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Overcoming food limitation by cannibalism: 
A model study on cyclopoids 

By W I L F R I E D G A B R I E L , Plön 

With 5 figures in the text 

Abstract 

Many cyclopoid copepods change their feeding habits during development. Young stages 
are herbivorous, whereas adults are carnivores or omnivores. A demographic model based on 
physiological parameters is developed to study the effect of cannibalism on the population 
dynamics of cyclopoids and their prey. If alternative prey are available and their potential 
growth rate is higher than the potential growth rate of the cyclopoids, the survival of predator 
and prey populations without cannibalism is guaranteed only if the prey population is above a 
critical density. Cannibalism allows the survival below this critical density independent of the 
actual age distribution and even prevents extinction at densities much below the critical point. 
Therefore, cannibalism is considered to be a stabilizing factor in predator-prey interactions 
during and after periods of food l imitation. 

Introduction 

Intraspecific predation is a widespread process (Fox 1975; Polis 1981). It in-
fluences the population dynamics of numerous species and may significantly affect 
the structure of many communities. 

Size and species composition of Zooplankton are considered to be correlated 
with the predators present (Lane 1978; Kerfoot 1980; Brandl & Fernando 1981). 
Therefore, a change in a predaceous behaviour, such as cannibalism triggered by food 
limitation, may be an important factor in structuring Zooplankton communities. 
Cyclopoid copepods are of special interest in this respect because of the switch in their 
feeding habit: nauplii are herbivorous, late copepodites and adults are carnivores. 
Cannibalism is observed in the field and in experiments(Fryer 1957; McQueen 1969; 
Graset al. 1971;Gophen 1977; Brandl & Fernando 1979;Landry 1981). Ithasbeen 
shown to be advantageous in cyclopoids in a constant environment (Gabriel & 
Lampert 1985), but its benefit may be much greater in a variable environment with 
fluctuating food conditions which can cause a sudden, dramatic shift in the relative 
abundances of predator and prey. For example, a depletion of algal food may cause 
a decrease in abundance of the prey population below a level, where the growth of 
the prey cannot compensate the predation pressure, even after reestablishment of 
good food conditions. Without cannibalism, the predacious C y c l o p s would eliminate 
its own prey, but also cannibalism implies the risk of self-extinction. The model 
presented is designed to study the impact of cannibalism around such critical 
situations. 

25 Archiv f. Hydrobiologie, Beih. 21 
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374 W. Gabriel 

Model description 
P o p u l a t i o n d y n a m i c s o f t h e c y c l o p o i d copepods 

Calculation of the population dynamics of the cyclopoids is based on physio-
logical data, field and laboratory observations taken from the literature (Brandl & 
Fernando 1975; Elgmork 1959; Gophen 1976, 1980; Jamieson 1980 a, b ; Peacock 
& Smyly 1983; Schober 1980; Smyly 1970, 1973; VijVerberg 1977, 1980; William-
son 1980). 

T o construct a representative cyclopoid copepod averaging across different 
species, temperatures, food conditions etc., all time scales are normalized by the 
age at maturity and all weights are expressed relative to the weight of adult females. 
Differences between males and females are considered only by a correction factor 
in the birth rate calculation. For given feeding rates, metabolic parameters and 
efficiencies, the time course of growth can be calculated. The carnivorous portion 
of the diet is assumed to be zero until the cyclopoids have grown to a certain weight 
(i. e. 15 % of the final weight) and then to increase linearly with weight so that the 
adults are obligate carnivores. 

As the onset of cannibalism can cause rapid and dramatic changes in the age-
structure of the population, the compartments have to be small enough to keep 
track of the dynamics. Using the instars as compartments is inadequate. I have 
verified that 40 age classes from birth until first reproduction are sufficient to 
describe the dynamics of the age structure without systematic errors for the applic-
ations presented. 

