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1. Introduction 

MATHEMATIC5 MAGAZINE 

If a visitor from Mars desired to leam the geometry of the triangle but could stay in 
the earth' s relatively dense atmosphere only long enough for a single lesson, earthling 
mathematicians would, no doubt, be hard-pressed to meet this request. In this paper, 
we believe that we have an optimum solution to the problem. The Kiepert conics, 
though seemingly unknown today, constitute a significant part of the geometry of the 
triangle and to study them one has to deal with many fundamental concepts related to 
this geometry such as the Euler line, Brocard axis, circumcircle, Brocard angle, and 
the Lemoine line in addition to weIl-known points including the centroid, circumcen
tre, orthocentre, and the isogonic centres. In the process, one comes into contact with 
not so weIl known, but no less important concepts, such as the Steiner point, the 
isodynamie points and the Spieker circle. 

In this paper, we show how the Kiepert' s conics are derived using both analytic 
and projective arguments and discuss their main properties, which we have drawn 
together from several sourees. We have applied some modem technology, in this case 
computer graphics, to produce aseries of pictures that should serve to increase the 
reader' s appreciation for this interesting pair of conics. In addition, we have derived 
some results that we were unable to locate in the available literature. 

2. Preliminaries 

a. Coordinate Systems Two systems of specialized homogeneous coordinates are 
especially suited to this type of work, they are, the "trilinear" (or normal) system and 
the "barycentric" (or areal) system. In the trilinear case, the coordinates (x, y, z) of a 
point P in the plane of a given reference triangle ABC are proportional to the signed 
distances of P from the sides of the reference triangle, Le. 

x: y: Z = da: d b : d c, 

where, for example, da represents the signed distance of P from side BC. The sign of 
da' is positive or negative accordingly as P and the unit point, the incentre 1= 
(r, r, r) = (1, 1, 1), r is the inradius, are on the same or opposite sides of BC. The 
actual distances da' d b , d c of a point P from the sides of ABC are related to the 
trilinear coordinates of P by the equations: 
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da d b d c r( a + b + c) 
-X=y=z= ax+by+cz' 

see Sommerville [32, p. 157]. 
For the trilinear line coordinates [u, v, w] of the line l: ux + vy + wz = 0, one has 

u: v: W = adA: bdB: cdc , 

where dA represents the signed distance from vertex A to l. The signs of dA and d B , 

for example, are the same or different depending on whether or not A is in the 
half-plane determined by Band l. 

For the barycentric type, the coordinates of P are proportional to the signed areas 
of the triangles PBC, PCA, PAB thus, 

x: y: Z = ada : bdb : cdc ' 

where the unit point of the system is now the centroid G. 
Similarly, for the line case, one has 

u:v:w=dA:dB:dc ' 

U nless otherwise indicated, we shall use the trilinear system throughout. A curious 
application of these coordinates, the three jug-problem, is given by Coxeter and 
Greitzer [11, pp. 89-93]. 

b. Transformations We shall have occasion to use two special cases of so-called 
"Cremona" transformations, named after the Italian geometer Luigi Cremona (Pavia, 
1830-Rome, 1903) who did considerable study on them, see Coolidge [7, pp. 287f1]. 
The Cremona transformations are birational transformations of the plane. The folIow
ing quadratic type given by the systems of equations 

(1) 

where n i , i = 1,2,3, are nonzero constants, is the only one of interest at this time. 
These transformations induce involutions on the points in the plane not on the 

sides of the reference triangle and carry, in a one-to-one fashion, lines into conics that 
pass through the vertices of the reference triangle and vice versa. As mentioned 
earlier, we are interested in two special cases of (1). 

Case 1. The quadratic transformation 

P = (x y z) ~ P' = (1. 1. 1.) , , x' y' z (2) 

is obtained from (1) by making the substitutions n l = n 2 = n 3 = 1. GeometricaIly, P' 
is ohtained from P by reflecting the lines AP, BP, CP in the internal angle bisectors 
through A, B, C respectively: The reflected lines concur in the point P'. This point 
which we shall now denote by P g, is called the isogonal conjugate of P and the 
transformation g defined by (2), the isogonal transformation. See Kimberling [18] for 
some familiar pairs of points related by this transformation. 

A weIl-known pair of this sort is (K, G) where K denotes the symmedian point and 
G the centroid. The symmedian point of a triangle ABC is the point of concurrence of 
the symmedians, i.e., the reflections of the medians with respect to the angle 
bisectors. Thus, it is more or less by definition the isogonal conjugate of the centroid. 
But the symmedian point can also be defined as the point inside the triangle such that 
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the sum d~ + d~ + d~ is mInImum. In fact, according to Mackay [21], the first 
appearance of this point in the mathematical literature was in the context of this very 
property. The symmedian point is usually referred to as the Lemoine point by French 
and British writers but is known as the Grebe point in Gerniany, see Johnson [14, 
p. 213]. Emile Michel Hyacinthe Lemoine (Quimper, 1840-Paris, 1912), one of the 
main promotors of the modem geometry of the triangle, had first been a teacher of 
mathematics and then, from 1870, Engineering Advisor at the Court of Commerce of 
Paris; Ernst Wilhelm Grebe (Michelbach near Marburg, 1804-Kassel, 1874) was a 
teacher of mathematics at the Gymnasium in Kassel. A considerable amount of 
research relating to the symmedian point seems to have been carried out during the 
19th century. 

