INTERNATIONALE VEREINIGUNG

Phys. sp. 820 7 (22, 5)

FÜR THEORETISCHE UND ANGEWANDTE LIMNOLOGIE

INTERNATIONAL ASSOCIATION OF THEORETICAL AND APPLIED LIMNOLOGY

ASSOCIATION INTERNATIONALE DE LIMNOLOGIE THÉORIQUE ET APPLIQUÉE

VERHANDLUNGEN : PROCEEDINGS - TRAVAUX

CONGRESS IN FRANCE 1983

EDITED FOR THE ASSOCIATION BY

Part 5

World List abbreviation: Verh. Int. Ver. Limnol. DIN 1502 Abkürzung: Verh. Internat. Verein. Limnol.

STUTTGART 1985 E. SCHWEIZERBART'SCHE VERLAGSBUCHHANDLUNG (Nägele u. Obermiller)

XIII. Ecology of Aquatic Organisms. 1. Microbes (continued)

KATO, K.: A concept on the structure and function of bacterial community in aquatic eco-	
Sjotems	2739
OCHIAI, M. & NAKAJIMA, T.: Decomposition of organic matter extracted from sessile mi- crobes	2744
WISSMAR, R. C., LILLEY, M. D. & ANGELIS, M. DE: Nitrification and the inhibition of nitrite	
onidation by childrate ministrate seaments in the internet in the	2749
	2754
HOLDER-FRANKLIN, M. A.: Mathematical methods for revealing the influence of the environ-	
ment on river bacteria	2761
ANTONIETTI, R.: The measure of ATP flows in microbial communities: First results	2768
STÖCKLI, A.: The role of bacteria and algae in phosphorus regeneration using linked contin-	
uous cultures	2773
WOOD-EGGENSCHWILER, S. & BÄRLOCHER, F.: Geographical distribution of Ingoldian fungi	2780
ROSSET, J. & BÄRLOCHER, F.: Transplant experiments with aquatic hyphomycetes	2786

XIII. Ecology of Aquatic Organisms. 2. Algae and Other Plants

KLEMER, A. R., PIERSON, D. C. & WHITESIDE, M. C.: Blue-green algal (cyanobacterial) nutri-	
tion, buoyancy and bloom formation	2791
WARD, A. K.: Factors affecting distribution of <i>Nostoc</i> in Cascade Mountain streams of Western Oregon, U.S.A.	2799
CASANOVA, J. & LAFONT, R.: Les cyanophycées encroûtantes des eaux courantes du Var	
(France)	2805
MELVASALO, T. & NIEMI, Å.: The fixation of molecular nitrogen by blue-green algae in the	
open Baltic Sea	2811
AHLGREN, G.: Growth of Microcystis wesenbergii in batch and chemostat cultures	2813
KAPPERS, F. I.: Growth kinetics of the cyanobacterium Microcystis aeruginosa	2821
ZEVENBOOM, W., LATUHIHIN, M. J. & MUR, L. R.: Diel-periodicity in photosynthesis of cya-	
nobacteria in continuous cultures and the role of carbohydrates (Abstract)	2825
KRISTIANSEN, J.: Occurrence of scale-bearing Chrysophyceae in a eutrophic Danish lake	2826
FALKOWSKI, P. G., DUBINSKY, Z. & SANTOSTEFANO, G.: Light-enhanced dark respiration in	
phytoplankton	2830
KADLUBOWSKA, J. Z.: Untersuchungen der Stetigkeit der Diatomeengesellschaften aus der	
Salzquelle, den Limnokrenen und dem Moortümpel	2834
YOSHITAKE, S. & FUKUSHIMA, H.: Interrelation between epilithic or drifting algae and algae	
contained in the digestive tracts of some aquatic insects	2838
HICKEL, B.: The population structure of <i>Ceratium</i> in a small eutrophic lake	2845
BERMAN, T. & DUBINSKY, Z.: The autecology of Peridinium cinctum fa. westii from Lake Kin-	
neret	2850
HAPPEY-WOOD, C. M.: Growth characteristics of micro-green algae	2855
LEHMAN, J. T.: Cell quotas of nutrients in phytoplankton established by X-ray analysis	2861
OLSEN, Y., JENSEN, A. & REINERTSEN, H.: ATP changes in P-starved algae as a measure of	
P-deficiency and the growth rate	2866
ROSEMARIN, A. S.: Reproductive strategy in the filamentous green alga Cladophora glomerata	
(L.) Kütz. — an explanation for its widespread distribution	2872
HILLEBRAND, H.: Growth control of filamentous algae by light and temperature (Abstract)	2878
GUERLESQUIN, M.: Bilan et répartition de la flore des Charophycées dans les Antilles	2879
LHOTSKÝ, O.: The time factor in the evaluation of algal communities	2885
FLIK, B. J. G.: Measurements of time dependent inhibition and recovery of a laboratory cul-	
ture of <i>Chlorella</i> sp. at various light intensities	2888
JENSEN, L. M., JØRGENSEN, N. O. G. & SØNDERGAARD, M.: Specific activity. Significance in	
estimating release rates of extracellular dissolved organic carbon (EOC) by algae	2893