It can be unrealistic to describe a discontinuous process like predation by 
differential equations. Therefore, the changes in the abundances of the different age 
classes are modelied by difference equations, but the time step is variable and ad-
justed during calculation. Starvation is implemented by prolonging development in 
an age class, if the net production is positive, and by an additional mortality, if the 
food intake is lower than the metabolic requirement. 

Cannibals are known to prefer smaller prey. The data available, however, are 
not sufficient to determine the exact preference function. Fortunately, I have been 
able to prove that the general results of this study are independent of the preference 
structure used. For the data presented, the relative preference of prey is calculated 
from the length difference between the predaceous cyclopoid and the one eaten by 
assuming a Gaussian distribution around an optimal length difference. Thereby the 
age specific mortality under cannibalism and the birth rate are highly dependent on 
the actual population structure and on the food availability. The detailed mathematic-
al description of these problems is given elsewhere (Gabriel in prep.). 

I n t e r a c t i o n w i t h a l t e r n a t i v e p r e y p o p u l a t i o n s 

The special aim of this model is to establish the requirements necessary for the 
predator-prey-system to recover from critical situations where the probability of 
extinction is high. For this purpose the dynamics are studied only on a short time 
scale. Therefore, the interaction between cyclopoids and their alternative prey 
populations can be treated in a simple way by neglecting second order effects such 
as carrying capacities, time lags, internal structure of the alternative prey populations, 
and long term stability. 
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Let A represent the density of alternative prey populations in units of body 
weight of an adult of the cyclopoid population C . If r A describes the potential growth 
rate of A without the mortality caused by C , then the interaction between A and C 
can be regarded (in differential form) by 

( 1 ) — = r A A - g C , 
dt 

where the complex dynamics of C are calculated by the model described verbally 
above, and where g is the specific consumption rate of alternative prey by cyclo-

g= f N i f o U - K i ) 
i= 1 

index of cyclopoid age classes, 
number of age classes, 
relative food demand, 
carnivorous part of food demand, n 

relative frequency of an age class ( 2 Nj = 1), 
intensity of cannibalism. 1 = 1 

The intensity of cannibalism is zero for a population without cannibalism; other-
wise K [ is determined by A , C, and the internal structure of C . For the model it is 
assumed that the predator is notable to discriminate cyclopoids from the alternative 
prey: 

(3 a) Ki = a i C / ( A 4 - a i C ) , 

where ot{ gives the proportion of C available for interspecific predation: 

(3 b) c*i= £ Njw: 
j = l J J 

WJ = relative body weight of an animal of age class j compared to the weight 
of an adult. 

A p p r o x i m a t e c o n d i t i o n s f o r coexistence w i t h o u t c a n n i b a l i s m 

Without any food limitation cannibalism becomes negligible and the cyclopoids 
approach a stable age distribution. The corresponding intrinsic growth rate may be 
called the potential growth rate r^ of the cyclopoids. It is fully determined by the 
Parameters chosen for the representative copepod. By integration of ( l )under the 
assumptions of approximate time independence of r A , r*c, and g, which implies ex-
ponential growth of C so that in (1) C can be substituted by C = Co * exp(rct), 
one gets 

poids: 

(2) 

I 

n 

(1') A(t) = exp | r A } [gC(t 0 ) (exp { - ( r A - r c ) t | - l ) / ( r A - r c ) + A ( t 0 ) ] . 
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By asking for A(t) > 0, two necessary conditions for the coexistence of A and C can 
be derived. The first is trivial: 

(4) rA >r c ; 

the second is a relation between A and C at the starting point to 

(5) A ( t 0 ) > C ( t 0 ) g / ( r A - r c ) . 

Therefore, coexistence of the predacious cyclops and its prey can be expected in 
the absence of cannibalism only if the potential growth rate of the alternative prey 
population is higher than that of the cyclopoid copepods, and only if the relative 
abundance of the alternative prey population is above the value given by (5). The 
influence of cannibalism around this critical point will be discussed now by a local 
analysis. 

