
L o g i c , A l g e b r a , 

a n d C o m p u t a t i o n 

International Summer School directed by 
F. L. Bauer, W. Brauer, G. Huet, J. A. Robinson, H. Schwichtenberg 

Edited by 

Friedrich L. Bauer 
Professor Emeritus 
Technische Universität München 
Postfach 202420, W-8000 München, Federal Republic of Germany 

Springer-Verlag 
Berlin Heidelberg NewYork London Paris Tokyo 
Hong Kong Barcelona Budapest 
Published in Cooperation with NATO Scientific Affairs Division 



Table of Contents 

John V.Tucker 
Theory of Computation and Specification over 
Abstract Data Types, and its Applications 1 

Zohar Manna, Richard Waldinger 
Fundamentals of Deductive Program Synthesis 41 

J . A l an Robinson 
Notes on Resolution 109 

Gerard Huet 
Introduction au A-calcul pur 153 

Helmut Schwichtenberg 
Normalization 201 

Stanley S. Wainer 
Computability - Logical and Recursive Complexity 237 

Robert L. Constable, Stuart F . Allen, Douglas J . Howe 
Reflecting the Open-Ended Computation System of 
Constructive Type Theory 265 

Ani l Nerode 
Some Lectures on Modal Logic 281 

Wilfried Brauer 
Formal Approaches to Concurrency 335 

Ehud Shapiro 
The Family of Concurrent Logic Programming Languages 359 



Normalization 

Helmut Schwichtenberg 
Mathemat isches Inst i tut , Universität München 

Theresienstraße 39, D-8000 München 2, Ge rmany 

T h e a im of this paper is to present a central technique from proof theory, Gentzen's 
normal i za t i on for na tu ra l deduct ion Systems, and to discuss some of i ts appl icat ions. 

B y normal i za t ion we mean a col lect ion of a lgor i thms transforming a given deriva-
t i on into a certain no rma l form. A der ivat ion is cal led normal i f i t does not conta in any 
"de tour " i.e. an appl icat ion of an in t roduct ion rule immediate ly followed by a n appl ica-
t i on of a n e l iminat ion rule. Such normal i za t ion a lgor i thms are useful because they al low 
to "s tra ighten ou t " complex derivations and i n this way extract h idden in format ion. 

We w i l l treat many appl icat ions wh ich demonstrate th is , e.g. the subformula p r i n -
ciple, Herbrand 's theorem, the Interpolat ion theorem, an exact character izat ion of the 
in i t i a l cases of transfinite induct ion provable i n ar i thmet ic and a proof that normal i za
t ion i n (the usual finitary) ar i thmet ic is impossible. 

F r o m the Computer science point of view, an even more interesting field of appl ica
t ion for normal i za t ion algor i thms is the possibl i l i ty to extract the construct ive content 
of a maybe complex mathemat ica l argument. Such algor i thms can y ie ld verified pro-
grams f rom derivations prov ing that certain specifications can be fulf i l led. O f course, 
the feasabil ity of programs obtained i n this way w i l l depend to a large extent on a good 
choice of the der ivat ion, wh ich should be done on the basis of a good idea for an algo-
r i t h m . However, i n this approach it is possible to use ord inary mathemat ica l machinery 
for the development of programs. 

Chap te r 1 deals w i t h normal i za t ion for m i n i m a l propos i t ional logic, or more preci-
sely for i ts impl i ca t iona l fragment. In Section 1.1 it is shown that — by add ing stabi l i ty 
axioms — classical logic can be embedded i n i t . In Sections 1.2-1.6 we then treat norma
l i zat ion for this calculus, w i t h special emphasis on complexi ty questions. In Sect ion 1.7 
normal i za t ion (for a na tura l deduct ion system) is .compared w i th cu t - e l im ina t i on (for a 
sequent calculus) . Section 1.8 discusses a decision procedure for m i n i m a l imp l i ca t i ona l 
logic. 

In Chapte r 2 the method of col lapsing types developed i n (Troelstra and van Da len 
1988) is used to lift these results to m i n i m a l first order logic or more precisely to i ts —• V -
fragment, wh ich again suffices for classical logic. Section 2.4 contains some appl icat ions 
of normal i za t i on : the subformula pr inc ip le , Herbrand 's theorem and the interpo lat ion 
theorem. 

T h e final Chapter 3 treats normal i za t ion for ar i thmet ic . Since normal i za t ion for 
finitary ar i thmet ic w i t h the induct ion rule is impossible (this is proved i n Sect ion 3.5), 
we extend i n Section 3.3 the normal i za t ion technique to ar i thmet ic w i t h the u;-rule. T h i s 
is used i n Section 3.4 to give an exact character izat ion of the in i t i a l cases of transfinite 
induc t i on provable i n ar i thmet ic as wel l as i n some Subsystems of ar i thmet ic obta ined 
by res t r ic t ing the complexi ty of the induct ion formulas. 

T h e expert w i l l certainly note that most of the results and proofs e laborated here 
are we l l - known . The only novel points are the fol lowing. 
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• We have based our treatment of normal i za t ion i n Chapters 1 and 2 on a slight 
general ization of /?-conversion: we not only al low ( X x r ) s to be converted into 
r x [ s ] , but more generally ( X x x . r ) s s to be converted into ( X x . r x [ s ] ) s . T h i s allows 
a par t i cu lar ly s imple proof of the existence of the no rma l form (Theorem 1.2.2 
below), wh ich also provides an easy estimate of the number of conversion steps 
needed, and it also makes the results on strong normal i za t ion (Section 1.5) and the 
uniqueness of the no rma l form (Section 1.3) s l ight ly stronger. 

• In Section 1.7 we give an argument that normal i za t ion (for a na tu ra l deduct ion 
system) and cut - e l im ina t i on (for a sequent calculus) are essentially different, us ing 
a recent result of (Hudelmaier 1989). 

• In Section 1.8 we present a decision a lgor i thm for imp l i ca t i ona l logic also due to 
(Hudelmaier 1989), together w i th a new proof of its correctness and completeness. 

• In Theorem 3.5.1 it is stated that a certain weak form of a normal i za t i on theorem 
does not ho ld for ar i thmet ic w i th the induc t i on rule. 

1. Normalization for propositional logic 

1.1 Minimal implicational logic as a typed A-calculus 

Formulas are bu i l t up f rom proposi t ional variables denoted by P , Q by means of 
(y? —> We wri te y>i , . . . , <pm —> rp for (<p\ —» (<p2 - * • • • (y?m —* • • •))• Der ivat ions 
are bui l t up f rom assumpt ion variables by means of the rule - * + of imp l i ca t i on 
in t roduct ion (or A-abstract ion) 

( A u ^ r * ) * " * 

and the rule — o f impl i ca t ion e l iminat ion (or appl icat ion) 

A derivat ion whose free assumpt ion variables are among u f 1 , . . . , uj£m is also cal led a 
der ivat ion of f rom < p \ , . . . , <pm, For readabi l i ty we often leave out f o rmula superscripts 
when they are obvious f rom the context or non-essential . 

For obvious reasons we w i l l also use the word t e rm for derivations and type for 
formulas. T h e possibi l i ty to treat derivations as terms and formulas as types has been 
discovered by H . B . C u r r y and elaborated by W . A . Howard i n (Howard 1980a). Th i s 
correspondence can easily be shown to be an isomorphism; i t is cal led the C u r r y -
Howard- i somorph ism. 

More formally, it can be seen easily that a closed der ivat ion (i. e. one w i thout free 
assumpt ion variables) is determined by 

1. a type-free A - t e rm describing the derivat ion and 

2. the derived formula. 
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T h e formulas i n the derivat ion can be left out since they can easily be reconstructed 
f o rm the given derived formula. 

A s an example, a der ivat ion of 

<p _> <p) 

is given by At iAvu, and a derivat ion of 

W> _> x) ) ((<? -> tfO -> (<p ->x ) ) 

is given by AuAvAtu((uti>)(vu>)). B o t h derivations can be easily wr i t t en i n the more 
usua l tree form. 

Note that our m i n i m a l impl i ca t iona l logic contains füll classical propos i t ional logic, 
as follows. Choose a par t icu lar proposi t ional variable and denote i t by ± (falsity). 
Associate w i t h any formula <p i n the language of classical propos i t ional logic a finite l ist 
<p of formulas i n our impl i ca t iona l language, by induct ion on (p: 

P ^ P 

-*<p I—• <p —• _L 

(ß • %j) t—¥ (p y tp\,. . . (p • ifam 

<p A t/> <py rl> 

tp V rp (<p -> _L), ( $ -> JL) -> JL 

T h e n , i f <p is a formula i n the language of füll classical propos i t ional logic and y>i , . . . , <pm 

is i ts associated l ist , <p is derivable i n classical proposi t ional logic iff each (pi is derivable 
i n m i n i m a l impl i ca t iona l logic f rom stabi l i ty assumptions ->-»P —* P (w i th denot ing 
%j> —• ± ) for a l l proposi t ional variables P i n ip. The essential step i n the proof is to show 
that f rom the stabi l i ty of x/> we can infer the stabi l i ty of <p —• %j>: a der ivat ion of 

(—I-T0 —• -0) —+ ( — i — — • l/>) —• (ip —• ^ ) ) 

is g iven by 

AtziAw2Aw3(uiAu 4 (w2Au5(u 4 (u5W3)))). 
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1.2. Conversion 

We axe interested i n the fol lowing process of s impl i f icat ion of terms: 

( X u u . r ) s s converts into (AtT.r t t[s])ir. 

Here u and s denote finite l ists u i . . . u m and S\...sm, and Xuu.r denotes the term 
A u i . . . X u m X u r . Terms of the form ( X u u . r ) s s are cal led convertible. 

Note that Converting ( X u u . r ) s 3 into (Au.r t t[s])5 may be viewed as first Converting 
( X u u . r ) s s "permutat i ve ly " into ( X u ( X u r ) s ) s and then per forming the inner conversion 
to obta in (A{T.r„[s])S*. One may ask why we take this conversion re lat ion as our basis and 
not the more common ( X u r ) s h-> r u [ s \ . The reason is that our not ion of level is defined 
w i t h the clause lev(<p - » VO = max(lev(<p)+l, lev(^)) and not = max(lev(<p), lev(^) )+l ; 
this i n t u r n seems reasonable since then the level of P i , . . . , P m —» Q ( i . e. of ( P i —> 
( P 2 —•... ( P m —> Q)...)) ) is 1 and hence independent of m . B u t given this definit ion 
of level, and given the need i n some arguments (e. g. i n Theorem 1.2.1) to perform 
conversions of highest level f irst, we must be able to convert ( X u v . r ) s t w i t h u of a low 
and v of a h igh level into (Au.r v[<])$. — I n addi t ion , since we al low more conversions 
here, the results on strong normal i zat ion and upper bounds for the length of arb i t rary 
reduct ion sequences get stronger. 

