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Transcendental Numbers in Secondary 

Education? 

Rudolf Fritsch 

W h a t I am going to talk about is based on the system of German high 

schools and the curricula for the teaching of mathematics i n the upper 

grades. Therefore I think I should first explain i n a few words how this 

is organised. After four years of common elementary school for a l l chi l -

dren aged between six and ten years there is a Splitting to three types of 

secondary education. The highest level is offered at schools which we call 

"Gymnas ium" and it takes nine further years. We have such schools wi th 

different orientations: classical languages, l iv ing languages, mathematics 

and science, economics, domestic science and so on, but wi th a a common 

structure. In the first seven years the students are taught in classes. Tha t 

means a l l students of the same grade are collected in classes of a reasonable 

size where they learn the same subjects, depending on the orientation of 

the school. In the last two years they choose courses, independent from for

mer classes. They have to choose two major courses and some minor ones 

according to certain rules which are not worth explaining i n detail since 

they wi l l change from time to time and are different i n the local states of 

the Federal Republ ic of Germany. I only mention that every student has 

the possibility of choosing mathematics as a major subject and then he has 

to study two years of detailed calculus, linear algebra wi th analytic geom-
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etry and stochastics. A n introduction to the differential calculus is already 

taught in grade eleven (= grade seven of the high school) to al l students, 

before the courses Start. So our students wi th major subject mathematics 

have a lot of material i n calculus which they can use for theoretical and 

applied problems. Therefore, I can guarantee that all the techniques of Inte

gration which I wi l l use iater on in this talk are available to those students. 

Th i s Statement has been confirmed in several lectures which I presented to 

school teachers in Germany and also in an experiment in which I personally 

taught a major course in mathematics for students in grade 13 in a high 

school near M ü n c h e n . 

The basic idea of this has been the following: Al though the extensive mathe-

matical education in the schools is mostly justified by the many applications 

of mathematics in daily life one should not forget that mathematics is also 

determined to teach thinking and that it is an essential part of the cultural 

development of mankind . F r o m this point of view one should also integrate 

problems in the teaching of mathematics which - although of purely theo

retical interest - have given work to great thinkers over the centuries. In 

this connection the structure of our system of numbers is a main theme and 

what I am going to discuss is the notion of transcendental numbers. Now 

I shall present to you an outline of what I was teaching. I started wi th the 

definition: 

D e f i n i t i o n - A real number x is an algebraic number, if there are a natural 

number n (> 0) and integers ao, au ... , a n with a„ ^ 0 such that 

anxn + a „ _ i x n _ l + . . . -f a j x 2 + avx -f ao = 0, (1) 

ie, if x is a zero of a polynomial function of positive degree with integer 

coefficients. 
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This notion has been explained by simple 

Examples - (1) Rat iona l numbers are algebraic numbers: A n y rational 

number x can be written i n the form x = p / q w i th p £ Z and q € N which 

leads to the equation 

qx — p = 0 . 

(2) The number x = s/2 is an algebraic number which follows from the 

equation 

x 2 - 2 = 0 . 

(3) The number x = s/2 + \/3 is an algebraic number. To see this compute 

first x 2 = 5 + 2\/6 which is equivalent to x 2 - 5 = 2>/5. B y repeated 

squaring one obtains 

x A - 10x2 + 1 = 0 . 

The teacher knows from his course in algebra that al l numbers are alge

braic numbers which can be obtained from rational numbers by means of 

extract ing roots, forming of linear combinations wi th rational coefficients 

and Iteration of these processes. Sometimes it is very subtle to find the 

equation for a given number of this form but the process always works! So 

one has a lot of examples and exercises for the classroom. Somewhere i n 

this discussion the following fact should be observed. 