Results and discussion 

In unstable natural environments the potential intrinsic growth rates are time 
dependent. For that reason the approximate conditions (4) and (5) for coexistence 
are strictly valid only in idealized situations. To demonstrate the essential impact of 
cannibalism, however, it is useful to look at some isolated dynamic aspects locally. 
Therefore, r A is chosen as constant and is slightly greater than rc ( r A = 1-25 rc) 
allowing coexistence in principal. The constants rc and r A represent the potential 
growth rates under the local environmental conditions. The actual growth rates of 
A and C are time dependent even during a period of an unchanging environment; 
the actual growths rate of the cyclopoids can be smaller or greater than rc depending 
on the actual age structure and the magnitude of A . 

With this assumption, the alternative of allowing intraspecific predation or of 
avoiding cannibalism is studied under different starting conditions. 

Fig. 1 a and 1 b show the time courses of the C y c l o p s and its prey population. 
Bröken lines are drawn for the caseof cannibalism; solid lines give the corresponding 
population development when the predator does not cannibalize. The starting value 
of the prey population is 10 % above the critical value. The stable age distribution 
resulting from the potential growth rate is used as the starting age distribution of 
the cyclopoids, so that there is an exponential decrease in the abundance with age. 
As expected, the C y c l o p s population increases faster wiuiout cannibalism, and the 
prey population is less hindered by cannibalizing C y c l o p s . Predator and prey po­
pulations can grow in both cases. Of course, they do not grow exponentially to 
infinity, but for this local analysis it is sufficient to know whether the populations 
reach the exponential growth. 

In Fig. 2 a and 2 b the starting prey density is changed to 10 % below the critical 
value. In the beginning the non-cannibals do better, but then they consume all the 
prey and starve without any further reproduction. In contrast, the cannibals do not 
annihilate the alternative prey. In this instance, cannibalism secures the survival of 
predator and prey. When the prey density is in the critical region, the actual age 
distribution may have a dramatic influence. In Fig. 3 and 4 the starting exponential 
age distribution (~exp { — ba } ) with a = age) is varied lowering the exponent in 
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0 .0 1.2 2 . 4 0 .0 1.2 2 . 4 

1.2 
RELATIVE 

1.2 
R E L A T I V E 

Fig. 1 a, b . Comparisons of the time courses of the relative abundances of predator (a) and prey 
(b) for cannibalism allowed (broken lines) and with cannibalism not allowed (solid lines). The 
starting prey population is 10 % above the critical value. One relative time unit corresponds to 
the development time until maturity. 

0.0 1.2 2 . 4 0 .0 1.2 2 . 4 

0 .0 1.2 2 . 4 
R E L A T I V E TIME 

0 .0 1.2 2 . 4 
R E L A T I V E TIME 

Fig. 2 a, b . Same as Fig. 1 but with a starting prey population density 10 % below the critical 
value. 

Steps of 10 % starting with a value for b = b$ that corresponds to the stable age 
distribution with the potential growth rate. The starting prey population is set 30 % 
below the critical value. As b decreases (or equivalentiy the more older animals 
exist at the beginning), the first increase in the non-cannibals becomes steeper (Fig. 
3 a) but the survival time of the prey becomes shorter (Fig. 3 b). As the critical 
starting prey population is derived for a growing predator population with more 
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young than old animals, it can easily be shown that, if the age structure of the 
C y c l o p s is shifted to older animals, the populations are destroyed even at starting 
prey densities above the critical value. 

0.0 1.2 2.4 0 .0 1.2 2.4 

0 . 0 1.2 2.4 0 .0 1.2 2.4 
RELAT IVE TIME RELAT IVE TIME 

Fig. 3 a, b . Effect of different starting age distributions of the predator in case of avoiding canni­
balism. The exponent b of the starting age distribution is lowered in Steps of 10 % from b = b$ 
to b = 0.5 bs -The lines with the higher maximum abundances for both predator and prey belong 
to the higher b values (which is equivalent to more pronounced young animals in the age 
structure). 