Case 2. The quadratic transformation 

p= (x,y,z)""'" P' = (+, b! ,+), 
a x y c z 

(3) 

is obtained from (I) by making the substitutions n 1 = l/a2 , n 2 = l/b 2 , n 3 = l/c 2• 

Geometrically, P' is obtained from P by reßecting the points D, E, F (the intersec
tions of the lines AP, BP, CP with the sides BC, CA, AB) in the midpoints of the side 
on which they lie: The lines AD', BE', CF' where D', E', F' denote the respective 
images of D, E, F concur in the point P'. This point, which we shall now denote by 
pt, is called the isotomic conjugate of P and the transformation t defined by (3), the 
isotomic transformation. 

A familiar pair of points related by this transformation is formed by the Gergonne 
point and the Nagel point. The Gergonne point of a triangle is the point of 
concurrence of the line segments connecting the vertices with the points of contact of 
the incircle with the opposite sides. The definition of the Nagel point is similar except 
now we consider the points of contact of the three excircles. A discussion of both of 
these points is given in Johnson[14, pp. 184-185]; their trilinear coordinates can be 
found in Kimberling [18]. Joseph Diaz Gergonne (Nancy, 1771-Montpellier, 1859) 
founded, in 1810, the first only wholly mathematical journal, the Annales de 
mathematiques pures et appliquees; he held the chair of astronomy at the Dniversity 
of Montpellier, where he also acted as rector. Christian Heinrich (von) Nagel 
(Stuttgart, 1803-DIrn, 1882, nobled in 1875) was Professor for Mathematics and 
Science at the Gymnasium in DIrn and director of a so-called "Realschule". He 
devoted a lot of his activities to a modernization of the school system. 

3. The Hyperbola 

The following problem was proposed in 1868 by Lemoine [19]. 

Construire un triangle, connaissant les sommets des triangles equilateraux 
construits sur les cates. (Construct a trian'gle, given the peaks of the 
equilateral triangles constructed on the sides.) 

A solution by Friedrich Wilhelm August Ludwig Kiepert (Breslau, 1846-Han
nover, 1934) was published in 1869 [17]. At the time, Kiepert was a doctoral student 
at the Dniversity of Berlin under Weierstraß. He later moved to Hannover as 
Professor ofHigher Mathematics and became Dean in 1901. He wrote a textbook on 
calculus that had been used frequently in German universities up to the 1920s. His 
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later mathematical work was concemed mainly with actuarial theory. For more 
information on this mathematician, see Volk [37]. 

Kiepert' s solution contains aremark that we shall cast in the form of a theorem. In 
order to avoid degenerate cases, we fix a triangle ABC that is assumed, for the 
remainder of this paper, to be scalene with a > ß > y, where a, ß, y denote the 
measures of the angles at the vertices A, B, C respectively. In addition, this will be 
the reference triangle when computations with coordinates are carried out. 

THEOREM 1. Ifthe three triangles pfBC, AB'C and ABC', eonstrueted on the sides 
of the given triangle ABC as bases, are similar isoseeles and similarly situated, then 
the lines AA', BB', CC' eoneur at a point P. The loeus of Pas the base angle varies 
between - 7T' /2 and 7T' /2 is the eonie 

r: sin(ß-y) + sin(y-a) + sin(a-ß) =0 
x y z ' 

(4) 

or, equivalently, 

be( b 2 - e2 ) ea( e2 - a2 ) abC a2 - b 2 ) r: + + = O. x y z (5) 

Proof We denote the measure of the base angles of the similar, isosceles triangles 
by c/J (noting that the orientation of these triangles is counterclockwise when c/J < 0 
and clockwise when c/J > 0) and immediately obtain the following representations for 
the vertices of the triangle pf B' C', 

pf = ( - sin c/J, sin( y + c/J) , sin( ß + c/J) ) , 
B' = (sin( y + c/J), - sin c/J, sin( a + c/J) ) , 
c' = (sin( ß + c/J) , sin( a + c/J), - sin c/J) . 

Now, recall that the trilinear (or barycentric) coordinates [u, v, w] of the line 
ux + vy + wz = 0 connecting the two given points can be taken as the cross product 
of the two vectors in ~3 whose components are the trilinear (barycentric) coordinates 
of these points. Since A = (1,0,0), B = (0, 1,0), C = (0,0, 1), we readily derive the 
representations 

AA' = [0, -sin(ß + c/J), sin( y + c/J)], 
BB' = [sin( a + c/J) ,0, - sin( y + c/J)], 
CC' = [ - sin( a + c/J), sin( ß + c/J) ,0] . 

