Plys. 30 820 f (23, 2

INTERNATIONALE VEREINIGUNG FÜR THEORETISCHE UND ANGEWANDTE LIMNOLOGIE

INTERNATIONAL ASSOCIATION

ASSOCIATION INTERNATIONALE DE LIMNOLOGIE THÉORIQUE ET APPLIQUÉE

VERHANDLUNGEN · PROCEEDINGS · TRAVAUX VOL 23

CONGRESS IN NEW ZEALAND 1987

ÉDITED FOR THE ASSOCIATION BY V. SLÁDEČEK

Part 2

World List abbreviation: Verh. int. Ver. Limnol. DIN 1502 Abkürzung: Verh. Internat, Verein, Limnol.

STUTTGART 1988 E. SCHWEIZERBART'SCHE VERLAGSBUCHHANDLUNG (Nägele J. OBERMILLER)

III. Lakes. 6. South America

FISHER, T. R., DOYLE, R. D. & PEELE, E. R.: Size-fractionated uptake and regeneration of am-	
monium and phosphate in a tropical lake	637
FURCH, K., JUNK, W. J. & CAMPOS, Z. E. S.: Release of major ions and nutrients by decompos-	
ing leaves of <i>Pseudobombax munguba</i> , a common tree in the Amazonian flood-plain	642
QUIROS, R.: Relationships between air temperature, depth, nutrients and chlorophyll in 103	
Argentinian lakes	647

III. Lakes. 7. Succession

MUNAWAR, M., MUNAWAR, I. F. & McCARTHY, L. H.: Seasonal succession of phytoplankton size assemblages and its ecological implications in the North American Great Lakes	659
CARNEY, H. J. & GOLDMAN, C. R.: Seasonal phytoplankton <i>r</i> - and <i>K</i> -selection in oligotrophic Lake Tahoe	672
SOLTAU KILHAM, S.: Phytoplankton responses to changes in mortality rate	677
REYNOLDS, C. S.: The concept of ecological succession applied to seasonal periodicity of freshwater phytoplankton	683
WILLÉN, E.: Abundance distribution models tested on phytoplankton in Swedish Lakes (Ab- stract)	692
ILMAVIRTA, V.: Acidic Lake Lakeenjärvi, Eastern Finland: Phytoplankton succession and wa- ter chemistry	693
GAWLER, M., BALVAY, G., BLANC, P., DRUART, JC. & PELLETIER, J. P.: Plankton ecology of Lake Geneva: a test of the PEG-model (Abstract)	699
STABEL, HH.: Algal control of elemental sedimentary fluxes in Lake Constance	700
SOMMER, U.: Does nutrient competition among phytoplankton occur <i>in situ</i>	707
of two Daphnia species	713
CHORUS, I. & WESSELER, E.: Response of the phytoplankton community to therapy meas- ures in a highly eutrophic urban lake (Schlachtensee, Berlin)	719
DE BERNARDI, R., GIUSSANI, G., MANCA, M. & RUGGIU, D.: Long-term dynamics of plankton communities in Lago Maggiore (N. Italy)	729
RICHERSON, P. J. & CARNEY, H. J.: Patterns of temporal variation in Lake Titicaca, a high altitude tropical lake. II. Succession rate and diversity of the phytoplankton	734