173 Verh. Internat. Verein. Limnol. Bd. 22

XX

BROBERG, B.: Biological availability of different fractions of dissolved phosphorus in two na-	
tural waters: Algal assay experiments	2898
KAIRESALO, T., KOSKIMIES, I., LEHTOVAARA, A. & VÄHÄ-PIIKKIÖ, I.: Consequences of fertiliza- tion within a littoral <i>Equisetum fluviatile</i> L. stand in Lake Pääjärvi, southern Finland	2904
KEELEY, J. E.: The role of CAM in the carbon economy of the submerged-aquatic <i>Isoetes howellii</i>	2909
BALLS, H., Moss, B. & IRVINE, K.: The effects of high nutrient loading on interactions be- tween aquatic plants and phytoplankton	2912
BOAR, R. R. & CROOK, C. E.: Investigations into the causes of reedswamp regression in the Norfolk Broads	2916
RØRSLETT, B., BERGE, D. & JOHANSEN, S. W.: Mass invasion of <i>Elodea canadensis</i> in a mesotro-	
phic, South Norwegian lake — impact on water quality RØRSLETT, B.: Regulation impact on submerged macrophytes in the oligotrophic lakes of Se-	2920
tesdal, South Norway	2927
VELDE, G. VAN DER & HEIJDEN, L. A. VAN DER: Initial decomposition of floating leaves in Nymphoides peltata (GMEL.) O. KUNTZE (Menyanthaceae) in relation to their age, with	
special attention to the role of herbivores	2937
BROCK, T. C. M.: Aspects of production and decomposition of Nymphoides peltata (GMEL.)	
O. KUNTZE (Menyanthaceae) (Abstract) GALANTI, G. & GUILIZZONI, P.: Nutrient uptake by a floating-leaved aquatic plant (<i>Trapa na</i> -	2942
<i>tans</i> L.)	2943
LACHAVANNE, JB., JUGE, R., NOETZLIN, A. & PERFETTA, J.: Ecological and chorological study of Swiss lake aquatic plants: A basic method to determine the bioindicator value of	
species	2947
LACHAVANNE, JB.: The influence of accelerated eutrophication on the macrophytes of Swiss lakes: Abundance and distribution	2950
GRANÉLI, W.: Biomass response after nutrient addition to natural stands of reed, <i>Phragmites</i>	2750
australis	2956
PRINS, H. B. A. & ZANSTRA, P. E.: Bicarbonate assimilation in aquatic angiosperms. Signifi- cance of the apoplast and unstirred layer	2962

XIII. Ecology of Aquatic Organisms. 3. Animals

KONOPACKA, A. & SICIŃSKI, J.: Macrofauna inhabiting the colonies of the sponge Spongilla la- custris (L.) in the River Gać	2968
HERRMANN, J.: Reproductive strategies in <i>Dendrocoelum lacteum</i> (Turbellaria) — comparisons between Swedish and British populations	2974
RUTTNER-KOLISKO, A.: Results of individual cross-mating experiments in three distinct strains of <i>Brachionus plicatilis</i> (Rotatoria)	2979
HOFMANN, W.: Dynamics of vertical zooplankton community structure in the Plußsee: Cluster analysis	2983
MAY, L.: The use of procaine hydrochloride in the preparation of rotifer samples for count- ing	2987
SERRA, M. & MIRACLE, M. R.: Enzyme polymorphism in <i>Brachionus plicatilis</i> populations from several Spanish lagoons	2991
GILBERT, J. J. & STEMBERGER, R. S.: Prey capture in the rotifer Asplanchna girodi STENSON, J. A. E.: Interactions between pelagic metazoan and protozoan zooplankton: an	2997
experimental study (Abstract) Clément, P., Luciani, A., Cornillac, A., Chassé, J. L., Coulon, P. Y., Charras, J. P.,	3001
NOUGARET, M. & FOURNIER, A.: Un système de trajectographie automatique pour étu- dier la nage d'animaux planctoniques (Rotifères, miracidiums de Plathelminthes etc.) .	3002
WALZ, N.: Continuous culture of pelagic rotifers (Abstract)	3007
plankton community after lime treatment of an acidified lake Schiemer, F.: Bioenergetic niche differentiation of aquatic invertebrates	3008 3014
LAFONT, M. & JUGET, J.: Les Oligochètes de quelques lacs français: propositions en vue de leur utilisation pratique pour apprécier l'état biologique des sédiments profonds	3019
······································	