Fig. 4 a, b . Effect o f different starting age distributions of the predator in case of cannibalism. 
The exponent b of the starting age distribution is lowered in Steps of 10 % from b = bg to b = 
— bg . The lines with the faster increase belong to the higher b values. 
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In the case of cannibalism the growth of predator (Fig. 4 a) and prey (Fig. 4 b) 
is retarded, but their coexistence is not imperilled when the starting age distribution 
is shifted. This is even true for populations with more old than young animals as 
demonstrated in Fig. 4 where b ranges from b = b$ to b = — b$-

This shows that cannibalism leads to a high robustness in relation to perturb-
ations in the age structure of the predator, whereas the survival of the non-cannibals 
is highly dependent of the actual age structure. 

0 10 20 o 10 20 

RELAT IVE TIME RELAT IVE TIME 

Fig. 5 a, b , c, d . Tolerance to lowering the starting prey density under cannibalism. Effects on 
the average relative body weight (a), the average intensity o f cannibalism (= part of carnivorous 
food gained by cannibalism) (b), and the population size of predator (c) and prey (d). The 
starting prey population is 5, 10, 15, 20, 25, 30, 35, and 40 times lower than the critical value. 
The lower the starting prey density, the later the population approaches to the common limit 
value (a, b) or increases (c, d). 
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Another quantity of interest is the minimum prey density necessary for the 
preservation of the predator-prey System. In Fig. 5 the starting prey population is 
below the critical value by factors of 5, 10, 15, 20, 25, 30, 35, and 40. Not until 
the starting prey population is more than 35 times lower than the critical value does 
cannibalism become unable to compensate for the predation pressure. To de-
monstrate the dynamics, the time course of the average body weight of the pre-
dators (Fig. 5 a), the part of carnivorous food gained by cannibalism (= average 
intensity of cannibalism) (Fig. 5 b) ,and the predator (Fig. 5 c) and prey populations 
(Fig. 5 d) are illustrated. The average body weight (Fig. 5 a) initially oscillates around 
a value above the equilibrium value corresponding to the stable age distribution. 
The equilibrium is reached later for lower starting prey populations. The average 
intensity of cannibalism also converges to zero more slowly for smaller starting prey 
populations. Only for the prey density starting 40 times below the critical value is 
the growth of the prey insufficient to reduce the intensity of cannibalism. The time 
courses of predator (Fig. 5 c) and prey (Fig. 5 d) show how after more or less pro-
nounced and extended reductions in population sizes the whole System grows ex-
ponentially, which means for this local analysis that the System recovers from the 
dangerous Situation. 

The benefit of cannibalism is demonstrated by the higher resilience of the pre­
dator around the critical prey density and, in particular, by the maintenance of co­
existence at prey densities much below the critical value. The small disadvantage of 
cannibalism under good food conditions is likely to be more than compensated for 
by the advantage during periods of food limitation, so that cannibalism can be ex­
pected to be an evolutionarily stable strategy in fluctuating environments. With its 
self-regulatory and stabilizing capabilities, cannibalism has to be considered a power-
full strategy for predators to overcome periods of food limitation. It may be an 
especially important factor in structuring Zooplankton communities. 
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Species Index 