III. Lakes. 8. Mesocosms

McQUEEN, D. J. & POST, J. R.: Limnocorral studies of cascading trophic interaction	ons 739
CHANT, L., CORNETT, R. J. & RISTO, B.: Measuring contaminant transport be	tween water
and sediments using limnocorrals (Abstract)	
SMITH, D. W. & HORNE, A. J.: Experimental measurement of resource competit	
planktonic microalgae and macroalgae (seaweeds) in mesocosms simula	
Francisco Bay-Estuary, California (Abstract)	
SØBALLE, D. M. & THRELKELD, S. T.: Algal-clay flocculation in turbid waters: V	ariations due
to algal and mineral differences	
THRELKELD, S. T. & SøBALLE, D. M.: Effects of mineral turbidity on freshwa	
communities: three exploratory tank experiments of factorial design (Abs	tract) 755
RIJKEBOER, M. & GONS H. J .: The relationship between oxygen exchange and cl	hanges in ses-
ton in laboratory scale enclosures	
BLOESCH, J., BOSSARD, P., BÜHRER, H., BÜRGI, H. R. & UEHLINGER, U.: Can resu nocorral experiments be transferred to <i>in situ</i> conditions? (Biomanipulation) (Biomanipulati)	
corrals VI) (Abstract)	
KAWAI, T., MIYAMOTO, K., AOYAMA, K., UMEZAWA, Y. & OTSUKI, A.: Diurnal cha and DO by phytoplankton community during continuous acidification	
mental ponds	
YASUNO, M., HANASATO, T., IWAKUMA, T., TAKAMURA, K., UENO, R. & TAKAM	
fects of permethrin on phytoplankton and zooplankton in an enclosure a pond (Abstract)	ecosystem in
	Bayerische
	Staatsbibliothek
	Münshen

ETHEREDGE, M. K.: The influence of zooplankton grazing on the phytoplankton community	
structure of a humic and non-humic lake, Waikato, New Zealand	771

III. Lakes. 9. Models

ZIMMERMAN, M. J.: Modeling water quality in reservoir tailwaters	772
SEIP, K. L. & IBREKK, H.: Regression equations for lake management – how far do they go?	778
TJOMSLAND, T. & FAAFENG, B. A.: Application of the ecological model FINNECO to Lake	
Gjersjøen	786
Los, F. J. & BRINKMAN, J. J.: Phytoplankton modelling by means of optimization: A 10-year	
experience with BLOOM II	790
HAMM, A., REMETH, H. & SCHILLING, N.: Ecosystem model for a lake with high through-	
flow	796
KRAMBECK, HJ.: Partial destratification of eutrophic lakes: a tool for "ecosystem model-	
ling"	801
GABRIEL, W. & THOMAS, B.: The influence of food availability, predation risk, and metabolic	
costs on the evolutionary stability of diel vertical migration in zooplankton	807
Fukushima, T. & Muraoka, K.: Simple model to predict water quality in 90 Japanese lakes	812
RUTHERFORD, J. C.: Internal nitrogen and phosphorus loads in Lake Rotorua, New Zealand	828
MCBRIDE, G. B. & PRIDMORE, R. D.: Prediction of [chlorophyll-a] in impoundments of short	
hydraulic retention time: mixing effects	832

IV. Paleolimnology

SMOL, J. P.: Paleoclimate proxy data from freshwater arctic diatoms	837
RØEN, U.: Remains of early glacial Cladocera from North Greenland	845
BRUNSKILL, G. J. & LUDLAM, S. D.: The variation of annual ²¹⁰ Pb flux to varved sediments of	
Fayetteville Green Lake, New York from 1885 to 1965	848
DOUGLAS, M. S. V. & SMOL, J. P.: Siliceous protozan and chrysophycean microfossils from	
the recent sediments of <i>Sphagnum</i> dominated Lake Colden, N.Y., U.S.A	855
EINARSSON, Á. & HAFLIDASON, H.: Predictive paleolimnology: Effects of sediment dredging	
in Lake Mývatn, Iceland	860
HUTTUNEN, P., MERILÄINEN, J., COTTEN, C. & RÖNKKÖ, J.: Attempts to reconstruct lake wa-	
ter pH and colour from sedimentary diatoms and Cladocera	870
GUILIZZONI, P. & LAMI, A.: Sub-fossil pigments as a guide to the phytoplankton history of	
the acidified Lake Orta (N. Italy)	874
HORIE, S.: Process of paleolimnological study in Lake Biwa for 30 years	880
FUJI, N.: Paleovegetation and paleoclimate changes around Lake Biwa, Japan, during the last	
ca. 3 million years	882
OGURA, K.: Organic compounds in a Lake Biwa sediment core of 1400 m	887
ISHIWATARI, R.: Lignin compounds during the 0.6 million-year-old sediments of Lake Biwa	893
TAKAHASHI, S.: Paleoenvironment and fish life (Succession of limnetic feature of Lake Biwa	
by 1400 m drilling, No. 9)	897
NEWNHAM, R. G.: Pollen analysis of sediment cores, Lake Rotomanuka, North Island, New	
Zealand (Abstract)	900
LOWE, D. J.: Impulse radar and paleolimnology in New Zealand (Abstract)	901
HARPER, M.: Interglacial diatom floras from three sites in the North Island, New Zealand	
(Abstract)	902