XXI

THIERY, A.: Ponte et ultrastructure de l'oeuf chez <i>Triops granarius</i> LUCAS (Crustacea, No- tostraca): adaptations à l'assèchement de l'habitat	3024
pools (Abstract)	3029
three species of <i>Daphnia</i> on <i>Scenedesmus</i> population growth and on selected environ- mental parameters	3030
BERNARDI, R. DE, GIUSSANI, G., PEDRETTI, E. L. & RUFFONI, T.: Population dynamics of pela- gic cladocerans in three lakes with different trophy	3035
 KERSTING, K.: Properties of an aquatic micro-ecosystem. V. Ten years of observations of the prototype INFANTE, A. & LITT, A. H.: A comparison of the nutritive value of some algae for <i>Daphnia</i> in 	3040
Lake Washington (Abstract) TAYLOR, B. E. & GABRIEL, W.: Reproductive strategies of two similar <i>Daphnia</i> species	3046 3047
JENSEN, J. W.: The morphology and ecology of coexisting <i>Daphnia galeata galeata SARS</i> and <i>Daphnia longispina caudata SARS</i>	3051
Plön	3058
its prey, Daphnia pulex VAGA, R. M., CULVER, D. A. & MUNCH, C. S.: The fecundity ratios of Daphnia and Bosmina	3062
as a function of inedible algal standing crop LEVITAN, C., KERFOOT, W. C. & DEMOTT, W. R.: Ability of <i>Daphnia</i> to buffer trout lakes against periodic nutrient inputs	3072 3076
THRELKELD, S. T.: Egg degeneration and mortality in cladoceran populations HERZIG, A.: Resting eggs — a significant stage in the life cycle of crustaceans <i>Leptodora kindti</i>	3083
and Bythotrephes longimanus BERNER, D. B.: Morphological differentiation among species in the Ceriodaphnia cornuta	3088
complex (Crustacea, Cladocera) GOPHEN, M.: Effect of fish predation on size class distribution of cladocerans in Lake Kinne-	3099
ret DUNCAN, A., LAMPERT, W. & ROCHA, O.: Carbon weight on length regressions of <i>Daphnia</i>	3104 3109
spp. grown at threshold food concentrations LYNCH, M.: Speciation in the Cladocera LANGELAND, A., KOKSVIK, J. I. & OLSEN, Y.: Post-embryonic development and growth rates	3116
of <i>Daphnia pulex</i> DE GEER and <i>Daphnia galeata</i> SARs under natural food conditions LARSSON, P., JOHNSEN, G. & STEIGEN, A. L.: An experimental study of the summer decline in	3124
a Daphnia population MÜLLER, H.: The niches of Bosmina coregoni and Bosmina longirostris in the ecosystem of	3131
Lake Constance	3137
Island (74°30' N, 19° E) WYNGAARD, G. A., RUSSEK, E. & ALLAN, J. D.: Life history variation in north temperate and subtropical populations of <i>Mesocyclops edax</i> (Crustacea: Copepoda)	3144 3149
ELGMORK, K.: Prolonged life cycles in the planktonic copepod Cyclops scutifer SARS RIERA, T. & ESTRADA, M.: Dimensions and allometry in Tropocyclops prasinus. Empirical re-	3154
lationships with environmental temperature	3159
matical model JAMIESON, C. D. & BURNS, C. W.: Copepod distribution patterns: Life history adaptations to	3164
food and temperature (Abstract) HAIRSTON, N. G., Jr., OLDS, E. J. & MUNNS, W. R., Jr.: Bet-hedging and environmentally cued diapause strategies of diaptomid copepods	3169 3170
HARTMANN, H. J.: Feeding of <i>Daphnia pulicaria</i> and <i>Diaptomus ashlandi</i> on mixtures of uni- cellular and filamentous algae	3178
RIJKEBOER, M., FLIK, B. J. G. & RINGELBERG, J.: Aspects of colour dimorphism in Acantho- diaptomus denticornis found in two French crater lakes (Abstract)	3184

