Logic, Algebra,
and Computation

International Summer School directed by
F.L. Bauer, W. Brauer, G. Huet, J. A. Robinson, H. Schwichtenberg

Edited by
Friedrich L. Bauer

Professor Emeritus
Technische Universitat Minchen
Postfach 202 420, W-8000 Miinchen, Federal Republic of Germany

Springer-Verlag

Berlin Heidelberg New York London Paris Tokyo
Hong Kong Barcelona Budapest

Published in cooperation with NATO Scientific Affairs Division

Table of Contents

John V.Tucker
Theory of Computation and Specification over

Abstract Data Types, and its Applications 1
Zohar Manna, Richard Waldinger

Fundamentals of Deductive Program Synthesis 41
J. Alan Robinson

Noteson Resolution o ii.n... 109
Gérard Huet

Introduction au A-calculpur.......... 153

Helmut Schwichtenberg
Normalization, 201

Stanley S. Wainer
Computability — Logical and Recursive Complexity 237

Robert L. Constable, Stuart F. Allen, Douglas J. Howe
Reflecting the Open-Ended Computation System of

Constructive Type Theory 265
Anil Nerode

Some Lectures on Modal Logic 281
Wilfried Brauer

Formal Approaches to Concurrency 335

Ehud Shapiro
The Family of Concurrent Logic Programming Languages 359

Normalization

Helmut Schwichtenberg
Mathematisches Institut, Universitat Minchen
Theresienstrafie 39, D-8000 Miinchen 2, Germany

The aim of this paper is to present a central technique from proof theory, Gentzen'’s
normalization for natural deduction systems, and to discuss some of its applications.

By normalization we mean a collection of algorithms transforming a given deriva-
tion into a certain normal form. A derivation is called normal if it does not contain any
“detour” i.e. an application of an introduction rule immediately followed by an applica-
tion of an elimination rule. Such normalization algorithms are useful because they allow
to “straighten out” complex derivations and in this way extract hidden information.

We will treat many applications which demonstrate this, e.g. the subformula prin-
ciple, Herbrand’s theorem, the interpolation theorem, an exact characterization of the
initial cases of transfinite induction provable in arithmetic and a proof that normaliza-
tion in (the usual finitary) arithmetic is impossible.

From the computer science point of view, an even more interesting field of applica-
tion for normalization algorithms is the possiblility to extract the constructive content
of a maybe complex mathematical argument. Such algorithms can yield verified pro-
grams from derivations proving that certain specifications can be fulfilled. Of course,
the feasability of programs obtained in this way will depend to a large extent on a good
choice of the derivation, which should be done on the basis of a good idea for an algo-
rithm. However, in this approach it is possible to use ordinary mathematical machinery
for the development of programs.

Chapter 1 deals with normalization for minimal propositional logic, or more preci-
sely for its implicational fragment. .In Section 1.1 it is shown that — by adding stability
axioms — classical logic can be embedded in it. In Sections 1.2-1.6 we then treat norma-
lization for this calculus, with special emphasis on complexity questions. In Section 1.7
normalization (for a natural deduction system) is compared with cut—elimination (for a
sequent calculus). Section 1.8 discusses a decision procedure for minimal implicational
logic.

In Chapter 2 the method of collapsing types developed in (Troelstra and van Dalen
1988) is used to lift these results to minimal first order logic or more precisely to its — V-
fragment, which again suffices for classical logic. Section 2.4 contains some applications
of normalization: the subformula principle, Herbrand’s theorem and the interpolation
theorem.

The final Chapter 3 treats normalization for arithmetic. Since normalization for
finitary arithmetic with the induction rule is impossible (this is proved in Section 3.5),
we extend in Section 3.3 the normalization technique to arithmetic with the w-rule. This
is used in Section 3.4 to give an exact characterization of the initial cases of transfinite
induction provable in arithmetic as well as in some subsystems of arithmetic obtained
by restricting the complexity of the induction formulas.

The expert will certainly note that most of the results and proofs elaborated here
are well-known. The only novel points are the following,.

NATO ASI Series, Vol. F 79

Logic, Algebra, and Computation

Edited by F.L. Bauer

© Springer-Verlag Berlin Heidelberg 1991

202

e We have based our treatment of normalization in Chapters 1 and 2 on a slight
generalization of B-conversion: we not only allow (Azr)s to be converted into
r;[s], but more generally (AZz.r)ss to be converted into (AZ.rz[s])s. This allows
a particularly simple proof of the existence of the normal form (Theorem 1.2.2
below), which also provides an easy estimate of the number of conversion steps
needed, and it also makes the results on strong normalization (Section 1.5) and the
uniqueness of the normal form (Section 1.3) slightly stronger.

o In Section 1.7 we give an argument that normalization (for a natural deduction
system) and cut—elimination (for a sequent calculus) are essentially different, using
a recent result of (Hudelmaier 1989).

o In Section 1.8 we present a decision algorithm for implicational logic also due to
(Hudelmaier 1989), together with a new proof of its correctness and completeness.

o In Theorem 3.5.1 it is stated that a certain weak form of a normalization theorem
does not hold for arithmetic with the induction rule.

1. Normalization for propositional logic

1.1 Minimal implicational logic as a typed r»—calculus

Formulas are built up from propositional variables denoted by P,Q by means of
(o — ¢). We write ¢1,...,0m — ¥ for (p1 = (p2 = ...(¢m — ¥)...)). Derivations
are built up from assumption variables u¥,v¥ by means of the rule =% of implication
introduction (or A-abstraction)
(Au?r?)v—"ﬁ

and the rule —~ of implication elimination (or application)

(tv—w sw)\b‘

A derivation r¥ whose free assumption variables are among uf",...,u%™ is also called a
derivation of ¥ from ¢1,...,pmn. For readability we often leave out formula superscripts
when they are obvious from the context or non-essential.