V. Methods

PECK, D. V., BAKER, J. R. & HILLMAN, D. C.: An apparatus for determining the pH of dilute	
water samples (Abstract)	903
GOLTERMAN, H. L. & BOOMAN, A.: Sequential extraction of iron-phosphate and calcium-phos-	
phate from sediments by chelating agents	904
ANTONIETTI, R., VERONESI, S., FERRINI, C., TAROZZI, L. & PISI, R.: Liquid nitrogen pretreat-	
ment in ATP extraction from sediments	910
REUTER, J. E. & AXLER, R. P.: A comparison of methodologies used to measure nutrient up-	
take by periphyton	915
FOGG, G. E. & CALVARIO-MARTINEZ, O.: Effect of bottle size in determinations of primary	
productivity by phytoplankton (Abstract)	919
HARRIS, G. P., GRIFFITHS, F. B. & THOMAS, D. P.: Dark uptake and loss of ¹⁴ C (Abstract)	920

SøNDERGAARD, M.: Simultaneous measurements of carbon-14 and carbon-12 exchange in sub-	
merged macrophytes	921
NEVEUX, J.: Extraction of chlorophylls from marine phytoplankton	928
ERNST, D. E. W.: The kinetics of chlorophyll extraction from phytoplankton and a quick ex-	
traction method	933
COVENEY, M. F.: Fluorometric measurement of extracted chlorophyll pigments	938
OTSUKI, A. & TAKAMURA, N.: Comparison of chlorophyll-a concentrations measured by	
fluorometric HPLC and spectrophotometric methods in highly eutrophic shallow	
Lake Kasumigaura	944
JACOBSEN, T. R., RAI, H. & NUSCH, E. A.: The measurement of phytoplankton pigments in	
freshwater: Where do we go from here?	952
LHOTSKÝ, O. & MARVAN, P.: A standardized method of algal assay	957
GROEGER, A. W. & KIMMEL, B. L.: Relationship between photosynthetic and respiratory	
phytoplankton carbon metabolism (Abstract)	960

VI. Man-Made Lakes

961
968
976
985
995
1005
1006
1011
1011
1014
1015
1020
1022
1028

VII. Small Water Bodies and Wetlands

1032
1041
1049
1057
1063
1068
1074

TAIT, R. D.: Macroinvertebrate communities of Magela Creek billabongs, Northern Terri-	
tory, Australia	1080
CULVER, D. A.: Plankton ecology in fish hatchery ponds in Narrandera, NSW, Australia	1085

VIII. Underground Waters

GIBERT, J.: Functional sub-units of an exsurgence karstic system, and exchanges with the sur-	
face environment. Reflections on the characterization of natural aquatic groundwater	
ecosystems	1090