XXII

PIYASIRI, S.: Dependence of food on growth and development of two freshwater tropical and	
temperate calanoid species	3185
WONG, C. K. & CHOW-FRASER, P.: The food of three large freshwater calanoid copepods: Limnocalanus macrurus SARS, Epischura lacustris FORBES, and Senecella calanoides JU-	
DAY	3190
CHOW-FRASER, P. & WONG, C. K.: Herbivorous feeding of three large freshwater calanoid	
copepods, Limnocalanus macrurus SARS, Senecella calanoides JUDAY and Epischura lacu-	
stris Forbes	3195
Soto, D.: Experimental evaluation of copepod interactions	3199
SAINT-JEAN, L. & PAGANO, M.: Influence de la salinité, de la température, et de la concentra-	• • • •
tion des particules en suspension, sur la croissance et la production d'oeufs chez Acar-	
<i>tia clausi</i> en lagune Ebrié (Côte d'Ivoire) (Abstract)	3205
PONT, D.: Production secondaire du cyclopoïde <i>Acanthocyclops robustus</i> (G. O. SARS) dans les	
rizières de Camargue (France)	3206
FOLT, C. L.: Predator efficiencies and prey risks at high and low prey densities	3210
RAMCHARAN, C. W., Sprules, W. G. & NERO, R. W.: Notes on the tactile feeding behaviour	5210
of Mysis relicta Lovén (Malacostraca: Mysidacea)	3215
GINET, R.: Présence de l'amphipode hypogé Niphargus dans certains lacs alpins de haute-	5215
montagne	3220
SWIFT, M. C.: Growth and reproduction of <i>Palaemonetes paludosus</i> in a coastal North Caro-	5220
lina pond	3223
FIDALGO, M. L.: About the assimilation efficiency of the freshwater shrimp, Atyaephyra des-	5225
	3227
<i>maresti</i> MILLET (Crustacea, Decapoda) WINKEL, E. H. TEN: The influence of predation by the water mite <i>Hygrobates nigromaculatus</i>	3227
on a population of chironomid larvae	3230
ALLAN, J. D.: The production ecology of Ephemeroptera in a Rocky Mountain stream	3230
STATZNER, B. & MOGEL, R.: An example showing that drift net catches of stream mayflies	5255
STATZNER, B. & MOGEL, R.: An example snowing that drift het catches of stream mayines	
(Baetis spp., Ephemeroptera, Insecta) do not increase during periods of higher sub-	2220
strate surface densities of the larvae MAQUET, B. & ROSILLON, D.: Cycle de développement de l'éphéméroptère <i>Baetis rhodani</i>	3238
	2244
PICTET dans deux rivières salmonicoles belges: la Rulles et le Samson	3244
CAMPBELL, I. C.: Dietary habits of Australian siphlonurid and oligoneuriid ephemeropteran	2250
nymphs	3250
RIEDERER, R. A. A.: Emergence behaviour of some mayflies and stoneflies (Insecta: Ephe-	22/0
meroptera and Plecoptera)	3260
BAN, Y., SHIBATA, S. & Ishikawa, M.: Remarks on the life cycle of the water scorpion, Nepa	22/5
hoffmanni Esaki (Hemiptera: Nepidae) in Japan	3265
PETERSEN, L. BM.: Food preferences in three species of <i>Hydropsyche</i> (Trichoptera)	3270
TANIDA, K.: Net structure and feeding ecology of some Japanese species of Hydropsyche	2075
(Trichoptera: Insecta) (Abstract)	3275
RINGELBERG, J., FRANEKER, J. A. VAN & LUTTIK, R.: Predation experiments with Chaoborus	2274
larvae on pigmented and translucent morphs of Acanthodiaptomus denticornis	3276
GÍSLASON, G. M.: The life cycle and production of Simulium vittatum ZETT. in the River	2004
Laxá, North-East Iceland	3281
VINCENT, B. & HARVEY, M.: Dynamique de deux populations du Gastéropode Bithynia tenta-	2200
culata	3288
JOKINEN, E. H.: Comparative life history patterns within a littoral zone snail community	3292
MASLIN, JL.: Les peuplements de mollusques benthiques d'une lagune du Sud-Bénin (le lac	2200
Ahémé): facteurs de leur répartition et impact des variations des conditions du milieu .	3300
CIANFICCONI, F., MORETTI, G. P. & PIRISINU, Q.: Peuplements lotiques et lénitiques dans le	2201
système hydrographique de la Plaine de Rieti (Latium, Italie)	3306