We wri te r —• r ' i f r ' is obtained from r as follows. M a r k some occurrences of 
convertible subterms i n r . T h e n convert them a l l simultaneously. Hence new convertible 
subterms generated by such a conversion can not be converted. Mo r e precisely, r —• r ' 
is defined by the fol lowing rules 

1. u —> u. 
2. If r —• r ' , then Xur —• Aur ' , 

3. If r —* r ' and s —• 3', then rs —• r ' s ' . 

4. If r —• r ' , s —• s* and s —> s\ then ( X u u . r ) s s —• (Xu.r^ls'Yjs'. 

A s a special case, we take 

r —»1 r ' 

to mean that r1 is obta ined from r by Converting exactly one convertible subterm i n r . 
F i n a l l y 

r — > * r1 ( r reduces to r ' ) 

denotes the transit ive and reflexive closure of —• (or equivalently of —*i). 
A term is sa id to be i n normal form i f i t does not conta in a convertible subterm. 
We want to show now that any te rm reduces to a no rma l form. T h i s can be seen 

easily i f we follow a certain order i n our conversions. To define this order we have to 
make use of the fact that a l l our terms (i.e. derivations) have types (i.e. formulas). 

Define the level of a formula by 

l ev (P ) = 0, 

lev(<p —• %j>) = max(lev(y>) + l,lev(V>)) 

A convertible der ivat ion 
( X u ? u * , r ) s s 
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is also cal led a cut w i th cui-formula (p. B y the level of a cut we mean the level of its 
cu t - f o rmu la . The cut-rank of a der ivat ion r is the least number bigger than the levels 
of a l l cuts i n r . Now let t be a der ivat ion of cu t - rank fc + 1. P i ck a cut 

( X u u . r ) s s 

of the m a x i m a l level fc i n such that s does not conta in another cut of level fc. (E.g. , 
p ick the r ightmost cut of level fc.) T h e n it is easy to see that replac ing the picked 
occurrence of ( X u u . r ) s s i n t by (Ait.r t t [s])J reduces the number of cuts of the m a x i m a l 
level fc i n t by 1. Hence 

T h e o r e m 1.2.1. We have an algorithm which reduces any given term into a no rma l 
form. 

We now want to give an estimate of the number of conversion steps our a lgor i thm takes 
u n t i l i t reaches the norma l form. The key Observation for this estimate is the obvious 
fact that replacing one occurrence of 

(Xüu.r)ss by (AiT.r t t[s])s 

i n a given t e rm t at most Squares the length of t; here the length of t is taken to be the 
number of variables i n t (except those immediate ly fol lowing a A-symbol ) . 

A b o u n d $*(/) for the number of steps our a lgor i thm takes to reduce the rank of 
a given te rm of length / by fc can be derived inductively, as follows. Let s o ( l ) := 0. To 
ob ta in s*+i(Z), first note that by induct ion hypothesis i t takes < $*(/) steps to reduce 
the rank by fc. The length of the result ing t e rm is < l2 where s := s*(/) since any 
step (i.e. conversion) at most Squares the length. Now to reduce the rank by one more 
the number of add i t iona l steps is obviously bounded by that length. Hence the to ta l 
number of steps to reduce the rank by fc + 1 is bounded by 

s k ( l ) + l2'ki,) =: s k + 1 ( l ) . 

T h e o r e m 1.2.2. (Upper bound for the complexity of normalization) The nor
mal i za t ion algorithm given in the proof of Theorem 1.2.1 takes at most Sk(l) steps to 
reduce a given term of c u t - r a n k fc and length l to normal form, where 

s 0 ( l ) : = 0 and s k + 1 ( l ) : = * * ( / ) + *2 • 
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1.3. Uniqueness 

We shal l show that the norma l form of a term is uniquely determined; th is w i l l be 
done by an argument wh ich also applies to type-free terms, i.e. terms w i thout formula 
superscripts. The m a i n idea of the proof (due to J . B . Rosser and W . W . Ta i t ) is to use 
the re lat ion r —> r ' defined i n Section 1.2. Its cruc ia l property is given by 

L e m m a 1.3.1. I t r - > r' and t -* t 1 then r v [ t ] - • rj,[t']. 

T h e proof is by induct ion on the definit ion of r —> r ' . A l l cases are obvious except 
possibly Ru l e 4. So assume r —> r ' , s—• s* and s —• s*. T h e n 

^ W ^ r ' J t ' ] , 3 v [ t ] - * 2 9 [ 1 ? ] and s v [ t ] - > s'9[t'] 

by induct ion hypothesis, and hence 

(\ÜUTv[t))Zv[t]sv[t] -> (At?. (r ; [ t ' ] ) .K[ t # l ] ) i J
f , [ t ' ] . 

^ v ' v v ' 
((\üu.r)?s)v[t] ( ( A * . r i [ j ' ] ) P ) „ [ l ' ] 

by definit ion of —•. • 

L e m m a 1.3.2. A s s u m e r —• r' and r —• r " . Then we can find a term r ' " such that 
r ' - * r ' " a n d r " -> r ' " . 

T h e proof is by induct i on on the definit ion of r —> r ' . A g a i n a l l cases are obvious 
except possibly the Situation where either r —• r ' or r —+ r " is obta ined v i a R u l e 4. B y 
symmetry we may assume the former. B u t then the c la im follows f rom L e m m a 1.3.1: If 

( \ u u . r ) s s —• (Au.r' u[s'])s' 

and 
(\üu.r)ss —» (\üu.r,,)s"s", 

then 
(Aut i . r )S i - (AüVJs'Di* -> ( A ü V J V " ] ) * " ' 

and 
(Auu . r )S i -> ( A u V r > V - * ( A ü V J V " ] ) * " ' , 

and i f 
( X u u v v . r ) s s t t —• (Xüvv.r'^s'Yjs't't1 

and 
( X u u v v . r ) s s i i ( A ü W . r ^ r ^ V ' * 7 ' 

then 

( A t m i w . r ) & f i - (A£fiw.ri[« # ] )P<V -+ ( A u v . r ' ^ J s " ' , t " ' ] ) s r " t T " 
and 

(Atititw.r )aÖ (At/i/v.<[t"]>"3"f' -> (A«t?.r2 #
t W [ « w # , t^] ) « " ' * " ' . 

• 
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T h e o r e m 1.3.3. (Church-Rosser ) A s s u m e r —•* r ' a n d r —•* r " . Then we can find 
a term r ' " such that r ' - 4 * r ' " and r " r ' " . 

T h e proof is immediate f rom L e m m a 1.3.2. • 

Corol lary 1.3.4. (Uniqueness of the normal form) A s s u m e r —>* r ' and r —>* r " , 
where both r ' and r " are i n normal form. Then r ' and r " are identicai. 

1.4. Complexity of normalization: a lower bound 

In Theorem 1.2.2 we have obtained an upper bound on the number of conversion steps 
our par t icu lar normal i za t ion a lgor i thm of Theorem 1.2.1 takes to reach the no rma l form. 
T h i s Upper b ound was superexponential i n the length of the given term. It is tempt ing 
to th ink that by choosing a clever normal i zat ion strategy one might be able to reduce 
that bound significantly. It is the purpose of the present section to show that this is 
impossible. Mo r e precisely, we w i l l construct terms rn of length 3n and show that any 
normal i za t ion a lgor i thm needs at least 2 n - 2 — n conversions (wi th 2o := 1,2 n +i := 2 2 n ) 
to reduce r n to its norma l form. 

T h e fact that there is no elementary a lgor i thm (i.e. whose t ime is exponential ly 
bounded) to compute the norma l form of terms also follows f rom (S ta tman 1979), where 
it is shown more generally that the problem whether two terms 7*1 and vi have the same 
norma l form is not elementary recursive. The simple example treated here is taken from 
(Schwichtenberg 1982, p. 455). 

T h e pure types fc are defined induct ive ly by 0 := P (some fixed proposi t ional 
variable) and k + 1 = k —• k. We define i terat ion terms I n of pure type fc -f 2 by 

/ „ : = A / A u ( / ( / ( . . . / ( / « ) . . . ) ) ) , 

w i t h n occurrences of / after \f\u\ here /, u are variables of type fc -f 1, fc, respectively. 
Let / 0 g be an abbreviat ion for X u ( f ( g u ) ) , and let r = s mean that r and s have the 
same norma l form. W i t h this notat ion we can write 

J» = A / ( / o / o . . . o / ) . 

n 

The m a i n point of our argument is the fol lowing s imple l emma, which can be traced 
back to Rosser (cf. (Church 1941, p. 30)) 

L e m m a 1.4.1. 
( J r o / ) o ( / n / ) = / m + n / , 

Im 0 In = Irn-ni 

Im In = I n m - 0 

As an immediate consequence we have 

r „ := I 2 h . . . I 2 = h n -
> ^ ' 

Now consider any sequence of reduct ion steps transforming r n into i ts no rma l form, and 
let sn denote the to ta l number of reduct ion steps i n this sequence. 

file:///f/u/
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Theo r em 1.4.2. sn > 2 n - 2 — 

Proof. The length of r n is 3n . Note that any conversion step can at most Square the 
length of the or ig ina l term. Hence we have 

2 n < l e n g t h ( i 2 „ ) (the no rma l form of r n ) 

< l e n g t h ( r n ) 2 ' n 

= (Sn ) 2 ' » 

< 2 2 n + ' n (since 3 n < 2 2 " ) , 

and the theorem is proved. • 

1.5. Strong normalization 

In Section 1.2 we have proved that any term can be reduced to a no rma l form, and i n 
Section 1.3 we have seen that this norma l form is uniquely determined. B u t i t is s t i l l 
conceivable that there might be an odd reduct ion sequence wh i ch does not terminate 
at a l l . It is the a i m of the present Section to show that this is impossible . T h i s fact is 
cal led the strong normal i za t ion theorem. 

For the proof we employ a powerful method due to W . W . Ta i t , wh i ch is based on 
so-cal led strong computab i l i t y predicates. These are defined by induc t i on on the types 
(i.e. formulas) as follows. 

A t e rm w i t h <p of level 0 (i. e. a proposi t ional variable) is strongly computable 
iff r is strongly normal izable , i.e. every reduct ion sequence s tar t ing f rom r terminates. 
A t e rm r ^ " * ^ is strongly computable iff for a l l strongly computable also ( r s ) ^ is 
strongly computable. 

A t e rm r is strongly computable u n i e r Substitution iff for a l l strongly computable s 
the result of subst i tut ing s for a l l variables free i n r is again strongly computable . 

L e m m a 1.5.1. L e t tp be a formula. 
1. A n y strongly computable term r * is strongly normalizable. 
2. is strongly computable. 

We prove 1 and 2 simultaneously by induct ion on (p. For (p of level 0 bo th c la ims axe 
obvious. Now consider <p —• tp. For 1, assume that r ^ - * ^ is strongly computable . B y 
induct ion hypothesis 2 and the def init ion of strong computab i l i t y we know that ( ru )^ is 
strongly computable and hence that any reduct ion sequence s tar t ing w i t h ru terminates 
(by induct ion hypothesis 1). B u t this obviously impl ies that the same is true for r . For 
2, assume that f are strongly computable. We have to show that ur (which is to be 
of level 0) is strongly computable , i . e. that any reduct ion sequence s tar t ing w i t h ur 
terminates. B u t this follows f rom induct ion hypothesis 1, wh ich says that any reduct ion 
sequence s tar t ing f rom r , terminates. • 

L e m m a 1.5.2. Ifr —>i r 1 and r is strongly computable, then r1 is strongly computable. 

Proof. Let s be strongly computable. We have to show that r ' s i s strongly computable , 
i . e. that any reduct ion sequence start ing f rom r's* terminates. B u t this is obviously 
true, because otherwise we would also have an infinite reduct ion sequence for r s . • 
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L e m m a 1*5.3. A n y term r is strongly computable under Substitution. 

