The Schreier Refinement Theorem for Categories

By
Rudolf Fritsch and Oswald Wyler

We use the preceding note [1] to prove the following theorem.
Theorem. Any two normal series of subobjects of an object G of a pointed category \mathscr{C} have isomorphic refinements if \mathscr{C} satisfies Z2, and the following condition.

Z1*. \mathscr{C} has cokernels of kernels, and kernels of any composition $e^{\prime} e$ of two cokernels e and e^{\prime}.

We note first that Z1* implies that every cokernel has a kernel, since every identity morphism is a cokernel of a zero morphism, and we have the following three lemmas.

Lemma 1. Z1* is equivalent to the following statement: \mathscr{C} has cokernels of kernels, and every possible pullback square

for a kernel m and a cokernel e with the same target, exists in \mathscr{C}.
Proof. If Z1* is valid, let e_{1} be a cokernel of m and m^{\prime} a kernel of $e_{1} e$. Then $e m^{\prime}=m e^{\prime}$ for a morphism e^{\prime}, and this obviously is the desired pullback. For the converse, we observe first that a cokernel of an identity morphism (which is a kernel of a zero morphism) produces a zero object. If $e: A \rightarrow B$ and $m=0: Z \rightarrow B$ for a zero object Z, then m is a kernel of id B, and a pullback produces a kernel m^{\prime} of e. Now if $e_{1} e$ is the composition of two cokernels and m a kernel of e, then a pullback produces a kernel m^{\prime} of $e_{1} e$.

Definition. A morphism m of \mathscr{C} will be called a subkernel if m is the composition in \mathscr{C} of kernels in \mathscr{C}, and (A, a) will be called a subnormal subobject of G if $a: A \rightarrow G$ is a subkernel in \mathscr{C}.

Lemma 2. (i) The intersection of any two subnormal subobjects (A, a) and (B, b) of an object G of \mathscr{C} exists in \mathscr{C} and is a subnormal subobject of \mathscr{C}.
(ii) If $m m^{\prime}$ is defined in \mathscr{C} and m is a subkernel, then $m m^{\prime}$ is a subkernel if and only if m^{\prime} is a sublernel.

Proof. Let $a=a_{10} a_{20} \cdots a_{h 0}$ and $b=b_{01} b_{02} \cdots b_{0 k}$ for kernels $a_{i 0}$ and $b_{0 j}$. If $a_{i, j-1}$ and $b_{i-1, j}$ are defined and kernels, then a pullback

exists in \mathscr{C}, for kernels $a_{i j}$ and $b_{i j}$, by the dual of 2.3 in [1]. This defines kernels $a_{i j}$ and $b_{i j}$ recursively for $1 \leqq i \leqq h$ and $1 \leqq j \leqq k$. If $a^{\prime}=a_{1 k} a_{2 k} \cdots a_{h k}$ and $b^{\prime}=$ $=b_{h 1} b_{h 2} \cdots b_{h k}$, then a^{\prime} and b^{\prime} are subkernels, and the commutative square

in \mathscr{C} is the composition of $h \cdot k$ pullback squares, and hence a pullback. Thus $a \cap b$ exists and is subnormal.

The "if" part of (ii) is trivial. For the "only if" part, put $a=m m^{\prime}$ and $b=m$ in (i). Then we can carry out the construction of (i) if m and $m m^{\prime}$ are subkernels, and we obtain $a^{\prime} \cong m^{\prime}$. Thus m^{\prime} is a subkernel.

Lemma 3. If f is a cokernel and m a subkernel so that $f m$ is defined, then $f[m]$ and $f^{-1}[f[m]]$ exist in \mathscr{C} and are subnormal, and $f\left[f^{-1}[f[m]]\right] \cong f[m]$ in \mathscr{C}.