R e m a r k - If x is an algebraic number different from zero then one can find 

an equation of the form (1) with the addit ional property a 0 ^ 0. Indeed, i f 

i n the first instance some k > 0 is the smallest index with ^ 0 ie, 

anxn + a n_iarÄ" 1 + ... + akxk = 0, 

then one can divide by x k and obtains 

anxn'k + a n _ i x n " 1 - * + ... -I- a k = 0, 

which is an equation of the desired k ind . (Under the assumption a n ^ 0 ^ x 

one has obviously k < n ie, n — k > 0.) 
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Cardinal i ty considerations in the sense of set theory imply immediately 

that non-algebraic real numbers must exist; but in the usual teaching you 

wi l l not talk about cardinalities. There I said that it would not have been 

worth to have the notion of "algebraic (real) number" if a l l real numbers 

were algebraic, and then I introduced the new notion. 

Definition - A real number is a transcendental number, i f it is not an 

algebraic number. 

In this context one should also teil the students something about the his-

torical development of the idea of number. For detaus, I refer you to the 

relevant literature. N o w , I want only to mention that the final settling of 

transcendental numbers was done about 1840 by the French mathematician 

J O S E P H L I O U V I L L E who also performed the first proofs of transcendence [5]. 

The numbers which he recognized as transcendental numbers are nowadays 

- in his honour - called "Liouvi l le numbers". B u t in my opinion they are 

not suited for the classroom because they are constructed quite artificially 

and only for that purpose far away from the daily mathematical life. A n 

interesting question is the transcendence of numbers like the circle number 

7T - which is connected to the age-long problem of squaring the circle - and. 

of Euler 's number e, the base of the exponential function and the natural 

logarithms. A n other French mathematician, C H A R L E S H E R M I T E , was able 

to prove in 1873 [2]: 

E u l e r ' s nurnber e is a transcendental number. 

Extending this result by means of complex Integration the German F E R 

D I N A N D L I N D E M A N N proved in 1882 [4]: 

T h e circle number n is a transcendental number. 

Undoubtedly, it w i l l be clear for every Student that proving the transcen

dence of a given number wi l l , in general, be much harder than the search 
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for coefficients for a given algebraic number because - for such a proof -

one has to look at a l l polynomial functions of positive degree wi th integer 

coefficients. Therefore one might ask i f genuine proofs of transcendence can 

be dealt within secondary education. M y cla im is that the answer to this 

question is : yes, i t can be proved i n our classrooms that Euler ' s number 

is a transcendental number. Accord ing to my experience the best way to 

this result is to follow the ideas of H I L B E R T who - i n 1893 - essentially sim-

plified [3] the considerations of H E R M I T E and L I N D E M A N N . Other "more 

elementary" proofs, for instance by reducing to the use of power series, do 

not give real simplifications or more insight. Unfortunately, the same idea 

does not work for proving the transcendence of 7r; HILBERTHS proof, too, 

needs complex Integration which we do not teach i n our German schools. I 

assume that the same is true here i n Italy. 

Before sketching details of the proof, I want to be honest and to teil you 

that I d id not check the success of my teaching by tests. Nevertheless, the 

ordinary teacher of the experimental class and the director of the school 

- both attended the experiment - confirmed that they could see that the 

students had a certain understanding of what was going on. 

The proof does not start from a possible definition of e but uses a derived 

property of the exponential function. It is based on the following fact. 

Foundation: F o r a l l k £ N 0 one has 

That can be easily proved by means of partial Integration and induetion. Also, if 

these tools are not available it is not hard to get the result directly in the following 

manner (where the above mentioned procedures are hidden): First verify that 

oo 

(2) 
0 

lim x - e * = 0 for all k € N 0 (3) 

Then define for all k € N Q the function /* by 

x i — • xk • e * x e R 
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the function F k by 

x i—> j f k ( x ) d x ; i € R 

o 
and, for k > 0 the function F* by 

I i — • A - F 4 _ l ( * ) - ä * e ~ * ; I 6 R . 