T h e proof is by induc t i on on the height of r . 
Case u. Obv ious . 
Case r s . Let t be strongly computable . We have to show that r[t]s[t] is strongly 

computable . B u t this holds, since by induc t i on hypothesis we know that r[t\ as wel l as 
s[t\ are strongly computable . 

Case X u u . r . Let t be strongly computable. We have to show that Auu.r[t] is 
strongly computable . So let s, s and r be strongly computable . We must show that 
(Xuu.r[t\)ssf is strongly computable , i.e. that any reduct ion sequence for i t terminates. 
So assume we have an inf inite reduct ion sequence. Since r[t], if,s and f a l l are strongly 
normal izab le , there must be a te rm (AtTu.r[t] ' )s's'r' w i t h r[t] —>* r[t]',jf—•* s ' ^ s —•* s' 
and r —•* r ' i n that reduct ion sequence where a "head convers ion" is appl ied , wh ich we 
may assume to y i e ld 

( \ u . ( r [ t \ ' ) [ A ) s ' r ' . 

B u t r[t\ —>* r[t] ' impl ies A£T.r[s,£] - ** Aü.(r [*]')[$'], and hence the fact that Xu.r is (by 
induc t i on hypothesis) strongly computable under Subst i tut ion together w i t h L e m m a 
1.5.2 impl ies that (Au.(r[t]')[$'] is strongly computable . B u t then, again by L e m m a 
1.5.2, also (At?.(r[t])'[s'])$'r' is strongly computable and therefore strongly normal izable . 
T h i s contradicts our assumpt ion above that we have an infinite reduct ion sequence. • 

F r o m L e m m a 1.5.3 and bo th parts of L e m m a 1.5.1 can conclude immediate ly 

T h e o r e m 1.5.4. A n y term r is strongly normalizable. • 

1 . 6 . C o m p l e x i t y o f n o r m a l i z a t i o n : a n U p p e r b o u n d 

B y Sect ion 1.5 we already know that the füll reduct ion tree for a given te rm is finite; 
hence its height bounds the length of any reduct ion sequence. B u t i t is not obvious how 
a reasonable estimate for that height might be obtained. 

However, us ing a technique due to (Howard 1980b) (which i n t u r n is based on 
(Sanchis 1967) and (Di l ler 1968)) i t can be shown that we have the fol lowing superex-
ponent ia l universal bound . 

T h e o r e m 1.6 .1 . L e t r be a term of the typed X-calculus of level 0. L e t m be a b o u n d 
for the levels of s u b t e r m s of r and k > 2 be a b o u n d for the arities of s u b t e r m s of r. 
Then the length of an arbitrary reduction sequence for r with respect to — * i is b o u n d e d 
by 

j .2m (m+2.height(r)+2*+2) 

For the proof see (Schwichtenberg 1990). • 
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1.7. Cut elimination versus normalization 
U p to now we have considered pure impl ica t iona l logic by means of Gentzen 's rules 
of na tu ra l deduct ion. Now i t is also common to use another type of logical calculus, 
the sequeni calculus also introduced by Gentzen. Instead of formulas i t treats sequents 
r => ipy where T is a finite set of formulas. The rules of the sequent calculus for pure 
imp l i ca t i ona l logic are the fol lowing; here we write I\ <p for T U {y>}. 

A x i o m , h T , <p => <p for </? atomic. 

- + - r i g h t . If h T, <p => tf>, then h T <p - + xj). 
—>-left. If h T, (p i/> => <p and h T, cp V>> ^ X> then h T, y> -+ V> x« 

Cut. If h T x and h T, x =̂  then h T y>. 

It is easy to see that the sequent calculus is equivalent to na tura l deduct ion, i n the sense 
that h T ^ <p iff f rom T we can derive <p by means of the rules —>+ and —• " and the 
assumpt ion rule. 

Now a norma l der ivat ion of <p f rom T has the property that a l l formulas occurr ing i n 
this der ivat ion are subformulas of either <p ov a, f o rmula i n T. The same property holds 
for derivations of T <p i n the sequent calculus wh ich do not use the cut rule . Hence 
it is of interest to know that the cut rule can always be e l iminated f rom derivations i n 
the sequent calculus. 

Gentzen proved this C u t E l im ina t i on Theorem i n his thesis. Here we prove it i n 
such a way that we also obta in a good bound on the length of the resul t ing cut-free 
der ivat ion, i n the form 2 ^ • Z(d), where l ( d ) is the length of the or ig ina l der ivat ion 
and j ( d ) is the m a x i m u m taken over a l l paths i n d of the sum of the degrees of a l l cut 
formulas on the pa th . The not ion of degree used here is rather pecul iar . Its crucia l 
property is 

deg(ip -> + deS(</> - * X) < deg((y> - * V) - » x)- (1.1) 

Th i s can be achieved i f we define 

• deg(y>) = 2 for <p atomic, 

• deg((p -4 V) = 1 + deg(y>) • deg(^). 

For then we have, wr i t ing a := deg(y>), b := deg(V>) and c := deg (C) , 1 + ab + 1 + bc = 
2 + ( a + c ) b < 2 + abc < 1 + c + abc = 1 + (1 + ab)c and hence 1.1. 

M o r e formally, we define the re lat ion T => <p (to be read: r => <p is derivable 
w i t h height < a and cu t - rank < m ) w i th a , m na tura l numbers induct ive ly by the 
fol lowing rules. 

A x i o m . \-m T,ip =$> <p for ip atomic. 

- > - r i g h t . If h ° T,<p 0, then h£+ 1 r tp - > 
->-/«/*. If h« I > -> V Y> and h« I > -> V, V> X , then h « + 1 I\y> x-
Cut. If r =» x and h « T,x =» *>, then r =• y>. 

T h e n the bound mentioned above is a consequence of the fol lowing 

T h e o r e m 1.7.1. (Cut E l iminat ion Theorem) I f h £ + 1 T 9, then T =>y?. 

T h i s theorem is due to (Hudelmaier 1989); its present formulat ion and proof is the result 
of Buchho l z ' analysis (Buchholz 1989) of Hudelmaier 's arguments. 

We need some L e m m a t a before we can give the proof. 
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L e m m a 1.7.2. (Weakening Lemma) If h£ T (p, then I\ A y?. • 

L e m m a 1.7.3. (Inversion) 
i. ffh« T ^ i p ^ i P , then h« i > V-

i i . I f I > -> =• X , * i e n h « I\V> =» X-
i i i . I f I\(y> -> 0) -+ X *hen h « -4 X =» * 

Proof . B y induc t i on on a . We only treat one case of i i i . Assume that 

was inferred f rom 

B y i nduc t i on hypothesis we get 

h ^ r ^ i ^ x ^ ^ ^ and h ^ r ^ ^ x . x ^ « . 
Hence by i 

Now -»- le f t yields T, y>, 0 -+ x Q 

L e m m a 1.7.4. (Cut E l iminat ion Lemma) 
i . I f \-Q r (/? and h£ T, y? V and y? is atomic, then + / ? T V-

i i . I f f-Q r y> —• t/> and T, <p —> tp x and is atomic and ß < a , then 
r =» x w i th m = deg(t/>). 

i i i . ffhj r (y? -> '/>) -» X and h£ I\(y> - )̂ - x =• 0 , <hen h ^ + 2 r => tf, w i th 
m = deg(y> - * VO + deg(^ ~> x)-

Proof. i . B y induct ion on ß. i i . Consider also 

i i ' . If I-Q T <p —• ij) and h f r ^ ^ x and HQ T, <p —• rj> <p and y? is atomic and 
ß < a , then h «+ r =» x, w i th m = deg(t^). 

We prove i i and i i ' s imultaneously by induct ion on ß. 
i i . A ssume 

h ^ 1 I > -> </> and h^"1 I > V X-

Then we have hg" I\ V> X (since ß < a ) . Hence induct ion hypothesis i i ' y ie lds 

i i ' . Case /? = 0. T h e n <p 6 I\ hence 

hd<£(v0 r =̂  X-

Case K Q - 1 r,<̂> —• >̂ =̂  y? and h^ - 1 T,<p —> tl>,tl> (p. T h e n the c l a im follows 
immediate ly f rom the induct ion hypothesis. 
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Case h £ - 1 I\y> -> i> => t? and h£ 1 I\</> V>*7 =» with d - > r) € T and 
t> —• T) ^ y> —• ^- T h e n induct ion hypothesis i i yields 

a n d induc t i on hypothesis i i ' yields 

N o w —>-left gives 
.0+0+1 p 
r dcg ( ^ ) 1 * • 

i i i . B y induc t i on on ß. Assume 

h ^ 1 r,(v>-^)->x=>¥>->tf and h ^ 1 I\(y> - > ^ ) - > X , X = > i » . 

P r o m T (v? —• —> X w e g e t *"o F,y> —• V> => X» hence h j r,̂ > x> hence 
| - Q + 1 r V X- 0 n the other hand , the Inversion L e m m a , Par ts i and i i i , yields 
H ? " 1 T,y>,V> - » X = * ^ h e n c e l"o -> X -> V>- So 

^%:ix) r -> - V-

Furthermore , f rom h ^ " " 1 r,(y? —* 0) - * x»X ^ w e g e < ; ^o"" 1 * \ x ^- Since 
T , y> —• ^ X> a c u t yields 

^ x > - * * 

N o w one further cut gives H ^ + ^ + 2 r tf. • 
W e now prove the C u t E l i m i n a t i o n Theorem, by induc t i on on a . Assume 

w i t h m + 1 = fc + deg(x). If fc ̂  0, then by induc t i on hypothesis 

i - f tT 0 r * x - d H F - f 1 ' r , x=^ , 

hence by cut h 2 ^ T =̂  y>, since fc — 1 + deg(x) = rn. If fc = 0, then the c la im follows 
from the C u t E l i m i n a t i o n L e m m a together w i t h (1). • 

A n interesting consequence of the fact that we have a (Ka lmar ) elementary b o u n d 
o n the length of the cut free derivat ion given by our a lgor i thm i n terms of the o r i g ina l 
der ivat ion is the fol lowing: The cut e l iminat ion a lgor i thm d *-* dF* just descr ibed is 
essential ly different f rom normal i za t ion d i -* d a i

y i n the sense that there cannot exist 
e lementary translat ions d \-> c P e q , d *-* d™at from derivations i n na tura l deductions to 
derivat ions i n the sequent calculus and back, such that d ° f = ( ( d * c q ) c f ) n a t . F o r then 
d \-* a m i would be elementary, wh ich it isn ' t by the counterexample i n Section 1.4. 
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1.8. A decision algorithm for implicational logic 

It is clearly decidable whether a given formula <p is derivable i n m i n i m a l imp l i ca t i ona l lo
gic: just search systematical ly for a norma l derivat ion of ip. Th i s search must terminate , 
since by the subformula property there are only finitely many such no rma l der ivat ions. 
However it does not seem to be a good idea to t ry to implement this a l go r i thm 

Here we present another decision a lgor i thm wh ich is easy to implement a n d also 
seems to be rather efficient i n cases of interest. It also amounts to searching for a 
" n o r m a l " proof, but now i n a special calculus L H due to (Hudelmaier 1989), designed 
w i t h the intent ion that most rules should be invert ible. A g a i n our fo rmula t ion of L H 
and most proofs are taken f rom (Buchholz 1989). 

