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Ext A LA YONEDA WITHOUT THE SCHANUEL LEMMA
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ABSTRACT. By means of a more precise treatment of the congruence relation
between n-extensions we show that it is possible to avoid the Schanuel
Lemma for proving some results on the functors Ext.

An n-extension E from D to C is an exact sequence of the form

0)) 0-C—>E —>E,»--+—>E —->D-0

in an abelian category. The idea to use congruence classes n-extensions as
elements of Ext”(D, C) is due to Yoneda ([7], [8]; cf. also Buchsbaum [4] and
Mac Lane [5, Chapter III])." In studying Ext” from this point of view, the
Schanuel Lemma (Mitchell [6, Chapter VII, Lemma 4.1]) plays an essential
role: firstly, in order to get the exactness of the long sequence (Mitchell 1.c.
§5), secondly, for proving that a congruence between two n-extensions can be
realized in two steps (Brinkmann [2]). However the Schanuel Lemma and its
proof are of a highly technical nature. Therefore, in the following we propose
a more straightforward way to these results, the key to which lies in the
following

THEOREM. Two n-extensions E! and E? are congruent over an n-extension if
and only if they are congruent under an n-extension.

Here “congruence of E! and E? over (under) an n-extension” means the
existence of an n-extension E and of morphisms f (i = 1, 2) with fixed ends
(in the sense of Mitchell 1.c. §3) forming the diagram

E! E?

(20)

resp.
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In case n = 1 this goes back to Baer [1]. A very nice way to get the group structure on
Ext*(D, C) is described by Brinkmann in [3].
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(2u)

E! E?

An immediate consequence of this theorem is that “congruence over” and
“congruence under” are equivalence relations and that they coincide. This is
the precise statement of the result on the realizability of congruences quoted
above. Moreover, the exactness of the long sequence can be easily deduced
from this theorem.

We demonstrate the step of its proof for which Mitchell [6, p. 179] uses the Schanuel Lemma.

Let B be the short exact sequence
3) 0-45B5¢c>0
and let E be an n-extension of the form (1). Let further the spliced (n + 1)-extension BE
represent the zero of Ext"*!(D, A). Then, we have to show that E is congruent to pE’ for some
n-extension E’ from D to B. By means of the theorem, we have an (n + 1)-extension E from D to
A such that BE and 0 (the latter having the form
(Y] 05454-50->---50-D->D-0)
are congruent under E.

The existence of a morphism from E to the extension 0 implies that E can be decomposed as

©) E = BE
where B is of the form

(6) 054540 C—->C—0.

ig Pe
Now, the morphism from E to BE with fixed ends induces a map f: C — C which factors through
D, i.e. we have

)] f=rs
for some map g: C— B. Then,
(8) E = gE

is an n-extension of the desired kind.

PROOF OF THE THEOREM. We prove that “congruence over” implies
“congruence under”; the converse is dual. Thus, let a diagram of the form (20)
be given. We may assume that the f' consist of isomorphisms except at only
two places (Mitchell 1.c. Proposition 3.1), k' and k' + 1 (i=1, 2; 1 < kf
< n) say. We may assume

9) k' < k1< k' + 1.
In case
(10) k?=k'+ 1

we split all the n-extensions involved into a left part of length k2 and the
remaining right part. We denote the left and right parts by the subscripts ,
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and , respectively. Then there is a morphism 4, such that

(11) E} =Eh

and

(12) hE}=E,.

This shows that the E' (i = 1, 2) are congruent under (E'h)E>. If
(13) k? = k!

we can restrict our attention to the case n = 2. There, we have the following
diagram:

0- C - El1 - E21 - D 50
g

1

i P
l Wi VA ||
(14) 0- C - E, 2 E, > D -0
l iV iV I
0- C - E12 - E22 - D 50
i2 82 p2

In this situation we form the pullback

E; 5 EleE
(15) l WKhH=1
E, e E,
Then, on the one hand, we have a map g’: E! ® E2 — E;, given by
(16) g = (fl,—fD. g' @ g%);
on the other hand, the composition
) Ez'—h>E21@ E22p—>iE£—;D,

E, p
which is independent of i (i = 1, 2), yields 2a map p’: E; — D. This leads to a
2-extension
(18) 0-C - EIIGB E12—>E2’—->D—>0,
@i,i% g P’

under which the given 2-extensions E! and E? are congruent. The exactness of
(18) can be verified directly in the case of modules by means of diagram
chasing; then the translation into the general case of abelian categories is
obvious but also tedious.

The author is indebted to H.-B. Brinkmann and S. Mac Lane for helpful
conversations in preparing this note.
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