Both functions JF* and Fk have the derivative and agree at zero; thus, they are 

equal: 

F k = F k . (4) 

This implies 

/
x k e ~ x d x = lim / x k e ~ x dx = 

Hm ( F t ( * ) - f l ( 0 ) ) = lim F k ( x ) = 
J— » O O f— »00 

since F*(0) = 0 

lim F k ( x ) = lim ( Ä - F ^ x ) = 
X —»OO X — r O O 

by (4) and the definition of F k 

lim k - F * _ i ( r ) = A: • lim F*_i(«r) 
X — - O O Z - + 0 0 

by (3), 

if l im z _ t 0 oFjk_i(£) exists. Now observe that FQ(£) = 1 - e~* for all £ G R ; thus 

lim*—oo Fo(£) exists and takes the value 1. The displayed chain of equation shows 

that this gives stepwise: 

fx e ~ * d x = l i m F i ( x ) = l 
,/ 1—oo 
0 
» 

J x 2 e - * d x = J [ im ) F 2 (£ ) = 2 
o 
00 

/ s 3 - e " * ^ = lim F 3 ( ü ) = 6 
o 

00 

/ x k e~*dx = Um F k ( x ) = k \ , 
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which is the desired result. Incidentally note that the equation (4) allows an 

explicit presentation of the functions Fk by rneans of recursive computation and 

that the equation (2) is fundamental for the definition of the T-function. 

As tools I had to use the Ii mit 

x k 

l i m — = 0 (5) 

which holds for al l x G R and the generalized triangle inequality: 

F o r a r b i t r a r y r e a l numbers x 0 , X i , ... , x n one has 

\x0 + x i + ... + x n \ < \x0\ + \ x i \ + . . . -f \xn\. (6) 

In order to prove (5) one notes that the ( k + l)st member of the sequence is 

obtained from the kth member by multiplying with the factor x j { k + 1). Given x 

one has for all k > 2\x\ that the factor in question is smaller than 1/2; that means 

that from a certain point on the next member of the sequence is always - with 

respect to its absolute value - smaller than half of the preceding. Therefore one 

has a nuU sequence. - The generalized triangle inequality (6) holds by evidence if 

all appearing have the same sign; then one even has equality. In the other case 

on the lefthand side something is cancelled while on the righthand side all a?, again 

submit their füll value. 

Now let us turn to the actual proof. Usua l ly one uses of a proof by contra-

dict ion. Experience shows that one often comes to the question of where 

the contradiction is really hidden. Mathematicians are accustomed to the 

bad habit of proving nearly anything by contradiction although a direct 

path to a desired result might be much simpler. I recommend that we get 

rid of this habit. In particular in our case the idea of the proof can be much 

more easily understood i f the c la im is formulated in a positive manner. One 

shows: 
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F o r tack choice of n £ N , a 0 l ai, ... , a n £ Z u/t*A a 0 ^ 0 and a„ ^ 0 

one obtains 

anen + an_xen-x + . . . + a 2 e 2 + ai<? + a 0 / 0. (7) 

Idea of Proof: Lei such numbers n , ao, ... , a n be given. We construct 

numbers r , s £ R, p £ Z such that 

r • (a Re* + a n _ 1 e n _ 1 + . . . + a 2 e 2 + axe + ao) = s + p (8) 

wi th 

1*1 < 1 (9) 

and 

p ^ O . (10) 

Since p shall be an integer one gets from (9) and (10) that the righthand 

side of the equation (8) is different from zero; then also none of the factors 

on the lefthand side can vanish which implies (7). (I should remark that 

some other proofs of transcendence and irrationali ty use similar ideas.) 

C a r r y i n g out this idea, define two auxil iary functions: 

g : x i — > x ( x — 1)(x - 2 ) . . \ x ~ n); x £ R, 

h : x i — • ( x - l ) ( x - 2).,.(:r - n ) e ~ x ; x £ R. 

Furthermore, fix some k £ N , first arbitrarily, later in such a way that 

certain conditions are satisfied and define - depending on this k - another 

function 

/ : x i — • g ( x ) k • h ( x ) ] x £ R, 

that means 

f ( x ) = ar* . [(x - 1 ) . . . . . ( x - n ) ]* + 1 • e'x for all x £ R. 
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M u l t i p l y i n g out the parantheses one obtains for f ( x ) a presentation of the 

form 

/ ( * ) = e " x - £ b r * } ( I i ) 

wi*h bj G Z for a l l j which appear. In particular one has 6* = ± ( n ! ) * + 1 ; 

the exact sign of bk and the exact values of the other bj (j > k ) do not play 

any role in the following. 