T h e calculus L H is again a sequent calculus. To d is t inguish it f rom Gentzen 's 
sequent calculus discussed i n Section 1.7 we wri te 

n H r =• <p 

i f the sequent r =̂  <p is derivable w i t h height < a i n L H . T h e rules of L H are the 
fol lowing; again we wr i te T,<p for r U {<p} 

A x i o m . h£/f T, (p =»• (p for <p atomic. 

K ^ - r i g h t . If h £ H T,<p <p, then h j ^ 1 T <p —> tp. 

II—*-left-atomic. If h£jj r , < p , t p x and <p is atomic, then r - j j 1 T,<p,<p —• rp x -
H - > - f c / t — K If \ - ° H I > , V - X =• * and Y - l H I \ x = M , then T,(<p -> V) -> 

X=>#. 

Hudelmaier has observed — and we w i l l prove it below — that this calculus is equi-
valent to m i n i m a l impl i ca t iona l logic. Now the point i n these stränge rules is that they 
are a l l invert ible, w i th the sole exception of the last one which is only "ha l f i nve r t ib l e " : 

Inversion L e m m a 1.8.1. 
i . I f r => y> -+ t/>, then \-%H I > rj>. 

ii. If\~iH r , t p , < p —> xp => x and ip is atomic, then h £ H T,<p,rp x-
i i i . l f \ ~ l H r , ( < p ^ x / > ) - > x ^ # , then h g H I \ x =» 0. • 

Clear l y the last rule H — y - l e f t — • cannot be ful ly invert ible. A counterexample is 

p,((g-»±)-±)-»g=>p, 

which is clearly derivable, whereas 

is not. Now the decision a lgor i thm derived from the Inversion L e m m a runs as follows. 
G i ven a sequent F <p, first apply Par ts i and i i of the Inversion L e m m a as l ong as 
possible. If you end up w i th a sequent wh ich does not conta in le f t- i terated imp l i ca t i ons 
(y> —> xp) —• x, then by the form of the L H - r u l e s it is derivable i f and only i f i t is an 
ax iom. Now assume there are some left- i terated impl icat ions (<p —• xp) —* x among the 
premiss-formulas I\ Choose one of them (this step may lead to backtracking! ) , f o rm its 
premisses according to the rule H — > - l e f t — a n d continue w i t h bo th sequents. 
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A n example for the necessity of backtracking is the sequent 

- " Q -> Q, -»-»(P - > Q ) , P = > Q . 

If the second occurence of a left- i terated impl i ca t ion is choosen, i.e. -»-»(P —> Q ) , we 
obta in by H—»-left—• 

• n - i Q ^ Q , P ^ Q , _ L ^ ± , P = * - L 

and 
- i - Q - > Q , - L , P = > Q . 

Now the first of these sequents is clearly underivable, hence this pa th i n the search-tree 
fails, and we have to backtrack and choose the other le f t- i terated imp l i ca t i on —> Q 
instead. 

It remains to be shown that the calculus L H is equivalent to m i n i m a l imp l i ca t i ona l 
logic. One direct ion is easy, namely that any sequent derivable i n L H is also derivable 
i n m i n i m a l imp l i ca t iona l logic. We only consider the rule H — > - l e f t — a n d argue i n -
formally. So assume T and (<p —* xp) —> x- T h e n clearly xp —• X ( f ° r i f w e assume rp, 
we certainly have <p —+ xp hence x)- So by the first premiss (p —* xp, hence X by our 
assumpt ion, hence x9 by the second premiss. 

For the other direct ion we need a Lemma. 

L e m m a 1.8.2. If r-^H T,<p —• xp ip and \~LH I\0 x9 and (p is atomic, then 
^LH T , < p - > x P = > d . 

The proof is by induct ion on a . 
1. Assume <p e V. T h e n from \~LH I \V —• $ we get \~LH F,y> —• xp x9 by 

H—+-left-atomic. 
2. Let T = A,(y>i —• T^ I ) - • X i and assume that 

^ L H A>(V>1 ~* V>l) ~+ Xl,¥> - > x P = > < p 

was inferred f rom 

h ^ 1 A , v ? ! , ^ i - xi»V> - V> =>Vi (1.2) 

and 

h ^ 1 A , x u < P ( L 3 ) 

by H-+- le f t—• . F i r s t note that f rom the second premiss of the L e m m a we get 

\-LH A , x i , 0 = M (1.4) 

by the Inversion L e m m a , Paxt i i i . Now from 1.3 and 1.4 we obta in by the induc t i on 
hypothesis 

\~LH A , x i , ¥ > - > ^ = » 0 . (1.5) 

The rule H—>-left—• yields form 1.2 and 1.5 

\ - L H A,(y>! V i ) - » Xi,¥> -> V> => 
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3. Let r = A ,y? i , y? i —• i/>i w i t h (pi atomic and different f rom y>, and assume that 

was inferred f rom 

h ^ 1 & , < p u t l > u < p ^ tl>=><p (1.6) 

by H—•-left-atomic. F i r s t note that f rom the second premiss of the L e m m a we get 
Y-LH A , ? i , i h f t f = » 0 (1.7) 

by the Inversion L e m m a , Pa r t i i . Now from 1.6 and 1.7 we obta in by the induct ion 
hypothesis 

^~LH A,y>i,Vi,y> xp i9. (1.8) 

A n appl icat ion of H-»-left-atomic to 1.8 yields 

t~LH A , ^ ! , ^ tf>i,<p - + x p = > x 9 . 

• 
T h e o r e m 1.8.3. If h T tf, then h L H T i9. 

Proof . B y the C u t E l i m i n a t i o n Theorem i n Section 1.7 i t suffices to prove that \-% T => x9 
impl ies \~LH P => Th i s is done by induct ion on a . Since the c la im is obvious for the 
rules Axiom and —y-right and since Ctit cannot occur, we only treat the rule —>-left. 

Case 1. Let r = A,y> —• xp w i th y> atomic and assume that 

was inferred f rom 

h J - ' A , ? ( 1 - 9 ) 

and 

h ? " 1 A ,¥>-»^,0=»t f . (1.10) 

FVom 1.10 we get by the Inversion L e m m a 1.7.3, Pa r t i i 

h J - ' A , ^ * . (1.11) 

B y induct ion hypothesis we can replace i n 1.9 and 1.11 by \~LH- N O W the L e m m a 
yields 

Y-LH A,y> -> V => 

C<we Let T = A , (y> —• V ) —> x ^ assume that 

h f A , ( ? - > * ) - > * = • * 

was inferred f rom 
h j - 1 A , ( t p -» 0) - » X =• V (1.12) 

and 

h r 1 A , ( Y > - » * ) - » X , X = * * . (1-13) 

file:///~lh-


216 

F r o m 1.12 we get by the Inversion L e m m a 1.7.3, Pa r t i i i 

and hence 

y - r 1 A . ^ - ^ X ^ V - - (i.i4) 
F r o m 1.13 we get by the Inversion L e m m a 1.7.3, Pa r t i i 

h ^ A . x ^ t f . (1-15) 

B y induc t i on hypothesis we can replace h j " 1 i n 1.14 and 1.15 by K L / / - N O W H - * - l e f t — * 
yields 

\ - L H A , ( Y > ^ V ) - X 

It is also possible to prove the Theorem direct ly for na tura l deductions i n m i n i m a l 
imp l i ca t iona l logic. We sketch the proof. So let a no rma l der ivat ion of x9 f rom assump-
tions T be given. We may assume that i n any brauch (see Section 2.4) of this n o r m a l 
der ivat ion the m i n i m a l formula (see Section 2.4) is atomic, and use induct ion on the 
length of this der ivat ion. 

Case 1. r = A,y> —• xp w i th ip atomic. In 

I 
<p —*• xp (p 

xp 

I 

we can apply the induct ion hypothesis to the subderivations of ip f rom A,y? —• xp and 
of %9 f rom A , xp (any assumpt ion (p —* xp here can be cancelled, since we already have 
assumed xp). So we get 

^ L H A,y> -> xp =̂  tp and h i n A , xp —• t9, 

and the c la im follows by the Lemma . 
Case 2. T = A , ((p —* xp) —• x« Replace an uppermost occurrence of the assumpt ion 

(<p _> ^) x 

I 
<p-*xp <p 

xP 

^ ) x <p _> ^, 

X 

I 
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by 

tp - > xp 

ip —• Xp Xp 

X 
I 

d 

A p p l y the induc t i on hypothesis to the subderivat ion of xp from A,y>, xp —• \, and of \9 
from A , x (any assumpt ion {ip —• xp) —> x here can be cancelled, since we already have 
assumed x)- So we get 

^LH A , ip, xp x V and h L i / A , x =• 

and the c l a im follows by an appl icat ion of H—•-left—•. 

2. Normalization for first-order logic 

We restrict our attent ion to the -»V-fragment of first-order logic w i t h just in t roduct ion 
and e l iminat ion rules for bo th Symbols, i.e. w i t h m i n i m a l logic formulated i n na tura l 
deduct ion style. Th i s restr ict ion does not mean a loss i n generality, since i t is well 
known that füll classical first-order can be embedded i n this System; the argument for 
that fact is sketched i n Section 2.1. Equa l i t y is not treated as a logical symbo l , but can 
be added v i a suitable equality axioms. 

W e extend our results and estimates on normal i za t ion to first-order logic by the 
method of col lapsing types. Appl icat ions include the subformula property, Herbrand 's 
theorem and the interpolat ion theorem. 
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2.1. The ->v-fragment as a typed A-calculus 

Assume that a fixed (at most countable) supply of funct ion variables f , g , h , . . . and 
predicate variables P , Q , . . . is given, each w i th an ar i ty > 0. Terms are bu i l t up from 
object variables x , y, z by means of f r \ . . . r m . F o r m u l a s are bu i l t up f rom pr ime formu
las P r \ . . . r m by means of (ip —• xp) and W x i p . D e r i v a t i o n s are bu i l t up f rom assumption 
variables x^^y* by means of the rule - + + of imp l i ca t i on in t roduct ion 

( \ x * r + y - * + , 

the rule — o f imp l i ca t i on e l iminat ion 

the rule V + of V - in t roduc t i on 

( \ x r * ) " x * , 
prov ided that no assumpt ion variable y ^ free i n r v has x free i n its type xp, and finally 
the rule V"" of V - e l im ina t i on 

E a c h of the rules —* + , V + and V ~ has a uniquely determined der ivat ion as its p r e m i s s , 
whereas —*~ has the two derivations t * ^ and s* as premisses. Here r^~*^ is cal led the 
m a i n p r e m i s s and s* is cal led the s i d e p r e m i s s . 

A s an example we give a der ivat ion of 

V x ( P x Q x ) ( V x P x - > V x Q x ) . 

Such a derivat ion is 
A u V x ( P x - Q x ) A v V x P x A x ( ( u x ) ( v x ^ 

Derivat ions can be easily wr i t ten i n the more usual tree form. We w i l l continue to use 
the word t e rm for derivations (as long as this does not lead to confusion w i t h the not ion 
of (object) t e rm inherent i n f i rst-order logic), and type for formula. 

Note that our (—• V-fragment of) m i n i m a l logic contains füll classical f i rst-order 
logic. Th i s can be seen as follows: 

1. Choose a par t icu lar proposi t ional variable and denote i t by _L (falsity). Associate 
w i t h any fo rmula ip i n the language of classical first-order logic a finite l ist (p of formulas 
i n our —»V-fragment, by induct ion on <p: 

P f ^ P f 

—«p y — * i p — * l _ 

<p A xp H + <p, xp 

tp V xp t-> ((p -+ _L), (xp JL) _L 

V x i p »-> Vx</?i, . . . , V x t p m 

3xip H+ Vx(<£ —• J _ ) —• ± 
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2. In any mode l M where J _ is interpreted by falsity, we clearly have that a fo rmula 
(p i n the language of füll first-order logic holds under an assignment a iff a l l formulas 
i n the assigned sequence (p ho ld under a . 