A c a r t i a c l a u s i 2 8 - 2 9 , 2 2 3 - 2 2 5 , 227 -229 , 
243, 410, 416 

- b u d s o n i c a 4 0 8 - 4 1 2 , 4 1 5 - 4 1 6 
- s t e u e r i 28, 416 
- t o n s a 28, 235-244,305, 4 0 8 - 4 1 6 
A c h n a n t h e s sp. 162, 166 
A c r o c a l a n u s i n e r m i s 28 
Aedes sp. 462 
Aerobacter aerogenes 125 — 132 
Anabaena sp. 335, 341-342 , 346, 349 
A n g u i l l a a n g u i l l a 343 
A n k i s t r o d e s m u s b r a u n i i 163-166 , 169 
A n k y r a j u d a i 344 
A n u r a e o p s i s fissa 98 
A p b a n i z o m e n o n flos-aquae 97 
Apbanocapsa sp. 433, 439 
Apbanotbece sp. 163, 166, 169, 439 
A r e t o d i a p t o m u s spinosus 278—282 
A r t e m i a s a l i n a 263 
A s p l a n c b n a b r i g b t w e l l i 185-191 
- i n t e r m e d i a 185, 188 
- p r i o d o n t a 2 7 0 - 2 7 4 
- sieboldi 185-188 
- s i l v e s t r i i 185-191 
A s t e r i o n e l l a formosa 162, 165-166 , 169, 346, 

386 
Asterococcus sp. 433, 4 3 9 - 4 4 3 

Boeckella d i l a t a t a 2 9 7 - 3 0 7 
- bamata 2 9 7 - 3 0 7 
- o c c i d e n t a l i s 147, 150 -158 
- s y m m e t r i c a 299 
- t i t i c a c a e 147, 150-158 
- t r i a r t i c u l a t a 2 9 7 - 3 0 7 
B o s m i n a coregoni 101, 147, 150-152 , 158, 

3 2 3 - 3 3 1 , 363-367 , 420, 4 5 3 - 4 5 8 
- l o n g i r o s t r i s 95, 101, 126-133 , 158, 3 9 8 -

401, 4 2 6 - 4 2 8 , 432, 434, 4 3 9 - 4 4 5 , 4 4 8 -
449, 4 5 3 - 4 5 8 , 486, 488 

- l o n g i s p i n a 343, 349 
- o b t u s i r o s t r i s 462 
- sp. 91, 9 5 - 1 0 1 , 125-126 , 281, 400 
Botryococcus b r a u n i i 163-165 
B r a c b i o n u s c a l y c i f l o r u s 270—272, 453 

C a e n o r b a b d i t i s briggsae 283 
C a l a n u s f i n m a r e b i c u s 5, 10—11, 3 3 - 3 9 , 61, 

214 
- h e l g o l a n d i c u s 262, 265, 281 
- byperboreus 212, 226 
- marsballae 2 1 4 - 2 1 5 

- paeificus 1 -10 , 2 8 - 2 9 , 35, 38, 4 1 - 5 3 . 
209-219 , 224-226 , 231, 243, 282, 305 

- sp. 212-214 , 224 
Centropages sp. 61, 224 
- t y p i c u s 28, 117, 243 
C e r a t i u m b i r u d i n e l l a 99 
- sp. 335 
C e r i a n t b i o p s i s a m e r i c a n u s 416 
C e r i o d a p b n i a l a c u s t r i s 335 — 338 
- q u a d r a n g u l a 147-158, 486, 488 
- r e t i c u l a t a 127-128 , 365-367 , 398 -399 
- sp. 99, 101, 126, 4 0 0 - 4 0 1 , 4 2 6 - 4 2 8 
Cbaoborus f l a v i c a n s 392-393 
- t r i v i t t a t u s 4 8 3 - 4 9 0 
Cbirocepbalus g r u b e i 462 
C h l a m y d o m o n a s r e i n b a r d i i 126-127 , 1 3 0 -

