GLASNIK MATEMATIČKI

SERIJA III.

Vol. 20 (40) — 1985 GLMAB 2

ZAGREB 1985

DRUŠTVO MATEMATIČARA I FIZIČARA SR HRVATSKE

SADRŽAJ—CONTENTS

Originalni znanstveni radovi

I. Hafner,	On lower bound of the proof length in the equivalen- tial calculus	269
N. Seifter,	Fixed points, fixed ends and groups of graphs	271
V. Vuković,	(Nonassociative) near-rings	279
R. Brú and M. Lóp:z- -Pellicer,	Extensions of algebraic Jordan basis	289
M. E. Harris,	A remark on the Schur's lemma situation	293
R. Fritsch,	A category's quotient category of isomorphism types versus its skeleton	297
K. R. Yacoub,	On finite groups with four independent generators two of which being of odd prime order p and one of order 2	301
M. Polonijo,	On transfers and closure conditions for quasigroups	313
J. Datta,	On translations of sets in Banach space	319
M. Pal,	On an extension of a theorem of S. Kurepa	327
Z. Kominek and H. I.		
Miller,	Some remarks on a theorem of Steinhaus	337
M. Perović,	On the problem of radius of injectivity for the map- pings quasiconformal in the mean	345
J. Schinas and A.		
Meimaridou,	Asymptotic behavior for difference equations which cannot be linearized around a periodic orbit	349
I. Aganović and Z.Tutel	b, On the lower-dimensional approximations of the mixed problem for Laplace equation	355
D. Žubrinić,	On the existence of solutions of $- \triangle u = g(x, u, \nabla u)$	363
K. Baron,	A remark on linear functional equations in the indeter- minate case	373
M. Bajraktarević,	Sur certaines solutions continues de l'équation foncti- onnelle $A\psi = B\psi$	377
B. Stanković,	Theorems of Tauberian type for measures	383
A. Mikelić,	A variational problem of the Thomas-Fermi-von Wei- zsäcker type	391
W. Kotzé,	The fuzzy Hausdorff property	409
Ju. T. Lisica and		
S. Mardešić,	Coherent prohomotopy and strong shape for pairs .	419
M. Mršević, I. L. Reilly and M. K.		
Vamanamurthy,	On some generalizations of regularity	435
D. S. Janković and	A characterized of TL should support	
F. E. Long,	A characterization of <i>H</i> -closed spaces	441
R. L. Diait, D. Seitemeli	A note on remote points	445
K. SCHOVSR,	Searching method and existence of solution of special nonlinear least squares problems	451

A CATEGORY'S QUOTIENT CATEGORY OF ISOMORPHISM TYPES VERSUS ITS SKELETON

R. Fritsch, Munich, West Germany

Abstract. It is shown — in geometric language — that a category \mathscr{C} and its quotient category $[\mathscr{C}]$ of isomorphism types have different fundamental groups. This contrasts with the fact any skeleton of \mathscr{C} is a strong deformation retract of \mathscr{C}

Given a category \mathscr{C} one sometimes looks for another category \mathscr{C}' , which should be quite similar to \mathscr{C} but has the additional property that the isomorphism classes of objects consist of one object only. Categorists take a skeleton while "working" mathematicians tend to form the "quotient category [\mathscr{C}] of isomorphism types" just by formal identification of isomorphic objects¹⁾. The aim of this note is to point out that the quotient category [\mathscr{C}] differs from \mathscr{C} much more strongly than any skeleton of \mathscr{C} , namely that there is not even a pair of adjoint functors connecting \mathscr{C} and [\mathscr{C}] while any skeleton of \mathscr{C} is equivalent to \mathscr{C} itself [7; p. 91].

To be precise, let \mathscr{C} be a category and \mathscr{A} its class of objects. Then there are a class \mathscr{B} and a surjective map $[]: \mathscr{A} \to \mathscr{B}$ such that

$$[A] = [C] \Leftrightarrow A \equiv C \text{ for all } A, C \in \mathscr{A}$$

([4, p. 72]). Consider \mathscr{A} as discrete subcategory of \mathscr{C} , \mathscr{B} also as a discrete category and [] as a functor in the evident manner. Then form the pushout

$$\begin{array}{c} \mathscr{A} \subset \mathscr{C} \\ [] \downarrow \qquad \downarrow \\ \mathscr{B} \subset [\mathscr{C}] \end{array}$$

to obtain [C], the quotient category of isomorphism types of C. It has the class \mathcal{B} as class of objects and as non-identity arrows all lists

$$(f_k, ..., f_2, f_1)$$

Mathematics subject classification (1980): 18 A 30.

Key words and phrases: Category, isomorphism type, skeleton, classifying space of a category, groupoid associated with a category, object groups of groupoid, fundamental groups.

¹⁾ I found this tendency in many oral and by letter discussions in contrast to the opinion of a referee that nobody would really expect the quotient category to do the job proposed. The main reasons for it are that quotient constructions appear everywhere in the mathematical world and that the choice of a skeleton requires a suitable axiom of choice.

of arrows in C which satisfy

(i) f_i is a non-identity arrow, $1 \le i \le k$,

(*ii*) dom $f_i \neq \operatorname{cod} f_{i-1}$, 1 < k, but

(*iii*) $[\text{dom } f_i] = [\text{cod } f_{i-1}], \ 1 < i \le k$

(cf [3; Theorem 4, p. 73] and [1, p. 263/264]).