3. O u r derivat ion calculus for the —• V-fragment is complete i n the fol lowing sense: 
A f o rmula (p is derivable f rom stabi l i ty assumptions 

Vx ( - . - . Px -> P x ) 

for a l l predicate Symbols P i n <p iff (p is va l id i n any mode l under any assignment. 

2.2. Strong normalization 
Here we use the method of col lapsing types (cf . (Troelstra and van Da len 1988,p.560)) to 
transfer our results and estimates concerning strong normal i za t ion f rom impl i ca t i ona l 
logic to first-order logic. 

The notions concerning conversion introduced i n Sect ion 1.2 can be easily extended 
to f i rst -order logic. In par t icu lar , we have 

( X x x . r ) s s converts into ( \ x . r x [ s ] ) s , 

where the variables x , x now can be either assumpt ion variables or eise object variables. 
The rules generating the re lat ion r —» r' are extended by requir ing r —• r for object 
terms r of our first-order logic. A g a i n a derivat ion is sa id to be i n normal form i f i t 
does not contain a convertible subderivat ion. 

For any formula <p of first-order logic we define its collapse <pc by 

( P f ) c = P 
(ip —• tp)c = (pc —• ipc 

(Vx<p)c = T - ipc 

where T := L —• ± w i t h _L a fixed proposi t ional variable (i.e. T means t ruth ) . The 
level of a formula <p of first-order logic is defined to be the level of its collapse <pc. For 
any derivat ion i n first-order logic we can now define its collapse ( r^ ) c . It is p ia in 
from this definit ion that for any derivat ion i n first-order logic w i th free assumpt ion 
variables x f 1 , . . . , x m

m the collapse ( r ^ ) c is a derivat ion ( r c ) ^ i n imp l i ca t i ona l logic 

w i th free assumption variables x * 1 , . . . , x m
m • 

{ x * ) c = x * * 

( \ x * r ) c = \ x * C r c 

( t ^ + s ) c = t c s c 

( \ x r ) c = A x T r c 

( i * x * s ) c = t c ( A z x ^ - L ) T 

Note that for any derivat ion r ^ , assumpt ion variable x * and der ivat ion we have 
that r c [ s c ] is a derivation i n impl i ca t iona l logic (where the Subst i tut ion of sc is done for 
the assumpt ion variable x ^ ), wh ich is the collapse of r[s]. A l so for any derivat ion r ^ , 
object variable x and t e rm s we have that r x [ s ] is a der ivat ion of xßx[s] w i t h collapse 
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L e m m a 2.2.1. i f r - * i r' in first-order logic, then rc —>i ( r ' ) c in implicational logic. 

T h e proof is by induc t i on on the generation of r — * i r ' . We only treat the case 

( X x r ) s r x [ s ] . 

I i x is an assumpt ion variable, then 

( ( A s « V * ) * * ) c s ( X x ^ r c ) s c 

- i r c [ * C ) 

by the note above. If x is a n object variable, then 

( ( A * * » c = ( X x T r c ) ( X z ± z ± ) r 

= M * D C ) , 

again by the note above. • 
Hence f rom Theorem 1.5.1 we can conclude 

T h e o r e m 2.2.2. A n y derivation r in first-order logic is strongly normalizable. • 

A lso we can apply Theorem 1.6.1 to obta in an upper bound for the length of 
arb i t rary reduct ion sequences. 

T h e o r e m 2.2.3. L e t r be a derivation in first-order logic of a formula of level 0, i.e. 
a p r i m e formula. L e t rc be the collapse of r into implicational logic. L e t m b e a b o u n d 
for the levels of s u b t e r m s of rc and k > 2 be a bound for the axities of s u b t e r m s of r°. 
Then the length of an arbitrary reduction sequence for r with respect to -+i is b o u n d e d 
by 

j f e2m (m+2.height(r e )+2*+2) 

2.3. Uniqueness 

T h e Church-Rosse r Theorem and hence the uniqueness of the no rma l form for deriva
tions i n f i rst-order logic can be proved exactly as i n Section 1.3. We do not repeat this 
here. 
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2.4. Applications 

Here we want to draw some conclusions f rom the fact that any der ivat ion i n first-order 
logic can be transformed into no rma l form. The arguments i n this section are based 
on P r a w i t z ' book (Prawi t z 1965). We begin w i t h an analysis of the form of no rma l 
derivations. 

Let a der ivat ion r be given. A sequence r i , . . . , r m of subderivations of r is a brauch 
i f 

1. n is an assumpt ion variable, 

2. r , is the m a i n premiss of r ;+ i , and 

3. r m is either the whole derivat ion r or eise the side premiss of an instance of the 
rule — w i t h i n r . 

It is obvious that any subderivat ion of r belongs to exact ly one brauch . The order 
of the b rauch ending w i t h the whole derivat ion r is defined to be 0, and i f the order of 
the b rauch through the m a i n premise t of some instance t v " * ^ « v of the rule —*"~ i n r is 
fc, then the order of the branch ending w i th that s v is defined to be fc -f 1. 

The re lat ion "<p is a subformula of xp" is defined to be the transit ive and reflexive 
closure of the re lat ion " immediate subformula" , defined by 

1. ip and xp are immediate subformulas of (p —* xp, 

2. <px[r] is an immediate subformula of Wx(p. 

We w i l l also need the not ion "ip is a strictly positive subformula of xp", wh ich is 
defined to be the transit ive and reflexive closure of the re lat ion " immediate str ic t ly 
posit ive sub formula " , defined by 

1. xp is an immediate str ic t ly posit ive subformula of (p —• xp, 

2. tpz[r] is an immediate str ict ly posit ive subformula of Vx<p. 

In a no rma l der ivat ion r any branch r j f l , . . . , rm
m has a rather perspicious form: a l l 

e l iminat ion rules must come before a l l in t roduct ion rules. Hence, i f i is m a x i m a l such 
that rf{ ends w i t h an e l iminat ion rule, then <pi must be a str ic t ly posit ive subformula 
of a l l <pj for ^ i . Th i s (pi is called the minimal formula of the branch. A lso , any <pj 
w i t h j < i is a str ic t ly posit ive subformula of <p\, and any (pj w i t h j > i is a s tr ic t ly 
posit ive subformula of ( p m . 

T h e o r e m 2.4.1. (Subformula property) If r* is a n o r m a l derivation with free as
sumption variables a m o n g x * 1 , . ' . . yxf^1 and is a s u b d e r i v a t i o n of r*, then xp is a 
subformula of (p or of s o m e <pi. 

The proof is by induct ion on the order of branches i n r , us ing the property of branches 
i n no rma l derivations mentioned above. • 

We wr i te ( p i , . . . , <pm h (p to mean that there is a der ivat ion w i t h free assumpt ion 
variables among x * 1 , . . . , a;£m. 

T h e o r e m 2.4.2. (Herbrand) A s s u m e that V x * i y ? i , . . . , V x m < p m h xp with quantißer-
free < p u </?m, xp. T h e n we can find r n , . . . , r l n i , . . . , r m l , . . . , r m „ m such that 

Y>i [ rn ] , . . . , ¥>i[ri„J, • • . ^ m [ r m i ] , . . . , < P m [ r m n m ] I" V> 
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Proof. To simpli fy notat ion let us assume Vxtp h xp w i t h quantif ier-free ip,xp. B y 
Section 2.2 we can construct from the given der ivat ion a no rma l der ivat ion w i th free 
assumpt ion variables among x V x v > . B y induct ion on the order of branches it is easy to 
see that any branch must end w i th the derivat ion of a quantifier-free f o rmula and must 
begin w i t h the rule V , i . e. w i th x V z < *V,- . Now replace any such subder ivat ion by y f ' r ' ' , 
w i t h new assumpt ion variables y,-. • 

O u r next appl icat ion is the C ra i g interpolat ion theorem. We shal l use the nota t ion 
..., <pm h c ip (c for classical) to mean that there is a der ivat ion w i t h free assump

t ion variables among x f l , . . . , xjjjm and some stabi l i ty assumptions y v ? ( - , _ , P l — P % ) f o r p 
predicate variable i n Cp, ip, where again -^xp denotes xp —> X w i t h a fixed propos i t ional 
variable _L 

T h e o r e m 2.4.3. (Interpolation) A s s u m e r , A h f Then we can find a finite list 7 
o f formulas such that 

T h c 7 and 7 , A h c ip 

( w h e r e V h c 7 means T h c 7,- for each 7; i n 7 ) , and any object or predicate variable free 
in 7 occurs free both in T and in A , <p. 

For the proof we sha l l use a somewhat more expl ic i t formulat ion of the theorem: Let 
be a der ivat ion w i t h free assumption variables among u 1 " , i f A . T h e n we can find a finite 
l ist r " i 7 of derivations w i t h free assumpt ion variables among u r and stabi l i ty assump
tions and a der ivat ion r$ w i th free assumption variables among xp,xJA and stabi l i ty 
assumptions, such that any object or predicate variable free i n 7 occurs free bo th i n V 
and i n A , ip. 

For brevi ty we shal l not ment ion stabi l i ty assumptions any more (they w i l l only be 
used i n Case 2 b ( i i ) below), and write " r ^ w i th u r " , to mean the der ivat ion r v w i th free 
assumpt ion variables among u r . 

The proof is by induct ion on the height of the given der ivat ion, wh ich by Sect ion 2.2 
we can assume to be norma l . We dist inguish two cases according to whether it ends 
w i t h an in t roduct ion rule (i. e. —>+ or V + ) or w i t h an e l iminat ion rule. 

Case l a . ( A x * r * ) * - * w i t h xf ', vA. B y induct ion hypothesis for w i th x * , u r , v A 

we have f f w i t h u r and r$ w i t h y * , x ^ , x7A. A n appl icat ion of —>+ to the latter der ivat ion 
yields ( A x * r J ) * - * * w i t h y * , v A . 

Case l b . ( \ x r A Y x < p w i th u r , v A , where x is not free i n T, A . B y induc t i on hypo
thesis for r v w i t h t ? r , v A we have f f w i th ür and w i th y \ v A . Since x is not free i n 
T , we know that x is not free i n 7. A n appl icat ion of V + to the latter der ivat ion yields 
( A x r £ ) v * * w i t h y * , t ? \ 

Case 2a. ( w ^ s x t ) A w i t h t x r , v A . 
Subcasz i. wx~~*d is among u r . B y induct ion hypothesis for sx w i t h üT,xjA we have 

s f w i t h v A and sx w i t h x p , x f . B y induct ion hypothesis for ( u ^ t ) * w i t h u * , t T r , t T A we 
have i? w i t h u * , t T r and t% w i t h £^ , v A . F r o m these derivations we ob ta in 

( ^ ( * i ) « k x ^ 3 j ] ) ^ ' w i t h u r 

and 
w ^ x ^ > A , 

where 7 —• 6 means 7 —> £ 1 , . . . , 7 —» £ n . 
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Subcase ii. wx~~¥d is among v A . B y induct ion hypothesis for sx w i t h u r , v A we have 
s l w i t h i f and sx w i t h y * y v A . B y induct i on hypothesis for (t/*t) v w i t h u^tT 1 " , v A we 
have w i t h u 1 * and w i t h z? , u * , v A . P r om these derivations we obta in 

w i t h i f 

and 

( < ? ) « [w x ^ * *J ] w i t h y ^ , / , i ? A . 