133, 299, 466 
- sp. 125, 278, 281, 344, 433, 435 
C h l o r e l l a p y r e n o i d o s a 299, 386 
- s o r o k i n i a n a 148—158 
- sp. 95, 147, 199-206, 299, 389 
- v u l g a r i s 278, 281 
Chroococcus l i m n e t i c u s 162, 165 
- sp. 404, 433, 439, 4 4 0 - 4 4 3 
C h y d o r u s spbaericus 98, 101, 1 2 5 - 1 3 2 , 4 2 0 
Cocconeis p e d i c u l u s 163 
C o e l a s t r u m sp. 439 
Coelospbaerium k u e t z i n g i a n u m 162, 165 
C o s m a r i u m b o t r y t i s 163-165 
- sp. 439 
C r u c i g e n i a sp. 433, 4 3 9 - 4 4 0 
C r y p t o m o n a s c u r v a t a 83 
- erosa 85, 344 
- erosa r e f l e x a 270 
- m a r s s o n i i 344 
- o v a t a 187 
- r a s t i f o r m i s 83 
- sp. 8 2 - 8 4 , 186, 349, 433 
C y c l o p s a b y s s o r u m t a t r i c u s 423—425 
- s c u t i f e r 343 
- sp. 373, 376, 422, 481 
- s t r e n u u s 462 
- v i c i n u s 392 
C y c l o t e l l a bodanica 162 
- c o m p t a 162 
- g l o m e r a t a 163 
- ocellata 166 
- p s e u d o s t e l l i g e r a 163 
- sp. 165-169 
- s t e l l a t a 162 
C y m b e l l a a f f i n i s 162, 166 
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D a p h n i a a m b i g u a 170, 465—472 
- a t k i n s o n i 463 
- catawba 170 
- c u c u l l a t a 101, 137-138 , 3 2 3 - 3 3 1 , 365, 

367, 4 2 0 - 4 2 1 
- c u r v i r o s t r i s 137-138 , 193-197 , 462 
- galeata 67, 7 0 - 7 7 , 137-138 , 140-141 , 

161-170 , 200, 313, 3 2 3 - 3 3 1 , 392-393 , 
432, 439 

- galeata mendotae 75, 128, 170, 335-338 , 
435, 445, 458 

- h y a l i n a 6 7 , 7 0 - 7 7 , 8 2 - 8 7 , 101, 137-138 , 
200, 313, 347, 365, 367, 383-386 , 3 8 9 -
390, 4 2 0 - 4 2 1 

- l o n g i r e m i s 143 
- l o n g i s p i n a 137-138 , 341 -349 , 365, 367, 

4 6 2 - 4 6 3 
- l u m h o l t z i 4 2 6 - 4 2 8 
- m a g n a 82, 137 -141 , 199 -205 , 265, 3 6 5 -

367, 463 
- m i d d e n d o r f f i a n a 143 
- obtusa 193-197 , 4 6 2 - 4 6 3 
- p a r v u l a 335 -338 
- p u l e x 82, 84, 137-138 , 143, 147-158 , 

1 9 3 - 1 9 9 , 2 8 5 - 2 9 5 , 301, 365, 367, 432 
- p u l i c a r i a 8 1 - 8 8 , 127-133 , 137-138 , 

1 6 1 - 1 7 0 , 193-197 , 2 8 5 - 2 9 5 , 335-338 , 
4 2 2 - 4 2 5 , 4 3 1 - 4 3 2 , 4 3 5 - 4 4 5 , 448, 457, 
4 6 2 - 4 6 3 

- rosea 128, 133, 432, 4 3 5 - 4 3 9 , 4 4 2 - 4 4 5 , 
448, 4 5 7 - 4 7 3 , 4 8 3 - 4 8 9 

- schoedleri 75 
- s i m i l i s 463 
- sp. 6 7 - 7 7 , 81, 88, 91, 99, 101, 122-126 , 

129, 135, 165, 170, 281, 311 -319 , 333, 
341, 361, 363, 4 3 4 - 4 3 5 , 4 4 6 - 4 4 9 , 453, 
4 6 1 - 4 6 3 , 475, 4 7 7 - 4 8 1 

- t h o r a t a 8 1 - 8 8 , 161-163 
D i a c y c l o p s t h o m a s i 484 
D i a p h a n o s o m a b r a c h y u r u m 126—133, 323 — 