XIV. Sediments

KAWAI, T., OTSUKI, A., AIZAKI, M. & NISHIKAWA, M.: Phosphate release from sediment into	
aerobic water in a eutrophic shallow lake, L. Kasumigaura	3316
LÖFGREN, S. & RYDING, SO.: Apatite ionic products in different eutrophic sediments	3323

XXIII

LÖFGREN, S. & RYDING, SO.: Apatite solubility and microbial activities as regulators of inter-	
nal loading in shallow, eutrophic lakes	3329
BOSTRÖM, B., AHLGREN, I. & BELL, R.: Internal nutrient loading in a eutrophic lake, reflected	
in seasonal variations of some sediment parameters	3335
PETERS, J. & LIERE, L. VAN: Dredging and groundwater-movement, effects on phosphorus	
release from sediments	3340
WIŚNIEWSKI, R. J. & PLANTER, M.: Exchange of phosphorus across sediment-water interface	
(with special attention to the influence of biotic factors) in several lakes of different	
trophic status	3345
BARROIN, G.: Relation phosphore - oxygène en zone profonde (Abstract)	3350
MARENGO, G. & PREMAZZI, G.: Biological availability of P-loads to Lake Lugano	3351

XV. Special Topics

BRIAND, F.: Structural singularities of freshwater food webs VOLOHONSKY, H.: Thermodynamic aspects of ecosystems steady state MUNAWAR, M. & MUNAWAR, I. F.: Seasonality of phytoplankton in the North American	
Great Lakes (Abstract)	3368 3369
Report on the twenty-second congress	3401 3474

Reproductive strategies of two similar Daphnia species

BARBARA E. TAYLOR and WILFRIED GABRIEL

With 2 figures and 2 tables in the text

Introduction

Cladocerans, like many other invertebrates, continue to grow after beginning to reproduce, and their reproductive capability increases with size. What are the demographic consequences of this strategy of indeterminate growth? Here we present results of laboratory experiments in which we measured reproductive strategies of two large, similar cladoceran species, *Daphnia pulex* and *D. pulicaria*, under high and moderately limiting food conditions. From the experimental data, we calculated the intrinsic rates of increase r for each reproductive strategy. We also estimated the effect on r of changing the pattern of allocation of biomass to reproduction. The results suggest that the daphnid strategy may represent an evolutionary compromise between strategies that maximize r and strategies that maximize total reproductive output.

Methods

The Daphnia were cultured in a flow-through system (a modification of the system described by LAMPERT 1976). Fresh culture medium dripped into the chamber, about 200 ml in volume, at the upper end; old medium and waste material drained out through a mesh screen at the lower end. Culture medium flowed through the chamber at about $1.51 \cdot day^{-1}$. The chambers were suspended in a water bath kept at 20.0 °C. Filtered lake water with *Scenedesmus* grown in chemostat culture was used as the culture medium. Fresh medium was prepared each day.

Daphnia pulicaria and D. pulex from laboratory cultures were used for the experiments. Both strains were supplied from the collection of Dr. V. HRBÁČEK in Prague, Czechoslovakia. Neonates (0–18 hrs old) were used to begin the experiments. At the beginning of the reproductive period, each chamber contained about 10 animals. This number decreased during the experiment as animals were removed for dry weight measurements. Animals were counted, measured, and transferred to clean chambers every 2 days. Neonates were counted and discarded at each transfer. Body length was measured to the nearest .04 mm from the top of the head to the base of the tail spine.

Animals were collected for dry weight measurements from the last prereproductive instar (instar P) and each reproductive instar (R1, R2, ..., Rn). So that the weights of somatic and reproductive tissue could be separated, animals were collected immediately after molting and egg production (in the case of reproductive animals). Animals to be weighed were killed with dilute unbuffered formalin, measured, and rinsed in distilled water. Eggs of ovigerous animals were removed from the brood chamber. Samples were placed in preweighed aluminum boats, dried for 1 hour at 102 °C, and stored in a desiccator.