Caae 26. t/> V x x sf w i t h t ^ , v A . 

Subcase i. t/>V x x is among ür. B y induct ion hypothesis for ( u x M $ ) v w i t h u x M , u r , 
v A we have t f w i t h u ^ j t ? and t% w i t h y * , v A . Let z be a l l variables free i n 7 that 
are i n s, but not free i n T. We now construct derivations 

(A^ *7 ) » w i t h tx r 

and 

(tf)*!*****] w i t h « " ^ S * , 

where VZ7 means V 2 7 1 , . . . , V S 7 m . Note that any object or predicate variable free i n 
V f 7 is bo th free i n A , ip and free i n T. 

Subcase ii. t ü V x x is among vA. B y induct ion hypothesis for ( i t x ' * ' t ) v u X'*'> ^ r> 
v A we have t f w i t h u r and t$ w i t h y^, u c M , t ; A . Let z be a l l variables free i n 6 that are 
i n s, but not free i n A,<p. We now construct derivations 

( X v ^ i v z h ) ) ^ ' ^ w i th t? r 

and 

( t ^ ^ A ü ^ . « " v ^ A £ X y ( t ; ( < J ) l l [ u ; V Ä X 3 ] ) ) v w i t h x ^ ' ö * 

and stabi l i ty assumptions (which are used to bu i l d f " ^ " "^ ) . Note again that any object 

or predicate variable free i n ->V?-iÄ is bo th free i n T and free i n A , ip. • 
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3. Normalization for arithmetic 

3.1. Ordinal notations 

We want to discuss the derivabi l i ty and under ivabi l i ty of i n i t i a l cases of transf inite 
induc t i on i n ar i thmet ica l Systems. In order to do that we shal l need some knowledge 
and notat ions for ordinals . Now we do not want to assume set theory here; hence 
we introduce a certain in i t i a l segment of the o rd ina l (the ord inals < e o ) i n a f o rma l , 
combinator ia l way, i.e. v i a o rd ina l notations. O u r treatment is based on the Can to r 
no rma l form for ordinals ; cf. (Bachmann 1955). We also introduce some elementary 
relations and Operations for such o rd ina l notat ions, wh i ch w i l l be used later. 

We define the two notions 

• a is an o rd ina l notat ion 

• a < ß for o rd ina l notat ions a , ß 

simultaneously by induct ion : 

1. If a m , . . . , c*o are o rd ina l notations and a m > . . . > t*o (where a > ß means a > ß 
or a = /?), then 

u> 0 m + • • • + u a o 

is an o rd ina l notat ion. Note that the empty sum denoted by 0 is al lowed here. 

2. If L J Q m H h w 0 0 and u A H h u A are o rd ina l notat ions, then 

w ° m H h u)a° < u A H h u ß o 

iff there is an i > 0 such that a m - i < a m - t + i = /? n _ ,+ i , . . . , a m = /? n , or 
eise m < n and a m = / ? n , . . . , a 0 = ßn-m 

It is easy to see (by induc t i on on the levels i n the induct ive definition) that < is a l inear 
order w i t h 0 be ing the smallest element. 

We sha l l use the notat ion 1 for a for u° H (- u ; 0 w i t h a copies of u ; 0 a n d u a a 
for u a H h again w i t h a copies of u>a. 

We now define add i t ion for o rd ina l notations: 

w t t m + ••• + u ; O 0 + a ; ^ n : = w a m + • • • + u > a i + u ß n + • • • + u > ß o 

where i is m i n i m a l such that > ßn. 
It is easy to see that -f is an associative Operation wh ich is s t r ic t ly monoton ic i n 

the second argument and weakly monotonic i n the first argument. Note that + is not 
commutat ive : l + u > = u ; ^ u ; + l . 

The natural (or Hessenberg) sum of two ord ina l notations is defined by 

( u ; a m + • • • + u a o ) # ( u ß n H |-w^0) := u > 7 m + n 

where 7 m + n , . . . , 7 0 is a decreasing permutat ion of a m , . . . , ao,/? n , • • •, ßo-
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A g a i n i t is easy to see that # is associative, commutat ive and str ic t ly monotonic 
i n b o th arguments. 

We w i l l also need to know how ord ina l notations of the form ß + u Q can be appro-
x imated f rom below. F i r s t note that 

6 < a - + ß + u>*a<ß + u a . 

Furthermore , for any 7 < ß + u>a we can f ind a 6 < a and an a such that 

7 < 0+ w 6 a . 

We now define 2 a for o rd ina l notations a . Let a m > • • • ao > u> > k n > • • • > k\ > 
0. T h e n 

2 W f t m + - + w a ° + w k B + - + w * l + w ° o . _ a ; u ; a m + ...+w < , ,o+u;* n" l + - -+w k i * " 1 2a 

It is easy to see that 2 a + 1 = 2 a + 2 a and that 2 a is s tr ic t ly monotonic i n a . 
In order to work w i t h o rd ina l notat ions i n a pure ly ar i thmet ica l System we set up a 

bi ject ion between o rd ina l notat ions and nonnegative integers (i.e., a Gödel numbering) . 
For i ts def init ion i t is useful to refer to ord ina l notat ions i n the fo rm 

w ° m a m + • • • + u ) a o a o w i t h a m > • • • > <*0. 

For any o rd ina l notat ion a we define its Gödel number \a\ induct ive ly by 

|0| : = 0 , 

K - « » + " - + « e , 0 « o | : = ( I I ^ « , | ) - 1 -
i<m. 

For any nonnegative integer x we define its corresponding o rd ina l notat ion o ( x ) induc
t ively by 

o(0) = 0 

o ( ( n r f , ) - i ) = E ^ o ( 0 a « 
»<m t<m 

where the s u m is to be understood as the na tura l sum. 

L e m m a 3.1.1. 
1. o(\a\) = a, 
2. \o(x)\ = x . 

Th i s can be proved easily by induct ion . • 
Hence we have a bi jection between ord ina l notat ions and nonnegative integers. 

Us ing this bi ject ion we can transfer our relations and Operations on o rd ina l notat ions to 
computable relations and Operations on nonnegative integers. We w i l l use the notat ions 

x X y for o ( x ) < o(y), 

u>* for 

£ © y for |o(x) + o(y)|. 
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3.2. Provability of initial cases of transfinite induction 

We now set u p some formal Systems of ar i thmet ic and derive i n i t i a l cases of the pr inc ip le 
of transf inite induc t i on i n them, i.e. of 

Vx (Vy X x : P y P x ) - + V x X a : P x 

for some numera l a and a predicate variable P. In Section 3.4 we w i l l see that our 
results here are op t ima l i n the sense that for larger segments of the ordinals transf inite 
induc t i on is underivable. A l l these results are due to (Gentzen 1943). 

O u r ar i thmet ica l Systems are based on a fixed (possibly countably infinite) supply of 
funct ion constants and predicate constants wh ich are assumed to denote fixed functions 
and predicates on the nonnegative integers for wh ich a computat ion procedure is known . 
A m o n g the funct ion constants there must be a constant 5 for the successor funct ion 
and 0 for (the 0-place function) zero. A m o n g the predicate constants there must be a 
constant = for equality and J . for (the 0-place predicate) falsity. In order to formulate 
the general pr inc ip le of transfinite induct ion we also assume that predicate variables 
P , Q,... are present. 

Terms are bu i l t up f rom object variables x , y , 2 by means of fr\ .. . r m , where / 
is a funct ion constant. We identify closed terms wh ich have the same value; this is a 
convenient way to express i n our formal Systems the assumpt ion that for each funct ion 
constant a computat ion procedure is known. Terms of the form S S . . . 50 are cal led 
numerals. W e use the notat ion S*0 or even i for them. Formulas are bui l t up f rom 
pr ime formulas P r \ . . . r m w i t h P a predicate constant or a predicate variable by means 
of (<p —• xp) and Vx<p. A s usua l we abbreviate ip —• J _ by 

T h e axioms of our ar i thmet ica l Systems w i l l always inc lude the Peano-ax ioms 

V x y ( S x = S y -» x = y) , 

V x ( S x ^ 0). 

A n y instance of the induct ion scheme 

¥>[0],Vx(y>[x] ip[Sx]) Vxip[x] 

w i t h ip an arb i t rary formula is an ax iom of füll ar i thmet ic Z . We w i l l also consider 
Subsystems Zk of Z where the formulas ip i n the induct ion scheme are restricted to 
n j - f o r m u l a s ; the latter not ion is defined inductively, as follows. 

1. A n y pr ime fo rmula P f is a üj-formula, for any k > 1. 

2. If ip is quantif ier-free and ip is a üj-formula, then ip —• ip is a üj-formula. 

3. If ip is a üj-formula and ip is a I IJ- formula , then ip —• ip is a üj-formula w i t h 
p = max(fc + 1,/). 

4. If ip is a üj-formula, then so is Vxy>. 

Note that a formula is a üj-formula iff i t is logical ly equivalent to a formula w i t h a 
prefix of k a l ternat ing quantifiers beginning w i t h V and a quantifier-free kernel. For 
example, V x B y V z P x y z is a I l^ - formula . In add i t ion , i n any ar i thmet ica l system we 
have the equal i ty axioms 

Vx (x = x ) , 
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V x y ( * i = y u . . . , x m = y m - > f x = f y ) , 

V x y ( x i = y i , . . . , x m = y m > P x - > P y ) 

for any funct ion constant / and predicate constant or predicate variable P. We also 
require for any such P the stabi l i ty axioms 

V x ( - ^ P x -> P x ) . 

W e express our assumpt ion that for any predicate constant a decision procedure is 
known by add ing the ax iom 

P ( S i l 0 ) . . . ( S i m 0 ) 

whenever P i is true, and 
^ P ( S i l 0 ) . . . ( S i m 0 ) 

whenever P i is false. 
We finally al low i n any of our ar i thmet ica l Systems an arb i t rary supply of true 

I l i - f o rmua l s as axioms. O u r (positive and negative) results concerning in i t i a l cases of 
transfinite recursion w i l l not depend on which of those axioms we have chosen, except 
that for the posit ive results we always assume 

Vx ( x £ 0) (3.1) 

V y z ( z ^ e w ^ / y . ^ y ^ l ) (3.2) 

Vx ( x © 0 = x) (3.3) 

V x y z ( x © (y © z ) = (x © y) 0 z ) (3.4) 

Vx (0 © x = x) (3.5) 

Vx (u ; x 0 = 0) (3.6) 

Vxy (u>* (Sy )=u ; x y©u> x ) (3.7) 

V x y z ( z - < y © ü > x , x ^ 0 - + * - « y © u f x y z ( g x y z ) ) (3.8) 

V x y z ( z - < y © t * ; x , x ^ 0 - > f x y z -< x ) (3.9) 

where i n 3.9 / and g are funct ion constants. 

T h e o r e m 3.2.1. ( G e n t z e n ) Transfinite induction up to u n ( w i t h u>\ := u;,u>n+i := 
u ) " " ) i.e. the formula 

Vx (Vy -< x : ip[y] —> <p[x\) —• Vx -< u>n : <p[x] 

is derivable in Z . 