For obvious reasons we will also use the word term for derivations and type for
formulas. The possibility to treat derivations as terms and formulas as types has been
discovered by H. B. Curry and elaborated by W. A. Howard in (Howard 1980a). This
correspondence can easily be shown to be an isomorphism; it is called the Curry-
Howard-isomorphism.

More formally, it can be seen easily that a closed derivation (i. e. one without free
assumption variables) is determined by

1. a type—free A-term describing the derivation and
2. the derived formula.

203

The formulas in the derivation can be left out since they can easily be reconstructed
form the given derived formula.

As an example, a derivation of

o= (Y —e)

is given by Aulvu, and a derivation of

(=@ —=x)—>r—=¥)—(r—x)

is given by Aulviw((uw)(vw)). Both derivations can be easily written in the more
usual tree form.

Note that our minimal implicational logic contains full classical propositional logic,
as follows. Choose a particular propositional variable and denote it by 1 (falsity).
Associate with any formula ¢ in the language of classical propositional logic a finite list
¢ of formulas in our implicational language, by induction on ¢:

P— P
ﬂ(pl—)sa—)l
PP G, F > P

PAY G
eV (F—- L), —o1)— L

Then, if ¢ is a formula in the language of full classical propositional logic and ¢1,...,¢m
is its associated list, ¢ is derivable in classical propositional logic iff each ¢; is derivable
in minimal implicational logic from stability assumptions ~—P — P (with =3 denoting
1 — 1) for all propositional variables P in ¢. The essential step in the proof is to show
that from the stability of ¥ we can infer the stability of ¢ — 1: a derivation of

(Y = P) = (~(p =2 9) = (¢ = 9))

is given by
Aug Aug dug(ug Aug(uz dus(ug(usus)))).

204

1.2. Conversion
We are interested in the following process of simplification of terms:
(Au.r)3s converts into (Ad.ry[s])s.

Here @ and § denote finite lists u;...u, and s;...8,, and Atu.r denotes the term
Auj ... dugpdur. Terms of the form (Atdu.r)3s are called convertible.

Note that converting (Adu.r)3s into (Aii.ry[s])3 may be viewed as first converting
(AMdu.r)ss “permutatively” into (A@(Aur)s)s and then performing the inner conversion
to obtain (\#.r,[s])3. One may ask why we take this conversion relation as our basis and
not the more common (Aur)s — r4[s]. The reason is that our notion of level is defined
with the clause lev(y — %) = max(lev(p)+1,lev()) and not = max(lev(yp),lev(1))+1;
this in turn seems reasonable since then the level of Py,...,Pm — Q (i. e. of (P} —
(P = ...(Pn— @)...)))is1 and hence independent of m. But given this definition
of level, and given the need in some arguments (e. g. in Theorem 1.2.1) to perform
conversions of highest level first, we must be able to convert (Auv.r)st with u of a low
and v of a high level into (Au.r,[t])s. —In addition, since we allow more conversions
here, the results on strong normalization and upper bounds for the length of arbitrary
reduction sequences get stronger.

We write r — r' if r' is obtained from r as follows. Mark some occurrences of
convertible subterms in r. Then convert them all simultaneously. Hence new convertible
subterms generated by such a conversion can not be converted. More precisely, r — r'
is defined by the following rules

1. u—u.
2. Ifr — r', then Aur — Aur’,
3. Ifr—r' and s — ¢, then rs — r's’.
4. Ifr >, 5> ¢ and s — &, then (Aifu.r)ss — (Aii.r)[s'])s.
As a special case, we take
T - 7"
to mean that r' is obtained from r by converting exactly one convertible subterm in r.
Finally
r—=*r" (r reduces to r')
denotes the transitive and reflexive closure of — (or equivalently of —,).
A term is said to be in normal form if it does not contain a convertible subterm.
We want to show now that any term reduces to a normal form. This can be seen
easily if we follow a certain order in our conversions. To define this order we have to

make use of the fact that all our terms (i.e. derivations) have types (i.e. formulas).
Define the level of a formula by

lev(P) = 0,
lev(e — ¥) = max(lev(yp) + 1,lev(¥))

A convertible derivation
(A&Pu?.r)3s

205

is also called a cut with cut-formula . By the level of a cut we mean the level of its
cut—formula. The cut-rank of a derivation r is the least number bigger than the levels
of all cuts in r. Now let t be a derivation of cut-rank &k + 1. Pick a cut

(Atdu.r)ss

of the maximal level k in ¢, such that s does not contain another cut of level k. (E.g.,
pick the rightmost cut of level k.) Then it is easy to see that replacing the picked
occurrence of (A#u.r)ds in t by (\if.ry[s])f reduces the number of cuts of the maximal
level k in ¢t by 1. Hence

Theorem 1.2.1. We have an algorithm which reduces any given term into a normal
form.

We now want to give an estimate of the number of conversion steps our algorithm takes
until it reaches the normal form. The key observation for this estimate is the obvious
fact that replacing one occurrence of

(Miu.r)3s by (M.ry[s])s

in a given term ¢ at most squares the length of ¢; here the length of ¢ is taken to be the
number of variables in t (except those immediately following a A-symbol).