Experiments were run at $1 \text{ mg } \mathbb{C} \cdot l^{-1}$ (*D. pulicaria*, 5 replicate chambers; *D. pulex*, 3 replicates) and .2 mg $\mathbb{C} \cdot l^{-1}$ (*D. pulicaria*, 4 replicates; *D. pulex*, 4 replicates). Natural mortality was not significant in these experiments, and none of the experiments was run to the end of the natural lifespan of the animals.

Length-weight regressions (Table 1) were used to estimate biomass at each instar from the length measurements for each experiment. An average egg weight for each experiment was used to estimate reproductive biomass for each instar from the counts of eggs and neonates.

Growth G was estimated by the difference between the average body weights for successive instars. Biomass allocated to reproduction R was estimated by the weight of eggs produced after the

sample size, and s _x is the standard deviation.									
Species	Food Regression equation		n	r	Egg weight				
	level mg C ·	1-1		x	n	S			
D. pulicaria	1	$\log W = 2.514 \log L - 5.180$	64	.99	.0028	11	.003		
D. pulex	1	$\log W = 1.193 L - 5.581$	29	.99	.0026	12	.002		
D. pulicaria	.2	$\log W = 1.628 L - 6.996$	19	.96	.0027	4	.001		
D. puler	.2	W = 0.33 L - 0.39	24	.91	.0024	4	001		

Table 1. Length-weight regressions and egg weights. Best-fitting curve among linear, log-linear, ind log-log relations is given. L is length in mm, and W is weight in mg. Sample size for the regression is n, and the correlation coefficient is r. For the egg data, \bar{x} is mean weight per egg in mg, n is the sample size, and s_x is the standard deviation.

molt to the following instar. Total biomass production T was estimated by growth G plu reproduction R. The proportion of biomass allocated to reproduction was estimated by R/T.

To analyse the demographic effect of the reproductive strategies, we calculated the intrinsicate of increase r for each experiment. Assuming that production is a function of body weight, we calculated fecundity schedules and r values for two determinate growth strategies: 1) allocating the total production in instar P and all subsequent instars to reproduction, which results in contant body and clutch size; and 2) allocating the total production in instar P to growth, then allocating the total production to reproduction in all subsequent instars, which results in constant body and clutch size after the 1 instar delay in reproduction. The total number of offspring R₀ was also calculated for each fecundity schedule. Data from 5 reproductive instars were used for each species at 1 mg C $\cdot 1^{-1}$; data from 4 reproductive instars, for each species at .2 mg C $\cdot 1^{-1}$. Increasing the sumber of instars has a negligible effect on r, but increases R₀. Survivorship was assumed to be 1 fr all calculations.

Results

Both Daphnia pulicaria and D. pulex at both food concentrations continued to gow for the duration of the experiments (Fig. 1). Reproductive output increased substantally

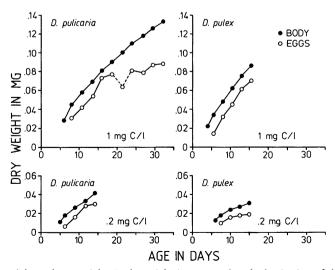


Fig. 1. Body weight and egg weight. Body weight is measured at the beginning of the instar.

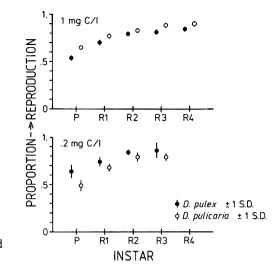


Fig. 2. Proportion of production allocated to reproduction.

Table 2. Values of r and R₀.

Species	Food	Indeter	Indeterminate growth		Determinate growth			
	level				1) no delay		2) delay	
	mg C · l⁻	r r	R ₀	r	R ₀	r	Ro	
D. pulicaria	1	.300	98.7	.315	84.5	.296	121.6	
D. pulex	1	.346	77.8	.353	50.0	.345	89.2	
D. pulicaria	.2	.251	29.8	.248	19.6	.261	36.6	
D. pulex	.2	.232	23.0	.242	22.4	.223	25.5	

in the earlier reproductive instars. At .2 mg $C \cdot l^{-1}$ both species began to reproduce at much smaller body weights. *Daphnia pulex* delayed reproduction for several days at the lower food concentration, but *D. pulicaria* reproduced slightly earlier.