Next take the groupoids Gr \mathscr{C} and Gr $[\mathscr{C}]$ associated with \mathscr{C} , $[\mathscr{C}]$ respectively (in the sense of [2, p. 10]; the smallness condition there again can be avoided by the set-theoretical trick used for obtaining \mathscr{B}). For an object C of \mathscr{C} define the *fundamental group* $\pi(\mathscr{C}, C)$ of \mathscr{C} based at C as the object group Gr \mathscr{C} {C} (= group of automorphisms of C) in the groupoid Gr \mathscr{C} . Analogously we have the fundamental group $\pi([\mathscr{C}], [C])$ of $[\mathscr{C}]$ based at [C]. This notion allows to formulate the main result of this note:

THEOREM. Let \mathscr{C} be a category and let $[\mathscr{C}]$ be its quotient category of isomorphism type. Then there is for all $C \in Ob \mathscr{C}$ an (in general large) free group \mathscr{F}_{C} such that

$$\pi([\mathscr{C}], [C]) \cong \pi(\mathscr{C}, C) * \mathscr{F}_{C}$$

where [C] denotes the isomorphism type of C and * denotes the free product (of groups). Moreover \mathcal{F}_{C} depends (up to isomorphism) only on the connected component of C in \mathcal{C} .

(One gets an impression of the size of the free group \mathscr{F}_C by exhibiting a system of free generators: Let $\hat{\mathscr{C}}$ be the component of C in \mathscr{C} and let $\{C_{\mu}\}$ be a class of objects in $\hat{\mathscr{C}}$ containing exactly one representative for every isomorphism type; then the class Ob $\hat{\mathscr{C}} \setminus \{C_{\mu}\}$ forms such a system.)

This allows the final conclusion: In general the fundamental groups $\pi([\mathcal{C}], [C])$ and $\pi(\mathcal{C}, C)$ will be non-isomorphic, while a pair of adjoint functors between \mathcal{C} and $[\mathcal{C}]$ would induce an isomorphism between these groups.

For small categories \mathscr{C} this can be expressed more geometrically, using the notion of the classifying space B \mathscr{C} of \mathscr{C} [7; p. 106]. The discussion of strong homotopy in [8; p. 199] shows that B \mathscr{C}' is a strong deformation retract of B \mathscr{C} for every skeleton C' of \mathscr{C} and that any adjoint functor induces a homotopy equivalence between the corresponding classifying spaces. Since the fundamental groups of a category \mathscr{C} as defined before are just the usual fundamental groups of the classifying space B \mathscr{C} , the discussion shows that in general B \mathscr{C} and B $[\mathscr{C}]$ have already different fundamental groups so that there is no chance for a homotopy equivalence between them. The key to the theorem lies in the two following propositions.

PROPOSITION 1. — Let \mathscr{B} and \mathscr{C} be groupoids and assume the free product [1; p. 269/270]

 $\mathcal{D} = \mathcal{B} * \mathcal{C}$

to be connected. Then, for any object $D \in Ob \mathscr{D}$ the object group $\mathscr{D} \{D\}$ is of the form

$$\mathscr{D} \{D\} = \mathscr{F} * \mathscr{G} * \mathscr{H}$$

where

F is a free group,

- G is a free product of object groups of \mathcal{B} , exactly one for every component of \mathcal{B} , and
- H is a free product of object groups of C, exactly one for every component of C.

This can be proved by the same method as Kurosch's Theorem is proved in [3; p. 118 f.].

PROPOSITION 2. Let

$$\begin{array}{c} \mathcal{A} \subset \mathcal{C} \\ \mathcal{P} \downarrow \qquad \downarrow \mathcal{Q} \\ \mathcal{B} \subset \mathcal{D} \end{array}$$

be a pushout of categories such that \mathcal{A} and \mathcal{B} are discrete, p is surjective and is connected. Then there is a free group \mathcal{F} such that

$$\pi(\mathcal{D}, q C) \cong \pi(\mathcal{C}, C) * \mathcal{F} \text{ for all } C \in \operatorname{Ob} \mathcal{C}.$$

Moreover \mathcal{F} is trivial iff \mathcal{P} is injective.

To prove Proposition 2 one can assume \mathscr{C} and \mathscr{D} to be groupoids; then a careful analysis of the pushout in question yields the result by means of an application of Proposition 1 in the special case, where \mathscr{B} is totally disconnected.

REFERENCES:

- [1] R. Brown, Elements of Modern Topology, European Mathematics Series, McGraw-Hill, London 1968.
- [2] P. Gabriel and M. Zisman, Calculus of Fractions and Homotopy Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 35 (1967), Springer-Verlag, Berlin-Heidelberg-New York.

- [3] P. J. Higgins, Categories and Groupoids, Mathematical Studies 32 (1971), Van Nostrand Reinhold Co., New York—Cincinnati—Toronto—Melbourne.
- [4] T. Jech, Set Theory, Pure and applied mathematics, Academic Press, New York— San Francisco—London 1978.
- [5] D. M. Latch, R. W. Thomason and W. S. Wilson, Simplicial sets from categories, Math. Z. 164 (1979), 195-214.
- [6] S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Mathematics 5 (1971), Springer-Verlag, New York-Heidelberg-Berlin.
- [7] G. Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 105-112.

(Received June 27, 1983) (Revised July 11, 1984) Mathematisches Institut Theresienstraße 39 D-8000 München 2

ODNOS KVOCIJENTNE KATEGORIJE TIPOVA IZOMORFNOSTI PREMA SKELETU KATEGORIJE

R. Fritsch, München, Zap. Njemačka

Sadržaj

Neka \mathscr{C} označava kategoriju a [C] njenu kvocijentnu kategoriju tipova izomorfnosti (tj. kategoriju u kojoj se formalno identificiraju izomorfni objekti). Pokazano je da te kategorije (izraženo geometrijskim jezikom) imaju različite fundamentalne grupe. To je u oprečnosti sa činjenicom da je svaki skelet od \mathscr{C} strogi deformacioni rektrakt od \mathscr{C} .