A bound si(!) for the number of steps our algorithm takes to reduce the rank of
a given term of length ! by k can be derived inductively, as follows. Let so(l) := 0. To
obtain sx41(!), first note that by induction hypothesis it takes < s (1) steps to reduce
the rank by k. The length of the resulting term is < [2° where s := s;(l) since any
step (i.e. conversion) at most squares the length. Now to reduce the rank by one more
the number of additional steps is obviously bounded by that length. Hence the total
number of steps to reduce the rank by k + 1 is bounded by

se(1) + 2 =t sea (D).

Theorem 1.2.2. (Upper bound for the complexity of normalization) The nor-
malization algorithm given in the proof of Theorem 1.2.1 takes at most si(l) steps to
reduce a given term of cut-rank k and length l to normal form, where

so(l) =0 and 3k+l(l) = 3,‘([) + 12‘.(').

206

1.3. Uniqueness

We shall show that the normal form of a term is uniquely determined; this will be
done by an argument which also applies to type—free terms, i.e. terms without formula
superscripts. The main idea of the proof (due to J. B. Rosser and W. W. Tait) is to use
the relation » — r' defined in Section 1.2. Its crucial property is given by

Lemma 1.3.1. If r - r' and t — t' then r,[t] — ri[t'].

The proof is by induction on the deﬁnit_’{on of r — r'. All cases are obvious except
possibly Rule 4. So assume r — ', §— s’ and s — s'. Then

rolt] > T[], S[t] = SL[t'] and s,[t] — S [t]
by induction hypothesis, and hence

(Adu.ry[1)3,[tsolt] = M7 [E])ulsy [T [¢] -
((Aﬂu-:)fa)v[t] ((,\az.r;[:]).").,[u]

by definition of —. [

Lemma 1.3.2. Assumer — r' and r — r"". Then we can find a term r'""" such that

rl —_ T”I and 7'” — 1""'.

The proof is by inductior on the definition of r — r'. Again all cases are obvious
except possibly the situation where either r — r' or r — r” is obtained via Rule 4. By
symmetry we may assume the former. But then the claim follows from Lemma 1.3.1: If

(ATu.r)ds — (Ai.rl[s'])s

and .
(Au.r)ss — (Adu.r')s"s",

then

(AGu.r)3s — (Ad.r,[s'])s' — (Ad.ri'[s"'])s™
and . .

(AGu.r)ss = (Adu.r")s"s" — (Ad.r'[s"])s™,
and if .
(AGudv.r)dstt — (Aivv.r,[s'])s't't’
and -
(Aduvv.r)sstt — (Aduv.ry[t"])s"s"t"
then .
(Mudv.r)dstt — (Addv.r,[s'])s't't' — (Aav.ry[s",t"])s" e

and

(Miudv.r)sstt — (AGud.ry[t"])s"s"t" — (A@v.ri [s",t"])s e,

207

Theorem 1.3.3. (Church—Rosser) Assume r —* r' and r —* r"". Then we can find
a term r'" such that r' —* v and r" —* r'".

The proof is immediate from Lemma 1.3.2. [(J

Corollary 1.3.4. (Uniqueness of the normal form) Assumer —* r' and r —* r",
where both r' and r'" are in normal form. Then r' and r" are identical.

1.4. Complexity of normalization: a lower bound

In Theorem 1.2.2 we have obtained an upper bound on the number of conversion steps
our particular normalization algorithm of Theorem 1.2.1 takes to reach the normal form.
This upper bound was superexponential in the length of the given term. It is tempting
to think that by choosing a clever normalization strategy one might be able to reduce
that bound significantly. It is the purpose of the present section to show that this is
impossible. More precisely, we will construct terms r, of length 3n and show that any
normalization algorithm needs at least 2,_, — n conversions (with 2 := 1,254 := 22n)
to reduce r, to its normal form.

The fact that there is no elementary algorithm (i.e. whose time is exponentially
bounded) to compute the normal form of terms also follows from (Statman 1979), where
it is shown more generally that the problem whether two terms r; and r; have the same
normal form is not elementary recursive. The simple example treated here is taken from
(Schwichtenberg 1982, p. 455).

The pure types k are defined inductively by 0 := P (some fixed propositional
variable) and k + 1 = k — k. We define iteration terms I,, of pure type k + 2 by

In = Afu(f(f(. . f(fu).-))s

with n occurrences of f after AfAu; here f,u are variables of type k + 1, k, respectively.

Let f o g be an abbreviation for Au(f(gu)), and let r = s mean that r and s have the
same normal form. With this notation we can write

I,=Af(fofo...of).

n

The main point of our argument is the following simple lemma, which can be traced
back to Rosser (cf. (Church 1941, p. 30))

Lemma 1.4.1.
(Imf) o (Inf) = Im+nf,
Inol, = Ipq,

I, = I,~[]
As an immediate consequence we have
Tpn = I2I2 . ..I2 = I2,.-
N e’
n

Now consider any sequence of reduction steps transforming r, into its normal form, and
let s, denote the total number of reduction steps in this sequence.

file:///f/u/

208

Theorem 1.4.2. s, > 2,2 — n.

Proof. The length of r, is 3n. Note that any conversion step can at most square the
length of the original term. Hence we have

2, < length(I3,) (the normal form of r,,)
< length(r,)*"
=(3n)*"

< g2"*n (since 3n < 22"),

and the theorem is proved. [J

1.5. Strong normalization

In Section 1.2 we have proved that any term can be reduced to a normal form, and in
Section 1.3 we have seen that this normal form is uniquely determined. But it is still
conceivable that there might be an odd reduction sequence which does not terminate
at all. It is the aim of the present Section to show that this is impossible. This fact is
called the strong normalization theorem.