The point P, shown in FIGURE 1, is easily seen to have the coordinates 

(x, y, z) = (sin(ß + c/J) sin( y + c/J), sin( y + c/J) sin( a + c/J), 
sin( a + c/J) sin( ß + c/J» , (6) 

which implies 

x sin( a + c/J) = y sin( ß + c/J) = z sin( y + c/J) . 

It now follows that 

(x sin a - y sin ß) cos c/J + (x cos a - y cos ß) sin c/J = 0 

and 

(x sin a - z sin y) cos c/J + (x cos a - z cos y) sin c/J = 0, 
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a system of homogeneous equations linear in the variables cos cP, sin cP. Since each 
tripIe (x, y, z) gives a nontrivial solution, the determinant must vanish, hence 

( x sin a - y sin ß) ( x cos a - z cos y) = (x sin a - z sin y) ( x cos a - y cos ß) , 
which completes the proof. 

FIGURE 1 

In order to determine the conic type, we inspect the line at infinity. If we consider 
the trilinear line coordinates as described in Seetion 2a, it is clear that, for a line far 
distant from the reference triangle, the distances dA' d B , d c become almost equaI, 
consequently, in the limit, we obtain [a, b, c] as the line coordinates of the line at 
infinity. Furthermore, an examination of the intersection of this line with r reveals 
that the relevant discriminant reduces to the expression E = (a 2 + b2 + C 2 )2 -

3(a2b2 + b2c 2 + c 2a 2 ). Since E > 0, see Bottema et al. [2, p. ll], the conic under 
consideration meets the line at infinity in two distinct points; thus, it is a hyperbola, 
Kiepert's hyperbola. The significance ofthe line 1 in FIGURE 1 will be explained later, 
in Theorem 2. 

To gain more insight into the angles that actually produce the points at infinity, we 
note that these points correspond to angles cp satisfying the equation 

sin a sin ß sin y = 0 
sin( a + cP) + (sin ß + cP) + sin( y + cP) . 

By means ofthe usuaI formulae and theorems (sin a = a/2R, ... , R = abc/4A, R the 
circumradius, A the area of the reference triangle, law of eosines, Heron' s formula for 
the area of a triangle) this equation can be transformed into 

sin( 2 cP + w) = - 2 sin w, 

where the angle w is the Brocard angle, determined by the property that there is a 
(unique) point Tl' Brocard' s first point, such that .q: TICA = .q: TIAB = .q: Tl BC = w, 
see Kimberling [18]. Pierre Rene Jean-Baptiste Henri Brocard (Vignot 1845-1922 
Barle-Duc) is, like Lemoine, regarded one of the fathers of the modem geometry of 
the triangle. He was not a professional mathematician but, rather, served as an army 
officer for engineering in Algier and Montpellier. His widespread results form the 
basis for what is now known as Brocard geometry. 

Since 0< sin w = 2A/ Va 2b 2 + b2c2 + c2a2 < 1/2 for a scalene triangle, this 
equation has two solutions in the range required, namely 

max( -7T'/2, -a) < cPI < -ß < -cP2 < -y. 
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Tbe following table indicates some special points on the hyperbola corresponding 
to certain specific values of c/J: 

Measures of 4> Points 

0 centroid (G) 
7T 

orthocentre (H) 2' 
-a, if a :S 90° } A 

180° - a, if a> 90° 

-ß B 
-y C 

7T 
Fermat point (Fj ) 3' 

(first isogonic centre) 
7T 

second isogonic centre (F 2) -3' 
cu T 

g 

-cu Brocard' s third point ( T 3) 

Since some of the cases above may not be familiar, we include the following 
explanatory remarks: 

(i) The Fermat point is the point inside the triangle (provided no angle exceeds 
120°) such that the sum AP + BP + CP, PE ABC, is minimum, see Johnson [14, p. 
221]. Nicholas D. Kazarinoff presents an interesting alternative treatment of this point 
using an elementary idea of statics [15, pp. 117-118]. . 

(ii) In addition to Brocard's first point, there is Brocard's second point, the unique 
point 7 2 such that -tAB;2= -tBC72 = -tCA72 =w, see Lemoine [20], and Kimber
ling [18]. The point 7 in the table is the midpoint ofthe segment 7 17 2 , called Brocard 
midpoint by Kimberling [18]. An added significance for 7 will be given later when 
various properties of the hyperbola are discussed. 

(iii) The point 7 3 in the table, Brocard's third point will be discussed more 
explicitly in Section 5. The triangle }i B' C' corresponding to c/J = - w is Brocard' s 
first triangle, see [14, pp. 277-280]. We refer to this triangle again when the parabola 
is discussed. Other points important in Brocard geometry occur on the hyperbola by 
taking other measures of c/J that involve w. We shall not dweIl on these here, instead, 
we refer the interested reader to the paper of M'Cay [23]. 

At this point we make a reference to a property relating to the case when c/J = 7T' /3 
that is generally attributed to Napoleon Bonaparte (I769-1821) [9, p. 23], which 
reads 

The circumcircles of the triangles }iBC, AB'C and ABC' meet at the 
F ermat point F 1 and their centres form a fourth equilateral triangle . 