IX. Running Waters

LA PERRIERE, J. D., VAN NIEUWENHUYSE, E. E. & ANDERSON, P. R.: High subarctic Alaska	
Stream primary production (Abstract)	1097
Oswood, M. W.: Community structure of benthic invertebrates in interior Alaskan	
(U.S.A.) streams and rivers (Abstract)	1098
HULLAR, M. A. & VESTAL, J. R.: The effects of nutrient limitation and stream discharge on	
the epilithic microbial community in an oligotrophic arctic stream (Abstract)	1099
MILLER, M. C. & STOUT, J. R.: Variability of macroinvertebrate community composition in	
an arctic and a subarctic stream (Abstract)	1100
OGILVIE, G.: The effects of periphyton manipulations on the micro-distribution of grazing	
macroinvertebrates	1101
CUSHING, C. E.: Allochthonous detritus input to a small, cold desert spring-stream	1107
Stanford, J. A., Hauer, F. R. & Ward, J. V.: Serial discontinuity in a large river system	1114
Fox, M. G. & BEETON, A. M.: Phosphorus concentration trends in the Saline River water-	1117
	1110
shed, USA	1119
BURTON, T. M., ULRICH, K. E. & HAACK, S. K.: Community dynamics of bacteria, algae,	
and insects in a first order stream in New Hampshire, U.S.A.	1125
HEDIN, L. O., MAYER, M. S. & LIKENS, G. E.: The effect of deforestation on organic debris	
dams	1135
RESH, V. H., JACKSON, J. K. & MCELRAVY, E. P.: The use of long-term ecological data and se-	
quential decision plans in monitoring the impact of geothermal energy development	
on benthic macroinvertebrates	1142
BOTTORFF, R. L. & KNIGHT, A. W.: Functional organization of macroinvertebrate communi-	
ties in two first-order California streams: Comparison of perennial and intermittent	
flow conditions	1147
DUDLEY, T. L.: The roles of plant complexity and epiphyton in colonization of macrophytes	
by stream insects	1153
HOOPER, F. F. & OTTEY, D. R.: Responses of macroinvertebrates of two headwater streams	
to discharge fluctuations	1159
HAWKINS, C. P.: Effects of watershed vegetation and disturbance on invertebrate community	
structure in western Cascade streams: Implications for stream ecosystem theory	1167
WARD, J. V. & VOELZ, N. J.: Downstream effects of a large, deep-release, high mountain re-	110/
servoir on lotic zoobenthos	1174
BACHMANN, R. W., KORTGE, K. J. & ROBERTSON, T. E.: Primary production in a small agri-	11/4
cultural stream	1170
cultural stream	1179
FISHER, S. G. & GRIMM, N. B.: Disturbance as a determinant of structure in a Sonoran Desert	1107
stream ecosystem	1183
MULHOLLAND, P. J., MINEAR, R. A. & ELWOOD, J. W.: Production of soluble, high molecular	
weight phosphorus and its subsequent uptake by stream detritus	1190
ELWOOD, J. W., MULHOLLAND, P. J. & NEWBOLD, J. D.: Microbial activity and phosphorus	
uptake on decomposing leaf detritus in a heterotrophic stream	1198
BENKE, A. C. & MEYER, J. L.: Structure and function of a black-water river in the south-	
eastern U.S.A.	1209
LAMMERS, W. T.: Yearly flux of virus-like particles and humic acid in river sediment	1219
WALLACE, J. B., GURTZ, M. E. & SMITH-CUFFNEY, F.: Long-term comparisons of insect abun-	
dances in disturbed and undisturbed Appalachian headwater streams	1224
CUMMINS, K. W. & WILZBACH, M. A.: Do pathogens regulate stream invertebrate popula-	
tions?	1232
WILZBACH, M. A., CUMMINS, K. W. & KNAPP, R. A.: Toward a functional classification of	
stream invertebrate drift	1244
SWIFT, M. C., CUMMINS, K. W. & SMUCKER, R. A.: Effects of Dimilin on stream leaf-litter	
processing rates	1255
processing rates	1200

The influence of food availability, predation risk, and metabolic costs on the evolutionary stability of diel vertical migration in zooplankton

WILFRIED GABRIEL and BERNHARD THOMAS

With 3 figures in the text

Introduction

Diel vertical migration of zooplankton implies that during daytime the richer food resources of the upper water layers are not used and that egg developmental time is prolonged due to the lower temperature experienced by the animals. To find ultimate causes for the migratory behaviour, these two disadvantages have to be offset by fitness components that increase because of vertical migration. Several hypotheses have been proposed: metabolic advantages and better utilization of resources (McLAREN 1963 and 1974, KERFOOT 1970, ENRIGHT 1977, ENRIGHT & HONNEGER 1977), avoidance of starvation (GELLER 1986), and avoidance of visual predators (ZARET & SUFFERN 1976, WRIGHT et al. 1980). Field data (e.g. GLIWICZ 1986) support the predator evasion hypothesis.