For the proof we employ a powerful method due to W. W. Tait, which is based on
so—called strong computability predicates. These are defined by induction on the types
(i.e. formulas) as follows.

A term r¥ with ¢ of level 0 (i. e. a propositional variable) is strongly computable
iff r is strongly normalizable, i.e. every reduction sequence starting from r terminates.
A term r¥—¥ is strongly computable iff for all strongly computable s¥ also (rs)¥ is
strongly computable.

A term r is strongly computable under substitution iff for all strongly computable §
the result of substituting 5 for all variables free in r is again strongly computable.

Lemma 1.5.1. Let ¢ be a formula.
1. Any strongly computable term r¥ is strongly normalizable.
2. u¥ is strongly computable.

We prove 1 and 2 simultaneously by induction on ¢. For ¢ of level 0 both claims are
obvious. Now consider ¢ — 3. For 1, assume that r¥—¥ is strongly computable. By
induction hypothesis 2 and the definition of strong computability we know that (ru)¥ is
strongly computable and hence that any reduction sequence starting with ru terminates
(by induction hypothesis 1). But this obviously implies that the same is true for r. For
2, assume that 7 are strongly computable. We have to show that u (which is to be
of level 0) is strongly computable, i. e. that any reduction sequence starting with us
terminates. But this follows from induction hypothesis 1, which says that any reduction
sequence starting from r; terminates. [J

Lemma 1.5.2. Ifr —; r' and r is strongly computable, then r' is strongly computable.

Proof. Let 3 be strongly computable. We have to show that '3 is strongly computable,
i. e. that any reduction sequence starting from r's terminates. But this is obviously
true, because otherwise we would also have an infinite reduction sequence for 3. [J

209

Lemma 1.5.3. Any term r is strongly computable under substitution.

The proof is by induction on the height of r.

Case u. Obvious.

Case rs. Let f be strongly computable. We have to show that r(t]s[f] is strongly
computable. But this holds, since by induction hypothesis we know that r[f] as well as
s[t] are strongly computable.

Case \iiu.r. Let f be strongly computable. We have to show that Adu.r[f] is
strongly computable. So let 3,s and 7 be strongly computable. We must show that
(A@u.r[t])5's7 is strongly computable, i.e. that any reduction sequence for it terminates.
So assume we have an infinite reduction sequence. Since r[t], 3, s and 7 all are strongly
normalizable, there must be a term (Aifu.r[f]')s's'r’ with r[f] —* r[f},5 —* 5,5 o* o'
and ¥ —* in that reduction sequence where a “head conversion” is applied, which we

may assume to yield
O (rfi]) s

But r[t] —* r[f]’ implies AiZ.r[s,] —* AZ.(r[f]')[s'], and hence the fact that Aii.r is (by
induction hypothesis) strongly computable under substitution together with Lemma
1.5.2 implies that (Ai.(r[]')[s/] is strongly computable. But then, again by Lemma
1.5.2, also (AiZ.(r[£])'[s'])s'r is strongly computable and therefore strongly normalizable.
This contradicts our assumption above that we have an infinite reduction sequence. []
From Lemma 1.5.3 and both parts of Lemma 1.5.1 can conclude immediately

Theorem 1.5.4. Any term r is strongly normalizable. (]

1.6. Complexity of normalization: an upper bound

By Section 1.5 we already know that the full reduction tree for a given term is finite;
hence its height bounds the length of any reduction sequence. But it is not obvious how
a reasonable estimate for that height might be obtained.

However, using a technique due to (Howard 1980b) (which in turn is based on
(Sanchis 1967) and (Diller 1968)) it can be shown that we have the following superex-
ponential universal bound.

Theorem 1.6.1. Let r be a term of the typed A-calculus of level 0. Let m be a bound
for the levels of subterms of r and k > 2 be a bound for the arities of subterms of r.
Then the length of an arbitrary reduction sequence for r with respect to —, is bounded

by
k2m(m+2-height(r)+2k+2)'

For the proof see (Schwichtenberg 1990). (]

210

1.7. Cut elimination versus normalization

Up to now we have considered pure implicational logic by means of Gentzen’s rules
of natural deduction. Now it is also common to use another type of logical calculus,
the sequent calculus also introduced by Gentzen. Instead of formulas it treats sequents
I’ = ¢, where T is a finite set of formulas. The rules of the sequent calculus for pure
implicational logic are the following; here we write I, for T' U {¢}.

Aziom. T, = ¢ for ¢ atomic.

—-right. If F T, o = ¢, then F ' = ¢ — .

—-left. fFT,p 2y =>pandFTo 29,9 = x,then T p— 9y = x.
Cut. fFT = yandFT,x = ¢, then T = .

It is easy to see that the sequent calculus is equivalent to natural deduction, in the sense
that F T' = ¢ iff from I’ we can derive ¢ by means of the rules =+ and —~ and the
assumption rule.

Now a normal derivation of ¢ from I' has the property that all formulas occurring in
this derivation are subformulas of either ¢ or a formula in I'. The same property holds
for derivations of I' = ¢ in the sequent calculus which do not use the cut rule. Hence
it is of interest to know that the cut rule can always be eliminated from derivations in
the sequent calculus.