Proof: To any fo rmula ip we assign a formula y>+ (wi th respect to a fixed variable x ) by 

ip+ := Vy (Vz X y : tpx[z] -+Vz-<y®ux : <pt[z]). 

We first show 
ip is progressive —• v? + is progressive, 
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where "tp is progressive" means Vx (Vy X x : tp[y] —• tp[x)). So assume that (p is progres
sive and 

Vy X x : y>+[y]. (3.10) 

We have to show y>+[x]. So assume further 

V ^ y : <p[z] (3.11) 
and z X y © u ; x . We have to show <p[z], Case x = 0. F r o m z X y 0 u>° we have by 
3.2 z X y V z = y. If z X y , then (p[z] follows from 3.11, and i f z = y , then y>[z] 
follows f rom 3.11 and the progressiveness of <p. Case x ^ 0. F r o m z - < y © w x we ob ta in 
z X y®w*xyzgxyz by 3.8 and / x y z X x by 3.9. F r o m 3.10 we ob ta in y? + [/xyz ] . B y the 
def init ion of y>+ we get 

V u X y 0 u> / x y *v : tp[u] - > V u X (y 0 w ' * » * » ) 0 u > / l J " : p[u] 

and hence, us ing 3.4 and 3.7 

V u X y 0 u> / x ! " t ; : <p[u] -> V u X y 0 a ; / x s " (5 t ; ) : y?[u]. 

A l so from 3.11 and 3.6, 3.3 we obta in 

V u X y 0 i o / x j " O : v > [ u ] . 

Us ing an appropriate instance of the induct ion scheme we can conclude 

V u X y 0 w * x y z g x y z : <p[u] 

and hence <p[z], 
We now show, by induc t i on on n , how to obta in a der ivat ion of 

Vx (Vy X x : <̂ [y] —• <p[x]) -> V x X u>n : y?[xj. 

So assume the le f t -hand side, i.e. assume that tp is progressive. Case 0. F r o m x X u>0 

we get x = 0 by 3.5, 3.2 and 3.1, and (p[Ö\ follows f rom the progressiveness of <p by 3.1. 
Case n 4-1. Since ip is progressive, by what we have shown above also y>+ is progressive. 
A p p l y i n g the induc t i on hypothesis to y>+ yields V x X u ; n : y>+[x], and hence y>+[u>n] 
by the progressiveness of y>+[x]. Now the definit ion of y? + (together w i t h 3.1 and 3.5) 
yields V z X u W n : tp[z]. • 

Note that i n these derivations the induct ion scheme was used for formulas of u n -
bounded complexity. 

We now want to refine Theorem 3.2.1 to a corresponding result for the Subsystems 
Zk of Z . Note first that i f <p is a I I { - formula, then the formula y> + constructed i n the 
proof of Theorem 3.2.1 is a I I J + 1 - f o r m u l a , and for the proof of 

(p is progressive —* y>+ is progressive 

we have used induct ion w i th a I l j induct ion formula. 
Now let (p be a I I?- formula, and let (p° := y>,y> , +1 := (v>')+- T h e n Y>* i s a n * + i ~ 

formula , and hence i n Zk we can derive that i f (p is progressive, then also i p 1 , y ? 2 , . . .<pk 

are a l l progressive. Let u>i[m] := m , <<;,•+i[m] = u ^ m h Since i n Zk we can derive that 
<pk is progressive, we can also derive ¥>*[0],y>*[l], y>*[2] and generally ^*[m] for any m , 
i.e. ¥>*[u>i[m]]. B u t since 

ipk = (ip16'1)+ = Vy (Vz X y : Z " 1 [z] -> V z X y 0 u x : < p k ~ l [*]), 

we first get (w i th y = 0) V z X u>2[m] : y)*""1^] and then ^*" 1 [w2[m]] by the progres
siveness of y>* - 1 . Repeat ing this argument we finally obta in y?°[u>fc+i[m]]. Hence we 
have 
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T h e o r e m 3.2.2. L e t ( p b e a U i - f o r m u l a . Then in Zk we can derive transfiniteinduction 
for <p up to u>k+i[™] for any m , i.e. 

Zk h Vx (Vy X x : ip[y] - + (p[x]) V x X M : <p[x ]d 

If more generally we start out w i t h a I I|- formula <p instead, where 1 < / < fc, then a 
s imi lar argument yields the fol lowing result of (Parsons 1973) 

T h e o r e m 3.2.3. L e t <p be a Ttf-formula, 1 < / < fc. Then i n Zk we can derive 
transfinite induction for (p up to u>*+2-/[ra] for any m , i.e. 

Zk \~ Vx (Vy X x : <p[y] —• <p[x]) —• V x X u>*+2-/[m] : y>[x]£D 

O u r next a i m is to prove that these bounds are sharp. M o r e precisely, we w i l l show 
that i n Z (no matter how many true H\-formulas we have added as axioms) one cannot 
derive transfinite induct ion up to eo, i.e. the fo rmula 

Vx (Vy X x : P y —• P x ) —• V x P x 

w i t h a free predicate variable P , and that i n Zk one cannot derive transfinite induct ion 
up to Wfc+i, i.e. the fo rmula 

Vx (Vy -< x : P y —• P x ) V x X u>*+i : P x . 

Th i s w i l l follow f rom the method of normal i zat ion appl ied to ar i thmet ica l Systems, wh ich 
we have to develop first. 

3.3. Normalization for arithmetic with the w - ru le 

We w i l l show i n Section 3.5 that a normal i zat ion theorem does not ho ld for a System of 
ar i thmet ic l ike Z i n Section 3.2, i n the sense that for any fo rmula <p derivable i n Z there 
is a der ivat ion of the same formula tp i n Z wh ich only uses formulas of a level bounded 
by the level of (p. The reason for this failure is the presence of the induc t i on axioms, 
which can be of arb i t rary level. 

Here we remove that obstacle against normal i za t ion and replace the induc t i on 
axioms by a rule w i th inf initely many premisses, the so-cal led w- ru l e (suggested by H i l 
bert and studied by Lorenzen, Novikov and Schütte), wh i ch allows to conclude Vxy>[x] 
from ^[0],vp[l],y>[2], . . . . 

C lear ly this u;-rule can also be used to replace the rule V + . A s a consequence we 
do not need to consider free object variables. 

So we introduce the System Z°° of a ; -ar i thmet ic as follows. Z°° has the same 
language and — apart from the induct ion axioms — the same axioms as Z . Derivat ions 
in Z°° are inf inite objects; they are bui l t up from assumpt ion variables x ^ , y ^ and 
constants ax^ for any ax iom <p of Z other than an induc t i on ax iom by means of the 
rules 

( A x ^ r * ) ^ 

( t * ^ * s * ) + 
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V i /t"<u/ 

denoted by —fr"*",—*~",u> and V ~ , respectively. 
Mo r e precisely, we define the not ion of an x -der i va t i on (i. e. a der ivat ion i n Z ° ° 

w i t h free assumpt ion variables among x ) of height < a and degree < fc induct ively, as 
below. 

Note that derivations are infinite objects now. They may be viewed as mappings 
from finite sequences of na tura l numbers (= nodes i n the der ivat ion tree) to lists of data 
inc lud ing the fo rmula appear ing at that node, the rule appl ied last, a l ist of assumption 
variables inc lud ing a l l those free i n the subder ivat ion (start ing at that node), a bound 
on the height of the subder ivat ion, and a bound on the degree of the subder ivat ion. 

Intuit ively, the degree of a der ivat ion is the least number > the level of any subde
r ivat ion Xxr i n a context ( X x r ) s or (r,-)j<w i n a context (r j )t< W t ; , where the level of a 
der ivat ion is the level of its type, i.e. the formula i t derives. T h i s not ion of a degree is 
needed for the normal i za t ion proof we give below. 

* A n y assumpt ion variable x * and any ax iom a x v is an x -der i va t i on of height < a 
and degree < fc, for any l ist x of assumpt ion variables (containing x i n the first 
case), o rd ina l a and number fc. 

_>+ j f R V > i s an ä?,x,y-derivation of height < Q Q < a and degree < fc, then ( A x ^ r ^ ) ^ - ^ 
is an x , y -der iva t ion of height < a and degree < fc. 

—»~ If r^ " *^ and are x-der ivat ions of heights < < a and degrees < fct < fc ( i = 
1,2), then ( t ^ ^ s ^ ) ^ is an x -der i va t i on of height < a and degree < m w i th 
m = max(fc,lev(</? —• ^)), i f W*1^ is generated by the rule — o r of degree < fc 
otherwise. 

LJ If r f ^ are x-der ivat ions of heights < oti < a and degrees < fcj < fc ( i < o;), then 

( rr ' ' ' )T<w 1S 8 1 1 ^ -der iva t ion of height < a and degree < fc. 

y - If t * x < p is an x -der i va t ion of height < ao < a and degree < fc, then ( t ^ ^ i ) ^ is an 

x -der i va t i on of height < a and degree < m w i t h m = max(fc, level Vxy>), i f t V x v is 

generated by the rule or of degree < fc otherwise. 

We now embed our Systems Zk ( i . e. ar i thmet ic w i t h induc t i on restr icted to U°k-
formulas) and hence Z into Z°°. 

L e m m a 3 .3 .1. L e t b e a derivation i n Zk with free assumption variables a m o n g x $ 
which contains < m instances of the i n d u c t i o n s c h e m e all with i n d u c t i o n formulas of 
level < fc. L e t o b e a Substitution of numerals for o b j e c t variables such that (pa^rjxj do 
not contain free object variables. T h e n we can End an x?°-derivation { t o o ^ 0 m Z°° of 
height < u>m + h for s o m e h < u and degree < fc. 

Proof . F i r s t note that f rom any norma l derivat ion i n first-order logic we can construct 
a no rma l der ivat ion r $ w i t h the same free assumpt ion variable x ^ , such that i n T Q 
any branch has a pr ime formula as its m i n i m a l f o rmula (cf. Sect ion 2.4). For i f ^ is a 
m i n i m a l fo rmula which is not pr ime we can first apply e l iminat ion rules un t i l a pr ime 
formula is reached and later bu i l d a up again by the corresponding in t roduct ion rules. 

T h e l e m m a is proved by induct ion on the height of the given derivat ion r . B y 
the Norma l i za t i on Theorem 2.2.3 and the note above we can assume that r is no rma l 
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w i t h pr ime m i n i m a l formulas. The only case wh ich requires some argument is when r 
consists of two appl icat ions of — t o an instance of the induc t i on scheme. T h e n r must 
have the form 

a x V > [ 0 ] , V x ( V [ x ] ^ ^ [ 5 x ] ) ^ V i V ? [ x ] 5 V [ 0 ] ^ A x A y v ' W t ¥ > [ S x ] ^ 

B y induc t i on hypothesis we obta in derivations 

sä 0 ] of height ^ w ^ + f c o 

* Ä ä 0 ] ] of height < u m ~ l - 2 + h u 

' ä 2 WW ] ] ] of height < « • , — 1 . 3 + Ä2 

and so on, a l l of degree < fc. Comb in ing a l l these derivations of ip[i] as premisses of the 
w - ru l e yields a der ivat ion *«> of Vx<p[x] of height < w m and degree < fc. • 

A derivation is cal led convertible i f i t is of the form (Axr)s or eise ( r ^ i ^ j , wh ich can 
be converted into r x [ s ] or ry, respectively. Here r x [ s ] is obta ined from r by subst i tut ing 
s for a l l free occurences of x i n r . A derivat ion is cal led n o r m a l i f i t does not conta in a 
convertible subderivat ion. Note that a derivat ion of degree 0 must be norma l . 