Proof. Let $f: A \rightarrow B$, and let $m=a_{1} a_{2} \cdots a_{h}$ for kernels a_{i}. Put $m_{0}=$ id A and $m_{i}=m_{i-1} a_{i}$ for $1 \leqq i \leqq h$, so that $m_{h}=m$. Define kernels b_{i} and cokernels e_{i} recursively in \mathscr{C}, using Z2, by putting $e_{0}=f$, and $e_{i-1} a_{i}=b_{i} e_{i}$ for $1 \leqq i \leqq h$. If we put $m_{0}^{\prime}=\mathrm{id} B$ and $m_{i}^{\prime}=m_{i-1}^{\prime} b_{i}$ for $1 \leqq i \leqq h$, then $m_{i}^{\prime} e_{i}=f m_{i}$, and m_{i}^{\prime} is a subkernel. Thus $f\left[m_{i}\right] \cong m_{i}^{\prime}$, and $f[m] \cong m_{h}^{\prime}$ exists and is subnormal.

Now we construct recursively the following diagram

beginning with $e_{0}^{\prime}=f, m_{0}^{\prime}=\operatorname{id} B$ and $m_{0}^{\prime \prime}=$ id A. We assume that the righthand square is a pullback, with $m_{i-1}^{\prime \prime}$ a subkernel and e_{i-1}^{\prime} a cokernel. This is satisfied for $i=1$. By Lemma 1 , the lefthand square can be constructed as a pullback, and then c_{i} is a kernel, the rectangle is a pullback, and $m_{i}^{\prime \prime}=m_{i-1}^{\prime \prime} c_{i}$ defines a subkernel $m_{i}^{\prime \prime}$. Thus the construction can go on if e_{i}^{\prime} is a cokernel. To see that e_{i}^{\prime} is a cokernel, put $b_{i} e_{i, \prime}^{\prime}=e_{i-1}^{\prime} c_{i}=b_{i}^{\prime} e_{i}^{\prime \prime}$ for a cokernel $e_{i}^{\prime \prime}$ and a kernel b_{i}^{\prime}, using Z2. Then $b_{i}^{\prime} \leqq b_{i}$ since ($e_{i}^{\prime \prime}, b_{i}^{\prime}$) is an image. On the other hand, $f m_{i}=m_{i}^{\prime} e_{i}$, and thus $m_{i}=m_{i}^{\prime \prime} u_{i}$, $e_{i}=e_{i}^{\prime} u_{i}$, for a morphism u_{i}, and $b_{i} e_{i}=b_{i}^{\prime} e_{i}^{\prime \prime} u_{i}$ follows. But then $b_{i} \leqq b_{i}^{\prime}$ since $\left(e_{i}, b_{i}\right)$ is an image. Thus $b_{i}^{\prime}=b_{i} x, e_{i}^{\prime}=x e_{i}^{\prime \prime}$, for an isomorphism x, and e_{i}^{\prime} is a cokernel.

Now $f^{-1}\left[m_{i}^{\prime}\right] \cong m_{i}^{\prime \prime}$, and $f\left[m_{i}^{\prime \prime}\right] \cong m_{i}^{\prime}$, and the lemma is proved.
All results of [1] now become available, except for 4.2, if we restrict ourselves to subnormal subobjects. The last part of Lemma 3 replaces 4.2 in proofs in [1]; no other changes are needed. Subobjects occuring in a normal series are ipso facto subnormal. Thus the Zassenhaus Lemma is valid for these subobjects, and the usual proof of the Schreier Theorem goes through without any changes.

Reference

[1] O. Wyler, The Zassenhaus Lemma for categories. Arch. Math. 22, 561-569 (1971).
Eingegangen am 21.6.1971
Anschrift der Autoren:
Rudolf Fritsch
Fachbereich Mathematik der Universität
Oswald Wyler
775 Konstanz
Department of Mathematics
Jacob-Burckhardt-Str. Carnegie-Mellon-University
Pittsburgh, Pennsylvania 15213, USA