In Lake Constance STICH & LAMPERT (1981) observed different migratory behaviour in two coexisting and morphologically very similar *Daphnia* species: one migrated but the other did not. Because they differed only slightly in reproductive and metabolic parameters (STICH & LAMPERT 1984), the conditions when vertical migration is an evolutionarily stable strategy must be evaluated. Doing so may determine whether the coexistence of these two strategies can be understood from a theoretical point of view. By modelling the interaction of algae, zooplankton, and predators and using evolutionary game theory, GABRIEL & THOMAS (1988) found that either vertical migration, no vertical migration, or a mixture of both strategies can all be evolutionarily stable. Using this general model we investigate the influence of food availability, predation risk, and metabolic costs on the favoured strategy.

The model

The data on diel vertical migration suggest that physical factors (day length, water temperature), biotic interactions (food availability, grazing rate, predation risk), and physiological constraints all may influence the choice of the optimal strategy and its evolutionary stability. Therefore, the model calculates the payoff difference between migrating and non-migrating animals depending on the following parameters: relative night length (T_n) in parts of 24 hours, algal density (A_o) in units of food concentration relative to the incipient limiting level (MCMAHON & RIGLER 1965), partial intrinsic growth rate (r_p) of the algae (intrinsic growth rate that would have to be applied in the absence of zooplankton), density (N) and maximal filtration rate (γ) of zooplankton (N and γ are normalized in a way that N γ is the corresponding intrinsic death rate of the algae), egg developmental time (τ_v in case of vertical migration and τ_s without migration), conversion efficiency of food into reproduction taking into account mortality caused by non-visual predators (β_v in case of vertical migration and β_s without migration), and predation risk (p as probability of being eaten in a time period of one day). GABRIEL & THOMAS (1988) calculated the payoff difference between the migratory and non-migratory strategies as a function of these parameters and the relative frequency $(= x_s)$ of non-migrating animals. Using these formulas (but putting $x_s = 1$) one can easily calculate the level of predation risk at which the payoffs are equal for both strategies:

 $p_{tol} = (a_d + a_n (1 - \beta_v w / \beta_s)) / (a_d (1 + 1.5 \tau_s) + a_n 1.5 \tau_s)$

with

$$\mathbf{w} = (1 + \beta_{v} \mathbf{a}_{n} \tau_{v}) / (1 + \beta_{v} \mathbf{a}_{n} \tau_{s})^{\tau_{v}} / \tau_{s}$$

and with a_d and a_n as the ingestion rates during day (d) and night (n). Below the incipient limiting level one gets

$$a_{d} = \gamma A_{o} [exp\{(r_{p} - \gamma x_{s}N)(1 - T_{n})\} - 1]/(r_{p} - \gamma x_{s}N)$$

$$a_{n} = A_{o} exp\{(r_{p} - \gamma x_{s}N)(1 - T_{n})\}[1 - exp\{-\gamma NT_{n}\}]/N$$

and above incipient level Alim

$$a_{d} = \gamma A_{lim}(1 - T_{n})$$
$$a_{n} = \gamma A_{lim}T_{n}.$$

We call this calculated predation level p_{tol} the tolerable predation risk. These results imply that at lower predation risks vertical migration is disfavoured, but at higher predation risks vertically migrating phenotypes can successfully invade the population and establish a stable portion of the population or, with further increasing predation risk, competitively exclude the non-migrating ones. Here we study the influence of the model parameters on the evolutionary stability of vertical migration in terms of this tolerable predation risk. If not indicated differently, the following parameter values are used: $A_o = 0.5$, $\gamma = 0.55$, $r_p = 0.35$, N = 1.0, $T_n = 0.4$, $\beta_s = 10.0$, $\beta_v = 11.0$, $\tau_s = 5.0$, $\tau_v = 10.0$.