Gentzen proved this Cut Elimination Theorem in his thesis. Here we prove it in
such a way that we also obtain a good bound on the length of the resulting cut—free
derivation, in the form 27(9) . I(d), where I(d) is the length of the original derivation
and j(d) is the maximum taken over all paths in d of the sum of the degrees of all cut
formulas on the path. The notion of degree used here is rather peculiar. Its crucial
property is

deg(p — ¥) + deg(sp — x) < deg((¢ — %) = x)- (1.1)
This can be achieved if we define

¢ deg(¢) = 2 for ¢ atomic,

o deg(p —) = 1 + deg(yp) - deg(¥).
For then we have, writing a := deg(y), b := deg(¢)) and ¢ :=deg(C), 1+ ab+ 1+ bc =
2+(a+c)h<2+abc<1+c+abc=14(1+ ab)c and hence 1.1.

More formally, we define the relation F2 I' = ¢ (to be read: T' = ¢ is derivable
with height < a and cut-rank < m) with a,m natural numbers inductively by the
following rules.

Aziom. & T, = ¢ for ¢ atomic.

—-right. f 2 T, = ¢, then F&H T = p — 4.

—-left. fF2E Typ o> =>pand FE Typ = 9,9 = x, then FEH T o — o = x.

Cut. HF2 T'= x and F& T',x = ¢, then I-;'f,,ldes(x) I'= .

Then the bound mentioned above is a consequence of the following
Theorem 1.7.1. (Cut Elimination Theorem) If+2 ,, T' = ¢, then F2* T = .

This theorem is due to (Hudelmaier 1989); its present formulation and proof is the result
of Buchholz’ analysis (Buchholz 1989) of Hudelmaier’s arguments.
We need some Lemmata before we can give the proof.

211

Lemma 1.7.2. (Weakening Lemma) If % ' = ¢, then F%, T, A = . (J

Lemma 1.7.3. (Inversion)
i IFF2 T = ¢ — ¢, then F2, T, = 9.
ii. FFS T, > ¢ = x, then kg T = x.
iii. FFS T,(p — $) — x = 9, then F& T, ¢, — x = 9.

Proof. By induction on a. We only treat one case of iii. Assume that
Falie—=¥) o x=>19

was inferred from

FeIT(p =)o x = =% and FTD(p =) —xx = 9.

By induction hypothesis we get

Fo'Tpp > x=>9p—¢ and Fi7'Top9 = x,x = 0.

Hence by i
Fo ' T p = x = ¢
Now —-left yields F& T, ¢ — x = 9. OJ
Lemma 1.7.4. (Cut Elimination Lemma)
i. FFET = ¢ and FP T, = ¢ and ¢ is atomic, then F§1P T = .

ii. Ifl-g’I‘=>¢p—»x/)a.ndl-g o — ¥ = x and ¢ is atomic and B < a, then
FeHA T = x with m = deg(¥).

iii. FFET = (¢ = %) — x and FE T, (¢ = ¢) — x = 9, then FEHA+2 T = ¥, with
m = deg(p — ¥) + deg(¥ — x)-

Proof. 1. By induction on 3. ii. Consider also

it Ifl-g1"=><p—u/;andl-gI‘,¢=>xandl-gI‘,¢p—>z/;=>goand<pisatomicand
B < a, then F&HA+1 T = , with m = deg().

We prove ii and ii’ simultaneously by induction on 3.
ii. Assume

Fo'T,p 29y =>pand Hi ' T,p - ¢,9 = x.

Then we have F§ T', 4 = x (since # < a). Hence induction hypothesis ii’ yields

F0+ﬂ

deg(¥) I'=x.

ii’. Case f =0. Then ¢ € T, hence

a+l
Fdes(tb) I'= .

Case l-g_l o = ¥ = ¢ and }-oﬂ_l I'¢ = ¥, = ¢. Then the claim follows
immediately from the induction hypothesis.

212

Case l-g"l IFp = ¢ = 9 and I-g"l Lo = ¥, = o withd — n €T and
9 — n # ¢ — ¢. Then induction hypothesis ii yields

a+p-1
l—desw) =94,

and induction hypothesis ii’ yields

+8
I_:es(wl’) Ln=x.

Now —-left gives

+8+1
'_:es(va) I'=x.

iii. By induction on B. Assume
H' (e 2 ¥) o x=>p—pand 7' T (p = 9) = x,x = 9.

From F§ T = (¢ —) - x we get F§ ' — 9 = x, hence F§ I, = x, hence
F&*! T = ¢ — x. On the other hand, the Inversion Lemma, Parts i and iii, yields
i‘oﬁ_l T,¢,9% = x = 9, hence l-g L= x=>p— 1. So

+8+1
Faeg(p—x) L = ¢ = ¥-

Furthermore, from I-o'g'] L = ¥) = x,x = 9 we get l—g-l I''x = 9. Since
F§ Ty — ¢ = x, a cut yields

+8
}-:es(x) T,p— ¢ =9.
Now one further cut gives F&t4+2 T = 9. (O

We now prove the Cut Elimination Theorem, by induction on «. Assume

F¢'T= xand F§'T,x = ¢
with m + 1 = k + deg(x). If k # 0, then by induction hypothesis

l-i(_“l—l) I'= x and I-i(_al.l) Lix = e,

hence by cut F2* T' = ¢, since k — 1 + deg(x) = m. If k = 0, then the claim follows
from the Cut Elimination Lemma together with (1). (J

An interesting consequence of the fact that we have a (Kalmar) elementary bound
on the length of the cut free derivation given by our algorithm in terms of the original
derivation is the following: The cut elimination algorithm d +— d°f just described is
essentially different from normalization d — d™, in the sense that there cannot exist
elementary translations d — d*®9, d — d"** from derivations in natural deductions to
derivations in the sequent calculus and back, such that d* = ((d*¢9)<!)**t. For then
d — d™ would be elementary, which it isn’t by the counterexample in Section 1.4.