In fact, this would appear to be the starting point for the whole story. Equilateral 
triangles being erected on the faces of an arbitrary triangle appeared first in the 
context of Napoleon's Theorem. For more information, see the recent papers by 
Schmidt [30] and Wetzel [38], where the theorem is traced up to 1825. One can thus 
assurne that it was known to Lemoine and, most likely, served as the basis for his 
initial question, which was answered by Kiepert. 

We now describe the course of the hyperbola more precisely. Assurne the triangle 
ABC to be acute-angled with a > ß > (7T' /3)y > w. Let us start out with c/J = -7T' /2, 
in which case the point P that traces out the hyperbola is at the orthocentre. The first 
notable value of c/J is c/J = -a whereby P = A. Then P moves to infinity, passes 
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through B when cp = - ß, through F2 when cp = -7T /3 and back again to infinity. 
The remaining values of interest are cp = -'}' (p = C), cp = -w (p = 7"3)' cp = 0 
(p = G), cp = w (p = 7"g), cp = 7T /3 (p = F1) and finally cp = 7T /2 when p returns to 
the orthocentre, see FIGURE 2. The course changes somewhat when ABC is obtuse
angled, see FIGURE 3. 

G 

FIGURE 2 

H 

A 

G 
B G 

FIGURE 3 

A projective derivation of r is possible by considering the points P; and B' as 
elements of the point ranges represented by the perpendicular bisectors of BC and 
CA respectively. Since the triangles P; BC and AB' C are similar, any four positions of 
P; have the same cross ratio as the four corresponding position of B'. The point 
p = M n BB' is thus the interseetion of corresponding elements of two projectively 
related pencils centred at A and Band hence its locus is a conic through A and B 
[36, pp. l09ff]. This derivation was considered by, among others, Frederick G. 
Maskell and Jordi Dou [22]. 

Kiepert' s hyperbola has a number of interesting properties that serve· to emphasize 
its importance in the geometry of the triangle. We now summarize those that would 
seem to be most accessible to the general reader. 

(i) It is rectangular (asymptotes are perpendicular) and its centre lies on the 
nine-point circle. This is an immediate consequence of the following theorem that, 



VOl. 67; NO. 3, JUNE 1994 195 

although attributed to Karl Wilhe1m Feuerbaeh (1800-1834) by Cooledge [6, p. 123], 
ean not be found in Feuerbaeh's book of 1822 [13]. The claim on the eentre had been 
proved earlier in 1821, by Charles-Julien Brianehon (1783-1864) and Jean-Vietor 
Poneelet (1788-1867) [4, THEOREM VII]. 

The loeus of the centres of all conics through the vertices and orthocentre 
of a triangle, which conics, when not degenerate, are rectangular hyperbo
las, is a circle through the middle points of the sides, the points half-way 
from the orthocentre to the vertices, and the feet of the altitudes. 

Moreover, the eentre of the hyperbola is midway between the isogonie eentres of 
ABC, see FIGURE 4. 

Brocard axis , 

c 

FIGURE 4 

(ii) The image r g of Kiepert's hyperbola, under the isogonal transformation, has 
the equation 

P: sin(ß - y)x + sin( y - a)y + sin(a - ß)z = 0, (7) 

or, equivalently, 

r g : bc(b2 - c 2 )x + ca(c2 - a2 )y + ab(a2 - b 2 )z = 0, (8) 

whieh represents the Brocard axis of ABC defined as the line eonneeting the 
symmedian point to the cireumeentre. This line is perpendieular to the Lemoine line, 
Le., the axis of the perspeetivity of the triangle ABC and its tangential triangle AtBtCt 
formed by the tangents to the cireumcircle at the vertices. The name "Lemoine line" 
is justified by the faet that the Lemoine point-see Seetion 2b, Case 1-is the eentre 
of this perspeetivity. The Broeard axis eontains, in addition to the symmedian point 
and the cireumeentre, the isodynamie points F1g, Ff (which also are the eommon 
points of the circles of Apollonius), the Broeard midpoint T diseussed previously, and 
at least seven more noteworthy points of the referenee triangle, see Kimberling [18]. 

(Hi) One may also make use of the isogonal transformation when looking for the 
asymptotes. To this end, reeall first the notion of the Wallaee-Simson line of a point 
on the cireumcircle. The feet of the perpendieular lines from a point P to the sides of 
a triangle are eollinear if, and only if, P belongs to the cireumcircle of the triangle in 
whieh ease the resulting line is ealled the Wallace-Simson line of P, see [11]. The 
geometrie deseription given for the isogonal transformation shows that the isogonal 
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transfonn of the circumcircle is the line at infinity and the WaIlace-Simson line of any 
point on the circumcircle of the reference triangle passes through the isogonal 
conjugate of its diametral point. Furthennore, a tedious but straightforward, computa
tion shows that the asymptotes of any circumscribed equilateral hyperbola are the 
Wallace-Simson lines of the isogonal conjugates of its points at infinity, Le., the 
intersection points of the isogonal transfonn of the hyperbola with the circumcircle. 
From this we conclude that the WaIlace-Simson lines of the intersections P, Q of the 
Brocard axis with the circumcircle of ABC are the asymptotes of Kiepert' s hyperbola, 
see FIGURE 4. Further treatments of the asymptotes and the centre are given by 
Mineur [25] and Rigby [29]. 