331, 343, 349, 363-367 , 398 -399 , 420, 
4 3 2 - 4 3 4 , 4 3 6 - 4 4 9 , 4 6 5 - 4 7 2 , 486, 488 

- e x c i s u m 4 2 6 - 4 2 8 
- l e u c h t e n b e r g h i a n u m 161-170 , 335 -336 
- sp. 99, 101, 125-126 , 400, 457 
D i a p t o m u s a s h l a n d i 161-170 , 475, 4 7 7 - 4 8 1 
- castor 462 
- d o r s a l i s 299 
- kenai 484, 486, 488 
- l e p t o p u s 486, 488 
- s i c i l i s 117-119 
- sp. 157 
D i a t o m a e l o n g a t u m 163, 169 
- sp. 165-167 
- v u l g a r e 162 
D i n o b r y o n sp. 163, 433, 4 3 9 - 4 4 2 
D i p l o n e i s s m i t h i 163 
D i t y l u m b r i g h t w e l l i 43 

E l m i n i u s modestus 265 
E p i s c h u r a sp. 481 
E p i t h e m i a t u r g i d a 163 
E s c h e r i c h i a c o l i 2 5 9 - 2 6 0 . 299 
E u b o s m i n a t u b i c e n 465 
E u c a l a n u s a t t e n u a t u s 117 
- crassus 117 
- e l o n g a t u s 115-122 
- p i l e a t u s 116, 118 
E u d i a p t o m u s g r a c i l i s 91 , 101, 311 -319 . 343, 

383, 386, 392 
- g r a c i l o i d e s 306 
E u p h a u s i a p a c i f i c a 262 

F r a g i l l a r i a c o n s t r u e n s 163 
- c r o t o n e n s i s 163, 169 
- sp. 165-168 

Gasterosteus aculeatus 343 
Gloeocystis sp. 163 
Gomphonema sp. 162 
Gomphosphaeria sp. 165 
G y m n o d i n i u m splendens 262 
G y r o s i g m a sp. 163 

H o l o p e d i u m g i b b e r u m 4 2 3 - 4 2 5 , 486, 488 

I s o c h r y s i s galbana 43 

K e l l i c o t t i a l o n g i s p i n a 274, 486 
K e r a t e l l a cochlearis 98, 270-274 , 4 8 5 - 4 8 6 
- e a r l i n a e 2 7 0 - 2 7 2 

L e p i d u r u s apus 462 
L e p t o d o r a sp. 481 
L i m n o t h r i s s a m i o d o n 426 
L y n g b y a l i m n e t i c a 97 

M a c r o c y c l o p s a l b i d u s 387 
M a l l o m o n a s akrokomos 162 
M e l o s i r a a m b i g u a 163 
- d i s t a n s 162 
- i t a l i c a 1 6 3 - 1 7 0 
- i t a l i c a t e n u i s s i m a 163, 170 
- sp. 167 -168 
- v a r i a n s 162 
Mesocyclops edax 432 
- l e u c k a r t i 4 2 6 - 4 2 8 
M e t r i d i a lucens 248 
M i c r o c y c l o p s sp. 147, 151-153 
M i c r o c y s t i s a e r u g i n o s a 163 
M i r o g r e x sp. 404 
M a i n a b r u c h i a t a 365, 367 
- macropoda 365, 367 
- r e c t i r o s t r i s 365, 367 
M o n o c h l o n y x sp. 462 
M o n o r a p h i d i u m sp. 344, 346, 349 
M o u g e o t i a sp. 68, 439 
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N a n n o c b l o r i s o c u l a t a 125-133 
N a v i c u l a c r y p t o c e p b a l a 162, 166 
Neocalanus c r i s t a t u s 118, 121 
- p l u m c b r u s 118, 121, 2 4 7 - 2 5 3 
N i t z s c h i a a c i c u l a r i s 162 