213

1.8. A decision algorithm for implicational logic

It is clearly decidable whether a given formula ¢ is derivable in minimal implicational lo-
gic: just search systematically for a normal derivation of . This search must terminate,
since by the subformula property there are only finitely many such normal derivations.
However it does not seem to be a good idea to try to implement this algorithm

Here we present another decision algorithm which is easy to implement and also
seems to be rather efficient in cases of interest. It also amounts to searching for a
“normal” proof, but now in a special calculus LH due to (Hudelmaier 1989), designed
with the intention that most rules should be invertible. Again our formulation of LH
and most proofs are taken from (Buchholz 1989).

The calculus LH is again a sequent calculus. To distinguish it from Gentzen’s
sequent calculus discussed in Section 1.7 we write

tulT=¢

if the sequent I' => ¢ is derivable with height < « in LH. The rules of LH are the
following; again we write I', o for I'U {¢}

Aziom. F§ 4 T, = ¢ for ¢ atomic.
H—o-right. If ¢y T, = ¢, then l-‘l”"}}l '=s¢p—1.
H—-left-atomic. f F§y T, ,% = x and ¢ is atomic, then 53! T, 0,0 — ¥ = x.

Ho-left-—. IfF¢y To,0 = x => Y and F§y Ty x = 9, then l—g'}_}l Ly(p = ¢)—
x = 9.

Hudelmaier has observed — and we will prove it below — that this calculus is equi-
valent to minimal implicational logic. Now the point in these strange rules is that they
are all invertible, with the sole exception of the last one which is only “half invertible”:

Inversion Lemma 1.8.1.

L fFgT=>¢p o, thenFfy T = 9.

ii. fF¢y Ty, — ¥ = x and ¢ is atomic, then F§y T'yp,9 = x.
ii. FF§y Ty (p = ¢) = x =9, thenF§4 T,x = 9. O

Clearly the last rule H—-left-— cannot be fully invertible. A counterexample is
P(Q—-1)—»1)—Q=>P
which is clearly derivable, whereas
PQ—-1,L-Q=>1

is not. Now the decision algorithm derived from the Inversion Lemma runs as follows.
Given a sequent I' = ¢, first apply Parts i and ii of the Inversion Lemma as long as
possible. If you end up with a sequent which does not contain left-iterated implications
(¢ = ¥) — x, then by the form of the LH-rules it is derivable if and only if it is an
axiom. Now assume there are some left—iterated implications (¢ —+ ¥) - x among the
premiss—formulas I'. Choose one of them (this step may lead to backtracking!), form its
premisses according to the rule H—-left-—, and continue with both sequents.

214

An example for the necessity of backtracking is the sequent
Q= Q,~~(P—-Q),P=Q.

If the second occurence of a left-iterated implication is choosen, i.e. ==(P — Q), we
obtain by H—-left—-—

--Q-QP—-Q,L—-1,P=>1

and
-'_'Q i Q’J‘1P:. Q

Now the first of these sequents is clearly underivable, hence this path in the search-tree
fails, and we have to backtrack and choose the other left-iterated implication - ~Q — Q
instead.

It remains to be shown that the calculus LH is equivalent to minimal implicational
logic. One direction is easy, namely that any sequent derivable in LH is also derivable
in minimal implicational logic. We only consider the rule H—-left-—, and argue in-
formally. So assume I' and (¢ — %) — x. Then clearly ¥ — x (for if we assume ¥,
we certainly have ¢ — 1 hence x). So by the first premiss ¢ — 3, hence x by our
assumption, hence 9 by the second premiss.

For the other direction we need a Lemma.

Lemma 1.8.2. If F¢y; Ty — ¢ = ¢ and by T4 = 9 and ¢ is atomic, then
FLuTyp - ¢ = 9.

The proof is by induction on a.

1. Assume ¢ € I'. Then from by 'y — 9 we get g Ty — ¥ = 9 by
H—-left-atomic.

2. Let I' = A, (¢1 — %¥1) — x1 and assume that

l_(l’;H A;(‘Pl - 1/)l) — X1, — d’ =
was inferred from
Fea Avpnd = x1,p = ¥ =t (1.2)
and
Fi Boxnp = =0 (1.3)

by H—-left——. First note that from the second premiss of the Lemma we get

l'_LH Aa Xl,lp =19 (14)

by the Inversion Lemma, Part iii. Now from 1.3 and 1.4 we obtain by the induction
hypothesis

I-LH A$ X1,¥$ — 1[’ = 9. (15)
The rule H—-left—-— yields form 1.2 and 1.5

Foa A,(p1 = 1) = x1,9 2 Y = 9J.

215

3. Let T' = A, 1,1 — ¥ with ¢; atomic and different from ¢, and assume that

Fiw A,o1,00 = 1,0 2 =@
was inferred from
tz;{l A"Pl,'/’l"P"'/’:}‘P (16)

by H—-left-atomic. First note that from the second premiss of the Lemma we get

'—LH A7‘P1)¢1)¢' = 9 (17)

by the Inversion Lemma, Part ii. Now from 1.6 and 1.7 we obtain by the induction
hypothesis

I-LH A,¢1)¢ly¢_’¢=>0~ (18)
An application of H—-left-atomic to 1.8 yields

FLa A,p1,01 = 1,9 = = 9.
O
Theorem 1.8.3. If ' = 9, thent g ' = 9.