(iv) Since the coordinates of the nine-point centre are 

(cos(ß -,,), cos(" - a) ,cos( a - ß)), 

see [32, p. 159], it follows from the equation 

(
sin(ao- ß ) 

sin(" - a) 

sin(a-ß) 

° sin(ß -,,) 

sin( " - a) 1 (CoS( ß - ,,) 1 ( sin( " - ß) 1 
sin( ß - ,,)cos( " - a) = sin( a - " ) 

° cos(a - ß) sin(ß - a) 

that the polar of the nine-point centre with respect to Kiepert' s hyperbola is the 
Brocard axis. For the basic properties of poles and polars, see Somerville [32, pp. 
26-28]. 

(v) Another connection of Kiepert' s hyperbola with the nine-point circle is found in 
[5, p. 459]. If one considers the triangle fonned by the tangents to ratthe vertices 
A,B, C, then the orthocentre of this triangle is the centre of the nine-point circle. 
Casey attributes this property to Brocard. 

(vi) A more recent "rediscovery" of Kiepert's hyperbola is given in the following 
problem of Bottema and van Hoom [3]. 

Let P be a point in the plane of a nonequilateral triangle ABC and let 7T" be 
the trilinear polar (or harmonical) of P with respect to ABC. Show that the 
locus of the points P, such that 7T" is perpendicular to the Euler line of 
ABC, is a rectangular hyperbola passing through the vertices of ABC, 
through its centroid and through its orthocentre . 

Here, the trilinear polar of a point P is the axis of perspectivity of the triangles 
ABC and DEF (D, E, F are again the intersections of the lines AP, BP, CP with the 
sides BC, CA, AB). If P = (p, q, r), the trilinear polar is the line with coordinates 
[qr, rp, pq], see [10, p. 185]. While this is an interesting and somewhat different 
aspect of Kiepert' s hyperbola, the result is not new. A reference to this particular 
property may be found in M'Cay [23]. 

(vii) Another recent rediscovery of the hyperbola is given by Courcouf [8] as an 
application of areal coordinates to the geometry of the triangle. Here as in the case of 
the previous problem, see [24], the name Kiepert is not associated with this conic. 
This is further evidence that the Kiepert conics are not weIl known today. 

(viii) A subtle comment on the centre of r is given by Thebault [34]. Let angular 
bisectors of the reference triangle meet BC, CA, AB in the points Al' BI' Cl. Let At 
be the hannonic conjugate of Al with respect to B and C, and let Bf and Cf be 
defined in a similar manner. Thebault's result is that the circles AIBICI, AIBfcf, 
BICfAt, CIAtBf meet at the centre of r. 



VOl. 67, NO. 3, JUNE 1994 197 

(ix) A novel treatment of the hyperbola using a complex-number approach is given 
by Kelly and Merriell [16]. In the notation of our Theorem I, the authors show that 
the perpendiculars from A to B' C', B to C'A', C to A' B' concur and the locus of the 
point of concurrence with the trilinear coordinates (I/cos(a - 4», l/cos(ß -
4», I/cos(y - 4»), as 4> varies, is Kiepert's hyperbola, see FIGURE 5. 

FIGURE 5 

(x) Vanderghen [35] notes that Kiepert's hyperbola is the cevian transform (iso
tomie conjugate) of the tangent to r at the centroid G. To see this consider the 
alternative form of r given by (5). Since the coordinates of G are (be, ca, ab), the 
line coordinates of the tangent at this point are given by 

° 
ab( a2 - b 2) 

ca( c 2 - a2) 

ab( a2 - b 2) 

° 
bc(b2 - c2) 

ca( c 2 - a2) 

bc(b2 - c2) 

° 

bc 

ca 

ab 

these are the line coordinates of the isotomie conjugate of r. 

a(c 2 -b2 ) 

b(a2 -c2 ) 

c(b 2 -a2 ) 

(9) 

(xii) If a point conic F is given by the equation L,i,jaijxixj = 0; i, j = 1,2,3, then 
it is an easy exercise to verify that the corresponding line form I of F is defined by 
the equation L,i,jAijUiU j = 0, where (A ij ) is the adjoint of (ai) Thus for the 
hyperbola, the line form is 

y: p2U2 + q2 v 2 + r 2w 2 - 2pquv - 2qrvw - 2rpwu = 0, 

where (p, q, r) = (bc(b 2 - c2), ca(c2 - a2), ab(a2 - b 2)) and [u, v, w] is a tangent 
to r. 