We want to define an Operation wh ich by repeated conversions transforms a given 
der ivat ion into a no rma l one w i th the same end formula and no more assumpt ion va
riables. The methods employed i n Sections 1 and 2 to achieve such a task have to be 
adapted properly i n order to deal w i t h the new Situation of inf in i tary derivations. Here 
we give a par t icu lar ly s imple argument due to (Tait 1965). 

L e m m a 3 .3 .2 . I f r i s a n x , x ^ , y - d e r i v a t i o n of height < a and degree < fc and is an 
x , y - d e r i v a t i o n of height < ß and degree < /, then r x [ s ] is an x , y - d e r i v a t i o n of height 
< ß + a and degree < max(fc, /, level s ) . 

T h i s is proved by a straightforward induct ion on the height of r . • 

L e m m a 3 .3 .3 . For any x - d e r i v a t i o n r* of height < a and degree < fc + 1 we can find 
an x - d e r i v a t i o n ( r * ) v o f height < 2 a and degree < fc. 

The proof is by induct ion on a . The only case wh ich requires some argument is when r 
is of the form ts w i t h t of height < a\ < a and s of height < ct2 < <*. We first consider 
the subcase where t k = Xxti and lev(t) = fc + 1. T h e n lev(s) < fc by the def init ion 
of level, and hence (*i)x[s*] has degree < fc by L e m m a 3.3.2. Furthermore , also by 
L e m m a 3.3.2, ( t i ) x [ s k ) has height < 2 * ' + 2 a i < 2 m a x < 0 f 2 ' 0 f l )+ 1 < 2 ° . Hence we can take 
( t s ) k to be (*i)x[s*]- If we are not i n the above subcase, we can s imply take ( t s ) k to be 
t k s k . Th i s derivat ion clearly has height < 2 Q . A l so i t has degree < fc, wh ich can be seen 
as follows. If lev(tf) < fc we are done. If however lev(t) > fc + 2, then t must be of the 
form tot\ . . . t m for some assumpt ion variable or ax iom to (since r has degree < fc + 1). 
B u t then t k has the form t o t k ... t ^ and we are done again. (To be completely precise, 
this last statement has to be added to the formulat ion of the L e m m a above and proved 
simultaneously w i t h i t ) . • 

A s an immediate consequence we obta in 

T h e o r e m 3 .3 .4 . ( N o r m a l i z a t i o n f o r Z°°) F o r any x - d e r i v a t i o n r* of height < a 
and degree < fc we can find a n o r m a l x - d e r i v a t i o n ( r * ) v o f height < 2 * a ( w h e r e 2o « = 
a , 2 m + i a = 2 2m). 
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3.4. Unprovable initial cases of transfinite induction 

We now apply the technique of normal i zat ion for ar i thmet ic w i t h the w - ru l e for a proof 
that transfinite induc t i on up to €o is underivable i n Z y i.e. of 

Z \f Vx (Vy X x : P y -> P x ) V x P x 

w i t h a predicate variable P , and that transfinite induc t i on up to C J * + I is under ivable i n 
Z * , i.e. of 

Z k V Vx (Vy X x : P y -+ P x ) V x X : P x . 

O u r proof is based o n an idea of Schütte, wh ich consists i n add ing a so-ca l led progression 
rule to the inf ini tary Systems. T h i s rule allows to conclude P j (where j is any numeral ) 
from a l l P i for i -< j . 

M o r e precisely, we define the not ion of an x -der i va t i on i n Z°° + P r o g ( P ) of height 
< a and degree < fc by the induct ive clauses of Sect ion 3.2 and the add i t i ona l clause 
P rog (P ) : 

If r f * are x-der ivat ions of heights < < a and degrees < fcj < k ( i -< j ) , then 

( r f 1 8 8 1 1 1 ^ -der i va t ion of height < a and degree < fc. 

Since this progression rule only deals w i t h derivations of pr ime formulas i t does not 
afFect the degrees of derivations. Hence the proof of normal i za t ion for Z°° carries over 
unchanged to Z°° + P rog (P ) . In part icu lar we have 

L e m m a 3.4.1. For any x - d e r i v a t i o n r* in Z°° + P r o g ( P ) of height < ot and degree 
< fc + 1 we can und an x - d e r i v a t i o n ( r * ) v i n Z°° + P r o g ( P ) of height < 2° and degree 
<fc. 

We now show that from the progression rule for P we can easily derive the progressi
veness of P . 

L e m m a 3.4.2. We have a normal derivation of Vx (Vy -< x : P y —• P x ) in Z°° + 
P r o g ( P ) with height < 5. 

Proof . B y the o;-rule i t suffices to derive Vy X j : P y —• P j for any j w i t h height < 4. 
We argue informally. Assume Vy -< j : P y . B y V ~ we have t •< j —> P i for any t. Now 
for any % -< j we have i -< j as an ax iom; hence P i for any such t. A n app l i ca t ion of 
the progression rule yields P j , w i t h a derivat ion of height < 3. Now by —•+ and u; the 
c l a im follows. • 

T h e cruc ia l Observation now is that a norma l der ivat ion of P\ß\ must essentially 
have a height of at least ß. However, to obta in the right estimates for our Subsystems 
Zk we cannot app ly L e m m a 3.4.1 down to degree 0 (i.e. to the no rma l form) but 
must otop already at degree 1. Such derivations, i.e. those of degree < 1, w i l l be 
cal led olmost normal] they can also be analyzed easily. A n almost no rma l der ivat ion 
r i n Z°° + P r og (P ) is cal led a P\3\,-yP\ß\-refutation i f r derives a f o rmula dp —> yj 
w i t h (p and the free assumptions i n r among P|ö?| := P | O J I | , . . . , P | a m | and ~^P\ß\ : = 
~*P\ß\ |,..., "»Pl^nl and true pr ime formulas, and %l> a false pr ime fo rmula or eise among 
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L e m m a 3.4.3. L e t r be an almost normal P\a\, ->P\ß\-refutation of height < \r\ with 
S and ß disJoint. Then 

min/?<|r| + # 5 , 

where # a denotes the n u m b e r of ordinals in S . 
Proof . B y induc t i on on |r|. Note that we may assume that r does not conta in either u 
or eise V ~ . Note also that r cannot be an equality ax i om a x p l 7 l , ' 7 ' = s l * l " ' p ^ l w i th 7 = 6 
t rue , since we have assumed that a and ß are disjoint. We d is t inguish cases according 
to the last rule i n r . 

Case — B y our def init ion of refutations the c l a im follows immediate ly from the 
induc t i on hypothesis. 

Case — T h e n r = t ^ ~ " ^ " ~ ^ s v . If tp is a true pr ime formula , the c l a im follows 
from the induc t i on hypothesis for t. If is a false pr ime formula , the c l a im follows 
from the induc t i on hypothesis for s. If <p is - , - , P | 7 | (and hence t = ax V x ^" 1 " , i ! > x ~ ' P x ^|7|) , 
then since the level of ->-«P|7| is 2 the derivat ion s " 1 " ^ ' 7 ' must end w i t h an in t roduct ion 
rule , i . e. s = \ X ~ * P

M S Q (for otherwise, since no ax i om contains some -»- iPr 0 as a 
s t r ic t ly posit ive subformula, we would get a contradict ion against the assumpt ion that 
r has degree < 1). The c la im now follows from the induct ion hypothesis for so. The 
only remain ing case is when <p is P|7|. T h e n t is an almost norma l P|7|, P|ö?|, ~*P\ß\ 
- re futat ion and s is an almost no rma l P|<3|,-»P|/?|,-«P|7| -re futat ion. We may assume 
that 7 is not among a , since otherwise the c la im follows immediate ly f rom the induct ion 
hypothesis for t. Hence we have by the induct ion hypothesis for t 

m i n ^ < | t | + # c ? - h l < | r | + # a . 

Case P r og ( P ) . T h e n r = ( r f *')£l7y'. B y induct ion hypothesis, since r$ is a P|a|, 

-«P|/?|, ~»P|£| -re futat ion, we have for a l l 6 < 7 

min(^,Ä)<|rÄ| + # c f < | r | - h # 5 

and hence 
minO?, 7 )<|r| + #a. 

• 
Now we can show the fol lowing result of (M in ts 1971) and (Parsons 1973) 

T h e o r e m 3.4.4. Transßnite induction up to 6Q is underivable in Z , i.e. 

Z \f Vx (Vy < x : P y - * P x ) - + V x P x 
with a predicate variable P , and transßnite induction up to cjjk+i is underivable in Zk, 
i.e. 

Z k 1/Vx(Vx < x : P y -+ P x ) Vx X a ; f c + i : P x . 
Proof . We restrict ourselves to the second part . So assume that transfinite induc t i on up 
to Wjk+i is derivable i n Zfc. T h e n by the embedding of Zk into Z°° ( L e m m a 3.3.1) and 
the n o r m a l der ivabi l i ty of the progressiveness of P i n Z°° + P r og ( P ) w i t h finite height 
( L e m m a 3.4.2) we can conclude that V x X u>k+i • P x is derivable i n Z°° -f P r o g ( P ) w i t h 
height < u j m + h for some m , h < u) and degree < k. Now fc — 1 appl icat ions of L e m m a 
3.4.1 y ie ld a der ivat ion of the same formula V x -< u;*+i : P x i n Z°° + P r og ( P ) w i th 
height < 7 < 2 jk_ i (u ; m + h) < u>*+i and degree < 1, hence also a der ivat ion of P|7 + 1| 
i n Z°° + P r o g ( P ) w i t h height < 7 and degree < 1. B u t this contradicts L e m m a 3.4.3. 
• 
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3.5. Normalization for arithmetic is impossible 

T h e normal i za t ion theorem for first-order logic appl ied to ar i thmet ic Z is not par t i -
cu lar ly useful since we may have used i n our der ivat ion induc t i on axioms of arb i t rary 
complexity. Hence i t is tempt ing to first e l iminate the induc t i on scheme i n favour of an 
induc t i on rule a l lowing to conclude Vxy>[x] from a der ivat ion of y>[0] and a der ivat ion of 
(p[Sx] w i th an add i t iona l assumpt ion y>[x] to be cancelled at this point (note that this 
rule is equivalent to the induct ion scheme), and then to t ry to normal ize the resul t ing 
derivat ion i n the new system Z w i t h the induct ion rule. We w i l l app ly our results f rom 
Section 3.4 to show that even a very weak form of the normal i za t ion theorem cannot 
ho ld i n Z w i t h the induct ion rule. 

T h e o r e m 3.5.1. The following weak form of a normalization theorem for Z with the 
induction rule is false: For any x $ - d e r i v a t i o n with (p,%l> Itf-formulas there is an 
x $ - d e r i v a t i o n ( r* )^ containing only nj- formuias, with k depending only on l. 

Proof. Assume that such a normal i zat ion theorem would ho ld . Consider the n°- formula 

Vx (Vy X x : P y —• P x ) -> V x X w n + i • P x 

expressing transfinite induct ion up to u>n+i- B y Theorem 3.2.1 i t is derivable i n Z . 
Hence there exists a der ivat ion of the same formula containing only nj- formulas, for 
some k independent of n . Hence Zk derives transfinite induct ion up to u; n +i for any n . 
B u t this clearly contradicts Theorem 3.4.1. • 
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