Proof. By the Cut Elimination Theorem in Section 1.7 it suffices to prove that F§ I’ = 9

implies kg T' = 9. This is done by induction on a. Since the claim is obvious for the

rules Aziom and —-right and since Cut cannot occur, we only treat the rule —-left.
Case 1. Let I' = A, — 3 with ¢ atomic and assume that

o Ao =y =>9
was inferred from
™ Ao o =9 (1.9)
and
A =99 = 9. (1.10)
From 1.10 we get by the Inversion Lemma 1.7.3, Part ii

FT Ay = 0. (1.11)

By induction hypothesis we can replace F§~! in 1.9 and 1.11 by 5. Now the Lemma
yields

Fiw Ao — ¢ = 9.
Case 2. Let T'= A, (p — ¥) — x and assume that

Fo A(p—9) > x =9

was inferred from
F A (p -) x>y (1.12)
and
e~ A, (0 = ¥) = x,x = 9. (1.13)

file:///~lh-

216

From 1.12 we get by the Inversion Lemma 1.7.3, Part iii

F 1A o x =09

and hence
R~ A0, - x = ¢ (1.14)

From 1.13 we get by the Inversion Lemma 1.7.3, Part ii
Fe1 A, x = 9. (1.15)

By induction hypothesis we can replace -3~ in 1.14 and 1.15 by k. Now H—-left-—
yields
FLa A, (¢ = ¢) = x =90

It is also possible to prove the Theorem directly for natural deductions in minimal
implicational logic. We sketch the proof. So let a normal derivation of ¥ from assump-
tions I’ be given. We may assume that in any branch (see Section 2.4) of this normal
derivation the minimal formula (see Section 2.4) is atomic, and use induction on the
length of this derivation.

Case 1. ' = A, p — 9 with ¢ atomic. In

we can apply the induction hypothesis to the subderivations of ¢ from A, — ¥ and
of ¥ from A, (any assumption ¢ — 1 here can be cancelled, since we already have
assumed). So we get

Fiu Do =Y =>¢ and kg A9 =9,

and the claim follows by the Lemma.
Case 2. T' = A, (¢ — 1) — x. Replace an uppermost occurrence of the assumption
(p—¥)— x

o= @

(p—¥)—x oY

217

by

Apply the induction hypothesis to the subderivation of ¥ from A, ¢, — x, and of ¢
from A, x (any assumption (¢ — 1) — x here can be cancelled, since we already have
assumed x). So we get

}‘LH A,tp,iﬁ—b X = 1/) and *'LH A,x =>t9,

and the claim follows by an application of H—-left——.

2. Normalization for first—order logic

We restrict our attention to the — V-fragment of first—order logic with just introduction
and elimination rules for both symbols, i.e. with minimal logic formulated in natural
deduction style. This restriction does not mean a loss in generality, since it is well
known that full classical first—order can be embedded in this system; the argument for
that fact is sketched in Section 2.1. Equality is not treated as a logical symbol, but can
be added via suitable equality axioms.

We extend our results and estimates on normalization to first—order logic by the
method of collapsing types. Applications include the subformula property, Herbrand’s
theorem and the interpolation theorem.

218

2.1. The -v—fragment as a typed r»—calculus

Assume that a fixed (at most countable) supply of function variables f,g,k,... and
predicate variables P, @,... is given, each with an arity > 0. Terms are built up from
object variables z,y, z by means of fry...rn. Formulas are built up from prime formu-
las Pr; ...r, by means of (¢ — 3) and Vzp. Derivations are built up from assumption
variables z%,y¥ by means of the rule =% of implication introduction

(,\zwr¢)w—'¢',
the rule —~ of implication elimination

(tw—'vb sv)w,

the rule V* of V-introduction
(Azr?)V"‘",

provided that no assumption variable y¥ free in r¥ has r free in its type %, and finally

the rule V= of V—elimination
(t7=es)yeslel,

Each of the rules »%,¥+ and V~ has a uniquely determined derivation as its premiss,
whereas —~ has the two derivations t#~¥ and s¥ as premisses. Here t¥~¥ is called the
main premiss and s¥ is called the side premiss.

As an example we give a derivation of

Vz(Pz — Qz) — (VzPz — VzQz).

Such a derivation is
/\uV‘(P’_’Q’)/\vV’P’Az((uz)(v:r)).

Derivations can be easily written in the more usual tree form. We will continue to use
the word term for derivations (as long as this does not lead to confusion with the notion
of (object) term inherent in first-order logic), and type for formula.

Note that our (— V—fragment of) minimal logic contains full classical first—order
logic. This can be seen as follows:

1. Choose a particular propositional variable and denote it by 1 (falsity). Associate
with any formula ¢ in the language of classical first—order logic a finite list ¢ of formulas
in our — V-fragment, by induction on ¢:

P PF

p—@— L
PP G oY, @Y
AP G Y
PV (Fo L),(F—-L)- L

Vzp — Vg, ... ,Vzomnm

Jzp V(- L)— L

219

2. In any model M where L is interpreted by falsity, we clearly have that a formula
¢ in the language of full first—order logic holds under an assignment « iff all formulas
in the assigned sequence ¢ hold under a.

3. Our derivation calculus for the — V-fragment is complete in the following sense:
A formula ¢ is derivable from stability assumptions

VZ(~-PZ — PZ)
for all predicate symbols P in ¢ iff ¢ is valid in any model under any assignment.