4. The Parabola 

In order to introduce the second conie, we state and prove the following: 

THEOREM 2. The envelope 01 the axis 01 the triangles ABC and A'B'C' is the 
parabola 

sin a( sin2 ß - sin2 y) sin ß( sin2 y - sin2 a) sin y( sin2 a - sin2 ß) 
l:: + + = 0, 

U v w 
(10) 
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or, equivalently, 

where [u, v, w] is a tangent to the parabola , 

r~ 

'\ 
, , 

, , , , , , 
\0 

FIGURE 6 

(11) 

Proof Since the triangles ABC and }LB'C' are perspective from the point P, they 
are (by Desargues' s theorem) perspective from a line, This line has the trilinear 
representation 

[ 1 1 
l = sin ß sin '}' + sin a sin2cP ' sin '}' sin a + sin ß sin2cP ' 

sin a sin ß: sin '}' sin2cP ], (12) 

see proof of THEOREM 1, or, equivaIently, 

1 1 
u : v : W = sin ß sin '}' + sin a sin 2 cP : sin '}' sin a + sin ß sin 2 cP : 

1 
sin a sin ß + sin '}' sin 2 cP ' 

We now have 

hence 

u ( sin ß sin '}' + sin a sin 2 cP ) 

= v(sin '}' sin a + sin ß sin2cP) 

= w ( sin a sin ß + sin '}' sin 2 cP ) , 

(13) 

( v sin a - u sin ß) sin '}' _ (w sin a - u sin '}' ) sin ß ( 14) 
sin2cP = u Sl'n IV - V Sl'n ß - , , ... usma -wsm'}' 

from which we obtain the desired result. 
It is obvious that the envelope (11) represents a parabola since the line at infinity 

[a, b, c] is one of its tangents, Furthermore, this conic (Kiepert' s parabola) 
is inscribed in the triangle ABC and has for a fifth tangent the Lemoine line 
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x/a + Y /b + z/C = O. See the important work of Jean Baptiste Joseph Neuberg 
(Luxembourg 1840-Liege 1926, Professor of Geometry at the Athenee and Lecturer 
at the Ecole des Mines of Liege) [26, 27, 28]. Using the fact that a = 2R sin a, for 
example, where R denotes the circumradius of ABC, it folIows, from (12), that the 
line at infinity corresponds to the case <p = o. However, it appears that this is the only 
one of the five given tangents that can be obtained by a specific value of <p. In 
addition, the presence of the term sin 2 <p indicates that, as <p varies from 0 to 7T /2, 
one part of the parabola is traversed twice while the other part is not obtained. 
According to Neuberg, this parabola was first studied in 1884 by the Senior Teacher 
at the Gymnasium of Recklinghausen, Germany, August Artzt, in a so-called "school 
programm" [1]. 

An alternate approach will lead to a projective derivation of the parabola l;. 

Consider now a triangle A*B*C* homothetic with the tangential triangle AtBtCt with 
respect to the circumcentre of ABC as shown in FIGURE 7. Since the tangents to the 
circumcircle at the vertices have the line coordinates [0, c, b], [c, 0, a], [b, a, 0], the 
vertices of the tangential triangle have the trilinear representation At = (-a, b, c), 
Bt = (a, -b, c), Ct = (a, b, -c)o Recall that the coordinates ofthe circumcentre 0 are 
(cos a, cos ß, cos 'Y), thus, with respect to a real parameter J-L, an arbitrary point A* 
has the coordinates 

A* = (J-L cos2 a - a2 , J-L cos a cos ß + ab, J-L cos a cos 'Y + ac). 

Now we compute the line coordinates of the parallels through A* to the correspond
ing tangents and obtain for the remaining vertices under consideration 

B* = (J-L cos ß cos a + ba, J-L cos 2 ß - b2 , J-L COS ß cos 'Y + bc), 

C* = (J-L cos 'Y cos a + ca, J-L cos 'Y cos ß + cb, J-L cos2 'Y - c2 ). 

Since the lines AA*, BB*, CC* concur at the point 

( (J-L cos ß cos 'Y + bc) - \ (J-L cos 'Y cos a + ca) -1, (J-L cos ß cos a + ba) -1), 

the triangles ABC and A*, B*, C* are perspective from a line, i.e., the points 
Na = BC n B*C*, Nb = CA n C*A*, Ne = AB n A*B* belong to one line that we 
denote by NaNbNe in the sequel. The assignment Na t-+ C* is a perspectivity from the 
line BC to the line OCI> and the assignment C* t-+ Nb is another perspectivity; hence 
the composite assignment is a projectivity and so, the lines Na Nb Ne envelope a conic; 
see [36, pp. 109]. 

A, 
FIGURE 7 

B, 
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To see that this conie is actually Kiepert's parabola, we show how to identify the 
five specific tangents listed above. The Lemoine line is an obvious tangent since it is 
just the axis of perspectivity of the triangles ABC and AtBtCt. Next, consider the 
case when A, A*, C* are collinear, see FIGURE 8. Now C*A* n CA = Nb = A and 
A*B* n AB = Ne is always a point on AB, thus the side AB is a tangent to the conic. 
Similar arguments show that BC and CA are tangents also. FinaIly, when A*, B*, C* 
are themselves on the line at infinity, i.e., JL = -4R2 , the line NaNbNe is the tangent 
at infinity. 