Results and discussion

Any benefit for the non-migratory strategy increases the tolerable predation risk p_{tol} above which vertical migration is the favoured strategy, and, vice versa, any reduction in

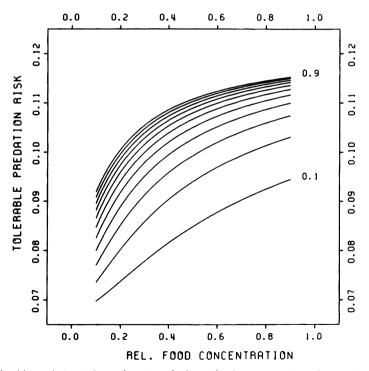


Fig. 1. Tolerable predation risk as a function of relative food concentration. The maximal filtration rate is varied from 0.1 to 0.9.

payoff for non-migration in relation to migration lowers p_{tol} . Therefore, the changes of the tolerable predation risk with variation of model parameters indicates whether the associated selective forces are in favour of vertical migration. Either an improved maximal filtration rate or an increased algal density (when below the incipient limiting level) lead to higher fitness due to enhanced reproductive output irrespective of the strategy chosen, but Fig. 1 shows that the profit for non-migrating animals is relatively higher than for migrating ones. Fig. 2 demonstrates that a change of the night length can increase or decrease the advantage of a strategy, dependent on the actual parameter values, but a higher partial algal growth rate always increases the relative payoff more for non-migrating than for migrating animals. Fig. 3 illustrates the influence of egg developmental time and the conversion efficiency of food uptake into reproduction. The longer the egg developmental time of migrating animals or the shorter the egg developmental time of nonmigrating ones, the higher is the tolerable predation risk. In the case of non-migration, it also easily follows from the equations that food conversion efficiency (β_s) is always positively correlated with the tolerable predation risk. However, for vertical migratiaon (β_{v}) the relationship between p_{tol} and β_v is more complicated, since the factor w is itself dependent on β_v (w corrects for the fact that fitness not only depends on total reproductive output within a time period but also on the frequency at which the reproduction occurs). For vertically migrating animals the advantage of the relative payoff due to increased food conversion efficiency is smaller as the egg developmental time is longer. The numer-

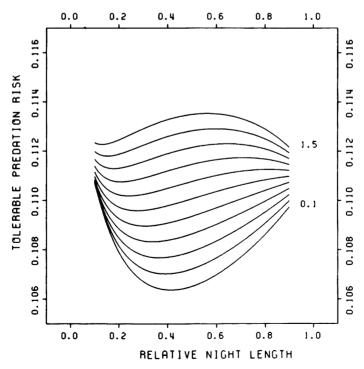


Fig. 2. Tolerable predation risk as a function of relative night length. The partial growth rate of algae is varied from 0.1 to 1.5.

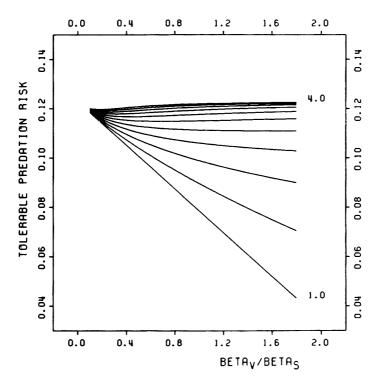


Fig. 3. Tolerable predation risk as a function of β_v/β_s , which is the ratio of the conversion efficiencies β of food into reproduction of migrating (v) and non-migrating (s) animals (β_s is kept fixed and β_v varies). The ratio of egg developmental time periods τ_v/τ_s is varied from 1.0 to 4.0 keeping τ_s fixed.