The reproductive strategies, as measured by the proportion of biomass allocated to reproduction at each instar, were very similar between species and food concentrations (Fig. 2). The general pattern shows moderate investment in reproduction at the last prereproductive instar P. This investment increases significantly in the subsequent 2 instars and remains fairly constant after instar R2. Values for instars R4 through R9 (not shown) for *D. pulicaria* range from .86 to .93.

At 1 mg $C \cdot l^{-1}$ the shorter juvenile period gives *D. pulex* a higher r value than *D. pulicaria*, although *D. pulicaria* has higher fecundity at each instar (Table 2). At .2 mg $C \cdot l^{-1}$ both higher fecundity and a shorter juvenile period contribute to the higher r value for *D. pulicaria*.

The r calculations also show that in each case one of the determinate growth strategies gives a higher r value than the value calculated from the experimental data, which represent the natural strategy of indeterminate growth. For *D. pulicaria* at 1 mg $C \cdot l^{-1}$ and for *D. pulex* at both food concentrations, determinate growth strategy 1 (no delay in reproduction) gives the highest r values. For *D. pulicaria* at .2 mg $C \cdot l^{-1}$, determinate growth strategy 2 (1 instar delay in reproduction) gives the highest r value. In all cases R_0 values are lowest for determinate growth strategy 1, higher for the natural indeterminate growth strategy, and highest for determinate growth strategy 2. These values underestimate R_0 for the natural lifespan of the animal, but show the same rank order as values calculated from longer sequences of data.

Discussion

The relatively higher intrinsic rates of increase for *Daphnia pulex* at the high food concentration and for *D. pulicaria* at the moderate food concentration are consistent with the results of HRBÁČEK (1977). According to his interpretation, *D. pulex* is more "r-selected", and *D. pulicaria* is more "k-selected". The similarities of allocation of biomass to growth and reproduction in these two species suggest that the differences in r values are not caused by differences in this component of the reproductive strategy. The differences lie in the age and size at the beginning of the reproductive period and in the relations between production and body size.

Under constant environmental conditions, the reproductive strategy that maximizes r, within the constraints imposed by physiology and morphology, will be the optimal strategy. Under other conditions, maximizing r may not be optimal. For example, when the growing season is limited and the population does not reach stable age distribution, a strategy that maximizes the total reproductive output R_0 may be better (see GABRIEL 1982).

For both species at both food concentrations, determinate growth strategies estimated from the production data produced higher values of r than did the experimentally measured strategies of indeterminate growth, suggesting that indeterminate growth does not maximize r. However, the r values for indeterminate growth are only slightly lower than the values for the best determinate growth strategies, and the R₀ values for indeterminate growth are higher, excepting the case of *D. pulicaria* at .2 mg C \cdot l⁻¹. We speculate that the indeterminate growth strategy may be an evolutionary compromise: at a low cost, in terms of the reduction in r, the animal substantially increases the total number of young produced. The advantage of this compromise may be substantial, given the strong seasonality of many of the environments where cladocerans are found.

Acknowledgements

This work was carried out while BET was supported by a research fellowship from the Max-Planck-Gesellschaft to work in AG Planktonökologie at the MPI für Limnologie at Plön. W. LAM-PERT offered valuable advice at all stages of the project, M. MORT commented on the manuscript, and H. CLAUSSEN and M. VOLQUARDSEN maintained the stock cultures of *Daphnia* and *Scenedesmus*.

References

GABRIEL, W., 1982: Modelling reproductive strategies of Daphnia. - Arch. Hydrobiol. 95: 69-80.

HRBÁČEK, J., 1977: Competition and predation in relation to species composition of freshwater zooplankton, mainly Cladocera. — In: Aquatic Microbial Communities: 307—353, ed. J. CAIRNS, Jr.

LAMPERT, W., 1976: A directly coupled, artificial two-step food chain for long-term experiments with filter-feeders at constant food concentrations. — *Marine Biology* 37: 349–355.

Authors' addresses:

Arbeitsgruppe Planktonökologie, Max-Planck-Institut für Limnologie, Postfach 165, D-2320 Plön, Fed. Rep. Germany; present address of B. E. TAYLOR: Savannah River Ecology Laboratory, Drawer E, Aiken, South Carolina 29801, U.S. A.