FIGURE 8 

As in the case of the hyperbola, we list some properties of the parabola that serve to 
demonstrate that this conic also plays an important role in the geometry of the 
triangle. 

(0 The Euler line, see [18], of the triangle ABC is the directrix of Kiepert's 
parabola. To prove this, we shall need the following, see [31, p. 70]. 

LEMMA. The directrices of all parabolas inscribed in a triangle pass through the 
orthocentre . 

Since this reference may not be weIl known today, we sketch a proof. The foot of the 
perpendicular from the focus of a parabola to any tangent belongs to the tangent at 
the vertex. Thus, the three feet of the perpendieulars from the focus to the sides of a 
tangential triangle are collinear showing that the focus belongs to the circumcircle of 
the triangle and that the tangent at the vertex is its WaIlace-Simson line. The latter 
bisects the segment joining the focus to the orthocentre and, consequently, the 
orthocentre belongs to the directrix, see also [31, pp. 48ff]. 

To see (0, first note that the above lemma implies that the directrix of Kiepert's 
parabola 1: contains the orthocentre H of the triangle ABC. Second, consider the 
tangent to 1: that corresponds to <p = -1' where K is on AC and B' is on BC. Then, 
the circumcentre 0 of ABC is the orthocentre of K B' C and 1: is also inscribed in 
this triangle. Now, by the lemma, the point 0 belongs to the directrix of 1:. The 
directrix thus contains the points 0 and Hand hence, is the Euler line e of ABC. 

(ii) The coordinates of the focus ] of Kiepert' s parabola are given by 

( 1 11) 
] = sin( ß - 1') , sin( l' - a) , sin( a - ß) . 
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To see this note that the pole of a line [u, v, w] with respect to 1; is given by 

[( v sin2 '}' sin( a - ß) + w sin2 ß sin( '}' - a)), 

( w sin2 a sin( ß - '}') + u sin2 '}' sin( a - ß)), 
(u sin2 ß sin( '}' - a) + v sin2 a sin( ß - '}'))] . 

201 

Since e = [sin 2a sin(ß - '}'), sin 2ß sin( '}' - a), sin 2'}' sin(a - ß)], the coordinates of 
] are the claimed ones. 

In the sketch of the proof of the lemma above it has been mentioned that the focus 
of any parabola inscribed a triangle belongs to the circumcircle of this triangle. In our 
case, it' s an easy exercise to verify that the given coordinates for ] satisfy the equation 

abc 
-+-+-=0 x y z ' 

which is that of the circumcircle of ABC. 
(iii) If a conic is inscribed in a triangle, then the joins of the vertices of this 

triangle and the points of contact are concurrent in what may be termed the 
Brianchon point of the conie with respect to the triangle, see [36, p. 111]. Since a 
conic inscribed in the triangle ABC has an equation of the form J / u + g/ v + h / w = 

0, its Brianchon point is easily seen to have coordinates (l/f, l/g, l/h). Thus, for 
Kiepert's parabola, it is, from (11), (l/a(b2 - c2 ), 1/b(c2 - a2 ), 1/c(a2 - b 2», which 
is the Steiner point S of the triangle, see [18]. This is the point of concurrence of the 
three lines drawn through the vertiees of a triangle parallel to the corresponding sides 
of Brocard's first triangle. In addition, the Steiner point is on the circumcircle of 
ABC, see [14, pp. 281ff] and FIGURE 9. 

FIGURE 9 

(iv) On the basis of property (xi) of the hyperbola, the point form of the parabola 
has equation 

1;: j2x 2 + g2 y 2 + h2z 2 - 2Jgxy - 2ghyz - 2hJzx = 0, 

Artzt also studied other parabolas associated with the triangle. Of partieular 
relevance at this time is a trio referred to by Casey as the Artzt' sparabolas (second 
group). Consider the configuration of THEOREM 1. Since the line K B', for example, is 
the join of two projectively related points, it envelopes a conic. This conie is a 
parabola such that the internal and external bisectors of ~ BCA are tangents as are 
the perpendicular bisectors of BC and CA. Similar arguments hold for the lines B'C' 
and C'N. 
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5. Results Not Found in the Available Literature 

Here we present some material, in the form of theorems, which we believe to be new. 

THEOREM 3. The centre of the circle inscribed in the triangle DEF, where D, E, F 
are the midpoints of the sides BC, CA, AB respectively of the given triangle ABC, lies 
on Kiepert' s hyperbola . 

Proof. Since the triangle DEF is homothetic to the triangle ABC with factor 
-1/2, the radius p of the given circle, also known as the Spieker circle, see [14, p . 

. 226], is r/2 = a/2s, where s = (a + b + c)/2 and adenotes the area of the triangle 
ABC. Consequently, the distance da of the centre V of the Spieker circle from the 
side BC of the triangle ABC is, given by the equation 

d = ha -p=a(.!. _2.) 
a 2 a 2s' 

where ha denotes the altitude to the side BC. The coordinates of V are now easily 
seen to be 

V=(b+c c+a a+b) 
a ' b ' c ' 

which satisfy the equation (5) of Kiepert's hyperbola, see FIGURE 10. 

c 

FIGURE 10 

Remark. By means of barycentric coordinates one can show that V is midway 
between the incentre land the Nagel point N, see Section 2b. For further properties 
of the Spieker circle see [14, pp. 226ff] and [18]. 