ical values of tolerable predation risks are of course dependent on the parameter values chosen, but the qualitative behaviour is independent of the parameter set. The tolerable predation risk increases with algal density and is maximal if β_v is small compared with β_s at high food concentrations. This maximal obtainable p_{tol} can be predicted from

$$\max(p_{tol}) = 1/(1 - T_n + 1.5 \tau_s)$$

The value of max(p_{tol}) is mainly a function of τ_s and is only slightly modified by T_n ($T_n < 1.0, \tau_s > 1.0$). One may also ask whether vertical migration could also be advantageous in the absence of visual predators in the upper water layers. This would be equivalent to $p_{tol} \leq 0$. Fig. 3 shows that even under quite equal temperature conditions for migrating and non-migrating animals ($\tau_s/\tau_v \cong 1$), this is possible only if vertical migration is accompanied by an enormous gain in efficiency of conversion of food into reproduction. Therefore, it is extremely unlikely that metabolic advantages by themselves are ultimate causes of vertical migration in zooplankton. The main selective force for vertical migration seems to be the reduction of mortality, but the tolerable level of predation risk is a function of food availability and metabolic parameters.

Acknowledgements

We thank ROBERT W. STERNER for improving the manuscript.

References

- ENRIGHT, J. T., 1977: Diurnal vertical migration: adaptive significance and timing. Part 1. Selective advantage: A metabolic model. Limnol. Oceanogr. 22: 856–872.
- ENRIGHT, J. T. & HONEGGER, H. W., 1977: Diurnal vertical migration: adaptive significance and timing. Part 2. Test of the model: Details of timing. – Limnol. Oceanogr. 22: 873–886.
- GABRIEL, W. & THOMAS, B., 1988: Vertical migration of zooplankton as an evolutionarily stable strategy. Amer. Natur. (in press).
- GELLER, W., 1986: Diurnal vertical migration of zooplankton in a temperate great lake (L. Constance): A starvation avoidance mechanism? – Arch. Hydrobiol./Suppl. 74: 1–60.
- GLIWICZ, M. Z., 1986: Predation and the evolution of vertical migration in zooplankton. Nature 320: 746–748.
- KERFOOT, W. B., 1970: Bioenergetics of vertical migration. Amer. Natur. 104: 529-546.
- MCLAREN, I. A., 1963: Effects of temperature on the growth of zooplankton and the adaptive value of vertical migration. J. Fish. Res. Bd. Can. 20: 685–727.
 - 1974: Demographic strategy of vertical migration by a marine copepod. Amer. Natur. 108: 91-102.
- McMAHON, J. W. & RIGLER, F. H., 1965: Feeding rate of *Daphnia magna* STRAUS in different foods labeled with radioactive phosphorus. *Limnol. Oceanogr.* 10: 105–113.
- STICH, H.-B. & LAMPERT, W., 1981: Predator evasion as an explanation of diurnal vertical migration by zooplankton. *Nature* 293: 396–398.
 - 1984: Growth and reproduction of migrating and non-migrating *Daphnia* species under simulated food and temperature conditions of diurnal vertical migration. – Oecologia 61: 192–196.
- WRIGHT, D., O'BRIEN, W. J. & VINGARD, G. L., 1980: Adaptive value of vertical migration: A simulation model argument for the predation hypothesis. In: W. C. KERFOOT (ed.), Evolution and ecology of zooplankton communities: 138—147. Univ. Press of New England, Hanover, New Hampshire.
- ZARET, T. M. & SUFFERN, J. S., 1976: Vertical migration in zooplankton as a predator avoidance mechanism. – Limnol. Oceanogr. 21: 804–813.

Authors' address:

Max Planck Institute for Limnology, Dept. of Physiological Ecology, Postfach 165, D-2320 Plön, West-Germany