{OC}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right)\left(\mathrm{BF}_{4}\right)} 350 \mathrm{mg}(90 \%)\right.$; $\mathrm{WCp}(\mathrm{CO})_{3}\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right]\left(\mathrm{BF}_{4}\right) 420 \mathrm{mg}(88 \%)$.

Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BF}_{4} \mathrm{MoO}_{4}$: C, 33.88; $\mathrm{H}, 2.84$. Found: C, 33.87; $\mathrm{H}, 2.85$. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BF}_{4} \mathrm{O}_{4}$ W: C, 27.65; H, 2.32. Found: C, 26.90; H, 2.45.

Similar acetone complexes can also be prepared from the PPh_{3} containing tetrafluoroborate complexes.

Properties

Solutions of the compounds in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or acetone decompose at $20^{\circ} \mathrm{C}$ within a short time, especially when traces of water are present. The solid compounds can be stored under argon at $-30^{\circ} \mathrm{C}$ for several weeks without decomposition.

IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v_{\mathrm{CO}}=2072,1987 \mathrm{~cm}^{-1}$ (Mo) IR (in Nujol): $v_{\mathrm{CO}}=2050$, $1930 \mathrm{~cm}^{-1}(\mathrm{~W}) ; v_{\mathrm{M}-\mathrm{O}=\mathrm{C}}=1660 \mathrm{~cm}^{-1}$ (Mo), $1640 \mathrm{~cm}^{-1}(\mathrm{~W}) .{ }^{1} \mathrm{H}$ NMR (in $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta_{\mathrm{C}_{5} \mathrm{H}_{5}}=6.11(\mathrm{Mo}), 6.19 \mathrm{ppm}(\mathrm{W}) ; \delta_{\mathrm{CH}_{3}}=2.39(\mathrm{Mo}), 2.43 \mathrm{ppm}(\mathrm{W})$.

References

1. (a) W. Beck and K. Schloter, Z. Naturforsch. Teil B, 33, 1214 (1978); (b) K. Sünkel, U. Nagel, and W. Beck, J. Organomet. Chem., 251, 227 (1983); (c) M. Appel, K. Schloter, J. Heidrich, and W. Beck, J. Organomet. Chem. 322, 77 (1987).
2. J. R. Sanders, J. Chem. Soc. Dalton Trans., 1972, 1333.
3. (a) R. B. King and F. G. A. Stone, Inorg. Synth., 7, 107 (1963). E. O. Fischer, Inorg. Synth. 7, 136 (1963); (b) R. B. King, Organometallic Syntheses, Vol. 1, Academic Press, New York, 1965, p. 156; (c) W. P. Fehlhammer, W. A. Herrmann, and G. K. Öfele, in Handbuch der Präparativen Anorganischen Chemie, Vol. 2, 3th ed., F. Enke Verlag, Stuttgart, 1981.
4. K. Sünkel, H. Ernst, and W. Beck, Z. Naturforsch. Teil B, 36, 474 (1980).
5. J. W. Faller and A. S. Anderson, J. Am. Chem. Soc., 92, 5852 (1970).
6. (a) A. R. Manning, J. Chem. Soc. A, 1968, 651; (b) M.J. Mays and S. M. Pearson, J. Chem. Soc. A, 1968, 2291.
7. (a) A. Bainbridge, P. J. Craig, and M. Green, J. Chem. Soc. A, 1968, 2715; (b) P. Kalck, R. Pince, R. Poilblanc, and J. Roussel, J. Organomet. Chem., 24, 445 (1970).
8. R. T. Markham, E. A. Dietz, Jr., and D. R. Martin, Inorg. Synth., 16, 153 (1976).
9. K. Sünkel, G. Urban, and W. Beck, J. Organomet. Chem., 252, 187 (1983); M. Appel and W. Beck, J. Organomet. Chem., 319, C1 (1987).
10. K. Sünkel, G. Urban, and W. Beck, J. Organomet. Chem., 290, 231 (1985).
11. K. Schloter and W. Beck, Z. Naturforsch. Teil B, 35, 985 (1980); G. Urban, K. Sünkel, and W. Beck, J. Organomet. Chem., 290, 329 (1985).
12. E. O. Fischer and K. Fichtel, Chem. Ber., 94, 1200 (1961).
13. M. Cousins and M. L. H. Green, J. Chem. Soc., 1963, 889.
14. M. Bottrill and M. Green, J. Chem. Soc. Dalton Trans., 1977, 2365.
15. P. L. Watson and R. G. Bergman, J. Am. Chem. Soc., 102, 2698 (1980).
16. J. W. Faller and H. H. Murray, J. Organomet. Chem., 172, 171 (1979).
17. K. Schloter, K. Sünkel and W. Beck, unpublished results.
18. K. Sünkel, U. Nagel, and W. Beck, J. Organomet. Chem., 222, 251 (1981).
19. S. R. Allen, P. K. Baker, S. G. Barnes, M. Green, L. Trollope, L. Manojlovic-Muir, and K. W. Muir, J. Chem. Soc. Dalton Trans., 1981, 873.

[^0]: *Institut für Anorganische Chemie der Universität München, Meiserstr. 1,8000 München 2, Federal Republic of Germany.
 \dagger Department of Chemistry, Rensselaer Polytechnic Institute, Troy, 12180-3590.
 \ddagger triphenylmethylium $=$ tritylium

[^1]: *See Section B.

[^2]: \dagger Commonly known as 1.2 -bis(diphenylphosphino)ethane.