In M'Cay [23], it is given that the point D, the centre of homology of the triangle 
ABC and Brocard' s first triangle, lies on the hyperbola. It is, by its very definition, 
nothing but the point P of concurrence in the sense of our THEOREM 1 corresponding 
to cp = -wo We have been able to link this result with the following already 
mentioned fact: 

THEOREM 4. Brocard' s third point lies on Kiepert' s hyperbola. 

Proof. The barycentric coordinates of this point, which we denote as T 3 , are given 
in [5, p. 66] as (l/a2, l/b2, l/c2 ), which implies that the trilinear coordinates are 
T 3 = (l/a3, l/b3, l/c3). It now becomes a trivial exercise to verify that these satisfy 
equation (5). 
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THEOREM 5. The points D and 7 3 are one and the same. 

Proof From (6), the coordinates of the point on Kiepert's hyperbola corresponding 
to cp = -cu are 

( 1 1 1) 
sin( Cl' - cu) , sin( ß - cu) , sin( 'Y - cu) , 

which can also be written in the form 

( 1 1 1) 
( sin Cl' cot cu - cos Cl') , (sin ß cot cu - cos ß) , (sin 'Y cot cu - cos 'Y) . 

But cot cu = (a2 + b 2 + c2 )/4a, see [14, pp. 264ff], and 4a = 2bc sin Cl', thus 
(I/sin cu(sin Cl' cot cu - cos Cl')) = (bc/a 2 sin cu) and similarly for the other two coordi
nates. We now have 

( bc ca ab) (1 1 1) 
a2 sin cu ' b2 sin cu ' c2 sin cu = a3 ' b3 ' c 3 

as the coordinates of 7 3 , 

We actually discovered that 7 3 was on the hyperbola before seeing the information 
in Casey. Since we believe that this was accomplished by a rather pretty argument, 
we supply some details. By comparing equations (5) and (ll) it is easy to see that the 
two are related by the elliptic polarity pX j = L,jajjuj ; i,j = 1,2,3; P '* 0, where 
an = b 2c2 , a22 = c2a2 , a33 = a2b 2 and a jj = 0 when i '* j, whieh maps the points of 
the hyperbola to the tangent lines of the parabola. Brocard' s third point corresponds 
to the Lemoine line [bc, ca, ab] under this transformation. We note further that 
7 3 = K t , the isotomie conjugate of the symmedian point. The reader may wish to use 
this idea to find other meaningful points and lines associated with these conies. 

As an aside, we have derived a further result with respect to the point 7 3 , 

THEOREM 6. Brocard' s third point is collinear with the centre of the Spieker circle 
and the isotomic conjugate of the incentre. 

Proof Since the determinant 

c+a a+b 
-b- c 

1 1 

b3 c3 

1 1 

b 2 c2 

vanishes, the result folIows. 

Remark. The barycentrie coordinates of Brocard' s first and second points are 
7 1 = (I/b2, l/c2 , l/a2 ) and 7 2 = (I/c2 , l/a2, l/b2 ), so that the barycentric coordi
nates of 7 3 = (I/a2 , l/b2 , l/c2 ) complete the cyclic order. This may be the reason 
for the name Brocard' s third point, which we only found in Casey [5, p. 66], in the 
coordinate form above, with no further information given. Kimberling [18] lists this 
point as just one of 91 polynomial centers of the reference triangle and mentions our 
THEOREM 6 in a slightly different form. 
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6. Conclusion 

Even now there are other aspects of these conics that we have not touched upon as 
they seem to require a more thorough knowledge of the geometry of the triangle than 
that of the general reader. However, what is included should serve to convince the 
reader that Kiepert' s hyperbola and Kiepert' s parabola are not only interesting in 
their own right, but also, they constitute an important chapter of the geometry of the 
triangle. In FIGURE 11 we show them together for the first time. The reference 
triangle is deliberately chosen to be right-angled since the hyperbola is best illus
trated with respect to an acute tri angle while, in the case of the parabola, the obtuse 
case is more convenient. 

FIGURE 11 
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"The eagle putt was long, and at that ~oment it seemed almost as long 
as the lberian Peninsula that spawned the man who stood over it at the 15th hole 
of Augusta National today. The Masters is won and lost on such putts, and Jose 
Maria Olazabal added his name to the list of men who have accepted the 
challenge ... 

. .. He learned early the value of imagination around the greens, and it 
was that imagination that carried him to victory. On a day when the firm and 
fast putting surfaces were as difficult to solve as linear equations, Olazabal spent 
much of the day doing an impression of his more famous countryman, Seve 
Ballesteros, when it came to getting up and down ... " 

--Larry Dorman, New York Times, April 11, 1994, Cl 
(sent by Robert A. Russell, New York) 
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