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Minimal from Classical Proofs 

Helmut Schwichtenberg 

Mathematisches Institut, Universität München 
Theresienstr. 39, D-8000 München 2 

We consider the —• V-fragment of first order logic with a distinguished predicate 
symbol _L (for falsity); as usual we write -«<£> for <p —• _L. Gentzen's natural de-
duction System for minimal logic in this language consists just of introduction and 
elimination rules for —* and V. Hence any proof in this System gives rise to a type-
free A-term, possibly with assumption variables. If in addition a proof (and hence 
also its associated A-term) is normal, then from its context, i.e. the assignment 
of assumption formulas to its assumption variables, and from its endformula we 
can recover all formulas in the proof. This representation of formal proofs seems 
to be useful: for instance it allows an efficient implementation of normalization by 
evaluation (cf. [1], [2]). 

It is well known that any proof can be transformed into a unique normal form 
with respect to /?-conversion. Using 77-expansion we can then construct the l o n g 
normal form, where all minimal formulas are atomic. 

We are interested in the problem of how to find proofs in minimal logic, from 
a somewhat practical point of view.* In particular we want to make use of existing 
theorem provers based on classical logic. So our problem is to review under what 
circumstances a classical proof can be converted into a proof in minimal logic, and 
moreover to describe reasonable algorithms which do this conversion. A good survey 
of the subject can be found in [3, Chapter 2.3]. Here we add a new result. 

Note first that a convenient way to represent classical logic in our setting is to 
add stability assumptions of the form 

stabp : Vx . - i->Px —• Px 

for all predicate Symbols P . For then we can easily derive -1-1 y> —• <p for an arbitrary 
formula y?, using 

( — 1 — — • ip} —• -1—i(<£> —• rfS) —¥ (p —• rp 

which are derivable in our —»-V-fragment of minimal logic. Hence by a classical proof 
of ip from assumptions < p i , . . . , <pn we mean a proof in minimal logic using stability 
assumptions in addition to the given assumptions < p i , . . . , ( p n . 

A formula is called H o r n f o r m u l a if it has the form V a ? i , . . . , x n . A \ 
A m —• B with A{ and B atomic. It is called d e f i n i t e H o r n f o r m u l a if in addition we 
have B ^ _L If instead of atomic A{ we allow universally quantified atomic formulas, 
the result is called a g e n e r a l i z e d ( d e f i n i t e ) H o r n f o r m u l a . 

* At the Conference I gave a more general lecture on "Proofs and Programs". 
Since most of what I have said is already published (in [1] and [2]), this note only 
elaborates one part of the lecture dealing with a very special aspect of the field. 
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T h e o r e m 1. L e t < p i , . . . , ( p n be g e n e r a l i z e d H o r n f o r m u l a s . We have a q u a d r a t i c 
a l g o r i t h m t r a n s f o r m i n g a c l a s s i c a l p r o o f i n l o n g n o r m a l f o r m of _L f r o m i p \ , . . . , (pn 

i n t o a p r o o f i n m i n i m a l l o g i c of J_ f r o m t h e same a s s u m p t i o n s . 

The proof is by induction on the total number of stability axioms used. Note 
first that bound assumption variables u in the given normal proof can only occur in 
the context 

stabpr^Aud) 

with u of type -»Pr and d of type J_. The reason for this is that all top formulas 
different from stability axioms are generalized Horn formulas which never have an 
implication in the premise of another implication. 

Case 1 . There is at least one occurrence of a bound assumption variable in the 
proof. Since we assume our proof to be in long normal form, any of the occurrences of 
an assumption variable u of type ->Pr must be the main premise of an —»-elimination, 
i.e. must be in a context ud\ where u derives P r . Now choose an uppermost 
occurrence of a bound assumption variable, i.e. a subderivation ud\ where d\ does 
not contain an occurrence of any bound assumption variable. Since d\ derives P r , we 
can replace the whole subderivation stabpr(Atid) of P r (the one where u is bound) 
by d i . Hence we have removed one occurrence of a stability axiom. 

Case 2. Otherwise. If there are no more stability axioms in the proof, we are 
done. If not, choose an uppermost occurrence of a stability axiom, i.e. a subderiva­
tion s t a b p r \ \ u d ) where d does not contain stability axioms. Since we are in case 2 
here d also cannot contain free assumption variables which are bound elsewhere in 
the proof. But since d derives _L, we can replace the whole proof (which also has _L 
as its end formula) by d and hence we are done again. 

Note that Theorem 1 is best possible in the sense that it becomes false if we 
allow an implication in the body of one of the Horn formulas. A counterexample 
(due to U . Berger) is 

( ( P ^ Q ) - ± ) ^ ( P - ± ) - _ L , 

which is provable in classical but not in minimal logic. For if it were, we could replace 
_L in this proof (which in minimal logic is just another propositional variable) by P , 
and hence we would obtain a proof in minimal logic of the Peirce formula 

( ( P - > Q ) - > P ) - + P , 

which is known to be underivable. 
By essentially the same argument we obtain the following variant of Theorem 

1 for generalized d e f i n i t e Horn formulas: 

T h e o r e m 2. L e t ( p i , . . . ) ( f n be g e n e r a l i z e d d e f i n i t e H o r n f o r m u l a s . We have a 
q u a d r a t i c a l g o r i t h m t r a n s f o r m i n g a c l a s s i c a l p r o o f i n l o n g n o r m a l f o r m of a n a t o m i c 
f o r m u l a B f r o m ( p \ , . . . , (pn i n t o a p r o o f i n m i n i m a l l o g i c o f B f r o m t h e same assump­
t i o n s . 

The proof is by a simple modification of the argument for Theorem 1. Note 
that in case 2 it cannot happen that stability axioms occur in the proof since then 
we would have a derivation d of _L from definite Horn formulas, which is clearly 
impossible. 
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