Here I should mention a surprise i n my teaching. German school teachers 

are cautious with the use of the sum symbol " £ " i n t f t e classroom; i t is 

introduced in our textbooks but seldom used and not trained. Thus, I tried 

to avoid it and I said to the students something like: " M u l t i p l y i n g out one 

obtains a sum of terms of the form b*x? wi th k < j < k + n ( k + l ) and b £ Z . 

If j = k then 6 has the part icular value ^(n!)** l." In the sequel I wrote 

only one summand at the blackboard and I said that they always should 

have the complete sums in mind . The students did not understand that; 

they could not imagine the interplay between these summands. Luck i ly 

at this stage in the game the teaching was interrupted by a fifteen minute 

break during which the students explained to me that they would get a 

better idea of the subject i f I used the sum symbol. 

Back to the main stream: Consider the integral 

WQ = / f ( x ) d x = ^2 bj ' / X* • e~*dx . 
o >=* o 

In view of (2) the single integrals under the sum are integers, divisible by 

kl, for j > k even divisible by ( k + 1)!. Since also a l l coefficients bj are 

integers one obtains 

w0 = ± ( n ! ) * + 1 • Jb! +co • (* + ! ) ! (12) 

with Co G Z . Now take 

r = ^ = ± ( n ! ) * + 1 + c 0 . ( fc + l ) ; (13) 
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later on conditions for the st i l l arbitrary number k w i l l be formulated which 

guarantee that this number r really can be used for the construction of an 

equation of the form (8) wi th the desired addit ional properties. 

Next for i = 1 , . . . , n split WQ i n the form 

WQ ~ VT + Wi 

with 

Vi = J f ( x ) d x , Wi — J f ( x ) d x . 
o i 

Thus one obtains for r • ( a n e n + an_xen~l + . . . + a2e2 4- axe -f a 0 ) a decom-

position of the form 

vnanen + . . . + t̂ iflie w»a»e n + . . . + w x a i e + u/ 0a 0 

Jb! + Ar! ; 

i t remains to show that for a suitable choice of k the number 

vnanen + . . . + v x a i e 

s = _ 
and 

wnanen + ... + W i a x e . -f W0<IQ 
p , _ _ 

have the desired properties. 

F i r s t consider p . The graph of the function / , restricted to the domain« 

x > i , determines the same area as the graph of the function / : i H 

f ( x + i ) ; x > 0 . Therefore one has for i > 0 
oo 

Wi = y*(f + i ) * [ ( x + « - + t - 2 ) . . . x . . . ( x + i - n)]* + 1 c"*" , ' c fö . 
0 

Evidently this is an integration by Substitution which was unknown to my students. 

Since we dealt only with a simple translation of the origin they did not have any 

difficulties. 

Taking out the factor t~x from the integral and renaming the variable of 

integration as x one obtains 
oo 

W i = e'% • J(x + i ) k [ { x + i - l ) ( x + t - 2 ) . . . x . . . (x + t - V d a r . 
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Since x appears "pure" within the brackets the integrand has now the form 

wi th bj G Z for a l l j which appear; this means 

Wi = e~% - ^2 bj I x*e~xdx . 
i=*+i o 

Here i t follows from (2) that every Single integral under the sum is an 

integer divisible by ( k 4- 1)! that means that Wi has the form 

wt = e " , - c i . ( f c + l ) ! 

with c, G Z . Altogether one obtains 

P = {cnan + . . . 4- ci<h + c 0 ) . ( t + 1) db ( n ! ) * + 1 - a 0 = 

= c-(ib + l ) ± ( n ! ) * + 1 . a 0 

with c G Z . Therefore p is an integer and certainly different from zero i f k 

is chosen such that k 4- 1 is a sufficientiy large prime number, greater than 

n and ao. (Since (n! )* + 1 *ao is surely difTerent from zero the integer p could 

only vanish if (n ! )* + 1 • a 0 would be divisible by 4* 1; this is impossible i f Ar 

is chosen in the named manner.) 