O i t h o n a c o l c a r v a 412-417 
O n c o r b y n c b u s n e r k a 263 
O o c y s t i s l a c u s t r i s 163-166 
- p a r v a 163 
- p u s i l l a 162 
- sp. 165-170 , 433, 4 3 9 - 4 4 3 
O r e s t i a s sp. 158 
O s c i l l a t o r i a a g a r d b i i 97 
- redekei 97 
- sp. 480 

P a r a c a l a n u s p a r v u s 28, 105-109 , 120, 2 6 5 -
305 

- sp. 117-118 
P a r a m e c i u m a u r e l i a 186-191 
- c a u d a t u m 387 
P e d i a s t r u m sp. 439 -443 
P e r i d i n i u m sp. 398, 401 -402 
P b y l l o d i a p t o m u s annae 2 7 8 - 2 8 2 
P l a n k t o s p b a e r i a sp. 433, 4 3 9 - 4 4 3 
P l e u r o m a m m a sp. 224 
P o l y p b e m u s p e d i c u l u s 423 
Pseudocalanus e l o n g a t u s 3 - 6 , 10—11, 16, 27, 

263-265 
- m i n u t u s 10, 61, 223, 227, 305 
- sp. 1 -11 , 15-29 , 2 2 8 - 2 3 1 , 282 
P s e u d o d i a p t o m u s c o r o n a t u s 412—417 

Q u a d r i g u l a sp. 433, 439 -443 

R b i z o s o l e n i a a l a t a 118-120 
Rbodomonas l a c u s t r i s 344—346, 349 
- m i n u t a 270 
- sp. 68, 433 

Saccharomyces cerevisiae 194—195, 299 
Salmo g a i r d n e r i 343 
- salar 342 
- t r u t t a 343 
S a l v e l i n u s a l p i n u s 425 
- f o n t i n a l i s 425 
Scenedesmus a c u t u s 8 2 - 8 7 , 135-143 , 278, 

286, 313-317,320 

- b r e s s i l i e n s i s 278 
- o b l i q u u s 193-195 
- q u a d r i c a u d a 384—386 
- sp. 281, 433, 4 3 9 - 4 4 4 
S e r r a t i a marcescens 299 
S i d a c r y s t a l l i n a 125-131 , 135-144 
Simocephalus s e r r a t u l u s 126—131 
- v e t u l u s 135-138, 143-144 , 365, 367 
S k i s t o d i a p t o m u s oregonensis 306 
Sphaerocystis scbroeteri 163-169 
- sp. 433, 439 -443 
S t a u r a s t r u m p a r a d o x u m 162 
- p l a n e t o n i c u m 313-314 
- p s e u d o c u s p i d a t u m 162 
- sp. 166 
Stephanodiscus astraea 163-166, 170 
- astraea m i n u t u l a 163 
- b a n t z s c h i i 162, 164 
- n i a g a r a e 163-166 
- sp. 165-169 
Stichococcus m i n u t i s s i m u s 313 — 314 
Syncbaeta oblonga 185-191 
Synecbococcus e l o n g a t u s 135-144 
- leopoliensis 386 
S y n e d r a acus 163 
- c y c l o p u m 163 
- d e l i c a t i s s i m a 163 
- r u m p e n s 162, 404 
- sp. 166, 169, 439 

T a b e l l a r i a f e n e s t r a t a 163-170 
- sp. 346 
T e m o r a l o n g i c o r n i s 263 — 264 
- sp. 61, 109-111 
- s t y l i f e r a 117 
- t u r b i n a t a 249 
T e t r a e d r o n m i n i m u m 163 
T b a l a s s i o s i r a a n g s t i i 6 
- ex c e n t r i c a 119 
- ßuviatilis 238 -240 , 244, 262 
- r o t u l a 264 
- weissßogii 2 - 6 , 34, 43, 116-122, 2 1 3 -

217, 239, 247 -248 
T r o p o c y c l o p s p r a s i n u s 432 

U n d i n u l a v u l g a r i s 247 

V o l v o x sp. 335 
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