For the discussion of s consider the restrictions of the functions g, h and / 

to the interval [0,n]. Since these are again continuous functions they are 

bounded, which means that there are positive real numbers G, H such that 

for a l l x G [0, n], 

\ g ( x ) \ < G , \ h ( x ) \ < H ; 

which implies for the same x ) 

\ f ( x ) \ < G " . H . 

If the theorem of the boundedness of continuous functions on finite closed intervals 

is not known to the students one can work with explicit bounds. Evidently, one 

149 



has for all x G [0, n] 

\ g ( x ) \ < n n + l , \ h ( x ) \ < n n 

take G = n n + 1 , H = n 1 1 . 

Rewr i t ing this inequality as a double inequality: 

- G * • H < f ( x ) < Gk • H , 

one obtains for i = 1 , . . . , n the estimations 

—Cr* . H > i < v t < G k - H - i , 

which means that 

M < C ? * . J / . t . 

Taking these together the generalized triangle inequality (6) gives 

|*| = \vnane* + -I- t / ia ic | < 

< Gk - H - ( n - \ a n \ • e n 4 - . . . + 1 • • e) 

where the number 

* = Jff • (n • | a n | • c" + . . . + 1 • | a t | • c) 

does not depend on k. F rom (5) now follows 

Cr* »2 Cr* . 

h m — r r — = ( l i m —-) • z = 0 , 

consequently, for sufficiently large k 

Since there are infinitely many prime numbers one can certainly find a k 

such that \$\ < 1 and p ^ 0. qed 

The fact that the theorem of the existence of infinitely many prime numbers 

can be applied in this context has been the peak of the experiment for the 
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students. - If you yourself would like to try something iike that, you should 

note that there are some Steps which can be done in the usual teaching 

as examples, exercises or homework. I also would recommend to treat 

some things more explicitly. For instante, one can compute completely the 

integral w0 for small values of n und k. - Natural ly, a representable proof of 

the transcendence of the circle number TT would be more interesting for the 

students, but i t does not exist. Let me close by challenging you to search 

for such a proof. 

A P P E N D I X 

In former discussions on this subject I have been asked for simple proofs 

of the irrationality of n . A t this moment the simplest proof for use in the 

classroom is due to I. N I V E N [6] and proceeds as foiiows. Suppose n = p / q 

with p G Z and q 6 N . Dependent on an ini t ia l ly arbitrary k € N one 

defines auxiliary functions 

/ : x i — r — : x € K , 

F : x i — • f(x) - fW(x) + f < * H x ) - . . ,+ (-l)*/ ( 2 f t ) (*); * € R. 

One notes that the function / . all its derivatives, and therefore also the 

function F , take only integer values at the places 0 und 7r. Moreover one 

confirms by differentiation that the function 

G : x i — * F ' ( x ) - slnx — F ( x ) • cosrr; x £ R , 

has the function 

g : x i—• f ( x ) - sinx; x E R 

as derivative. This implies that the integral 

jr 

j g ( x ) d x = <?(*)|; = F ( n ) + F ( 0 ) 
0 
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is an integer for each choice of k £ N . For all x £ (0 ,7r) one has 

0 < g ( x ) < —Jt- , 

this means that 

0 < j g ( x ) d x < n - [ — V - . 
0 

In view of the l imit (5) the value on the righthand side of this equation be-

comes smaller than 1 for sufficiently large k and therefore [ g ( x ) d x certainly 
b 

falls to be an integer. Contradict ion! 

To prove the insolvabili ty of the probiem of squaring the circle it would 

be sufücient, as you know, to check that the number TT does not belong to 

any algebraic extension of the field of rational numbers of degree 2 m with 

m £ N 0 . A l though this c la im seems to be much weaker than the transcen

dence of 7r no simple proof is known. One step in this direction, namely 

a classroom proof of the irrationali ty of n 2 was taken by the Japanese Y . 

I W A M O T O ; his Variation of N I V E N ' S sketched proof can be found in the very 

interesting but also more demanding book Z a h l e n [1]. 
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