2.2. Strong normalization

Here we use the method of collapsing types (cf.(Troelstra and van Dalen 1988,p.560)) to
transfer our results and estimates concerning strong normalization from implicational
logic to first—order logic.

The notions concerning conversion introduced in Section 1.2 can be easily extended
to first—order logic. In particular, we have

(AZz.r)3s converts into (AZ.rz[s])s,

where the variables Z,z now can be either assumption variables or else object variables.
The rules generating the relation r — r' are extended by requiring r — r for object
terms r of our first—order logic. Again a derivation is said to be in normal form if it
does not contain a convertible subderivation.

For any formula ¢ of first—order logic we define its collapse ¢ by
(Pr)=P
(p—=9) =¢° o9
(Vzp) =T — ¢°
where T := 1 — 1 with L a fixed propositional variable (i.e. T means truth). The
level of a formula ¢ of first—order logic is defined to be the level of its collapse ¢°. For
any derivation r¥ in first-order logic we can now define its collapse (r¥). It is plain
from this definition that for any derivation r¥ in first-order logic with free assumption
variables z¥,...,z%¢m the collapse (r¥)° is a derivation (r°)¥" in implicational logic
with free assumption variables z¥',... z&".
(%) = z*°
(Az®r)° = Ag¥ r°
(t"’_‘"’s)" =t
(Azr) = Mg Tre
(tVzws)c = tC(/\sz_L)T
Note that for any derivation r¥, assumption variable ¥ and derivation s¥ we have
that r¢[s¢] is a derivation in implicational logic (where the substitution of s¢ is done for

the assumption variable :c""), which is the collapse of r[s]. Also for any derivation r¥,
object variable z and term s we have that r;[s] is a derivation of t,[s] with collapse

(rz[8])e = re.

220

Lemma 2.2.1. Ifr —, r' in first-order logic, then r¢ —, (r')¢ in implicational logic.

The proof is by induction on the generation of r —; r'. We only treat the case
(Azr)s —y rz[s).
If z is an assumption variable, then

(Az®r¥)s®)° = (Az¥r%)s¢
— r¢[s]
= (r[s)°),

by the note above. If z is an object variable, then

((Az*®)s)° = ()\zTrC)(z\z‘Lzl)T
—y 7

= (rls))°),

again by the note above. [
Hence from Theorem 1.5.1 we can conclude

Theorem 2.2.2. Any derivation r in first-order logic is strongly normalizable. [

Also we can apply Theorem 1.6.1 to obtain an upper bound for the length of
arbitrary reduction sequences.

Theorem 2.2.3. Let r be a derivation in first-order logic of a formula of level 0, i.e.
a prime formula. Let r¢ be the collapse of r into implicational logic. Let m be a bound
for the levels of subterms of r° and k > 2 be a bound for the arities of subterms of r°.
Then the length of an arbitrary reduction sequence for r with respect to —, is bounded
by

k2m(m+2-heighl(r°)+2k+2)

2.3. Uniqueness

The Church-Rosser Theorem and hence the uniqueness of the normal form for deriva-
tions in first—order logic can be proved exactly as in Section 1.3. We do not repeat this
here.

221

2.4. Applications

Here we want to draw some conclusions from the fact that any derivation in first~order
logic can be transformed into normal form. The arguments in this section are based
on Prawitz’ book (Prawitz 1965). We begin with an analysis of the form of normal
derivations.
Let a derivation r be given. A sequence ry,...,rny, of subderivations of r is a branch

if

1. r; is an assumption variable,

2. r; is the main premiss of r;4+;, and

3. rm is either the whole derivation r or else the side premiss of an instance of the
rule —»~ within r.

It is obvious that any subderivation of r belongs to exactly one branch. The order
of the branch ending with the whole derivation r is defined to be 0, and if the order of
the branch through the main premise ¢ of some instance t¥~¥s¥ of the rule =~ in r is
k, then the order of the branch ending with that s¥ is defined to be k + 1.

The relation “yp is a subformula of " is defined to be the transitive and reflexive
closure of the relation “immediate subformula”, defined by

1. ¢ and 1 are immediate subformulas of ¢ — ¥,
2. @;[r] is an immediate subformula of Vzy.

We will also need the notion “p is a strictly positive subformula of ¥”, which is
defined to be the transitive and reflexive closure of the relation “immediate strictly
positive subformula”, defined by

1. %-is an immediate strictly positive subformula of ¢ — %,
2. p.[r] is an immediate strictly positive subformula of Vz¢.

In a normal derivation r any branch rf*,...,r¢m has a rather perspicious form: all
elimination rules must come before all introduction rules. Hence, if ¢ is maximal such
that r¥' ends with an elimination rule, then ; must be a strictly positive subformula
of all ¢; for j # i. This ¢; is called the minimal formula of the branch. Also, any ¢;
with j < i is a strictly positive subformula of ¢;, and any ¢; with j > 7 is a strictly
positive subformula of ¢,.

Theorem 2.4.1. (Subformula property) If r¥ is a normal derivation with free as-
sumption variables among z¥',...,z%™ and s¥ is a subderivation of r*, then ¢ is a
subformula of ¢ or of some ;.

The proof is by induction on the order of branches in r, using the property of branches
in normal derivations mentioned above. [

We write ¢1,...,¢m I ¢ to mean that there is a derivation r¥ with free assumption
variables among z¥*,...,z¢m.

Theorem 2.4.2. (Herbrand) Assume that VZ,¢1,...,VEnpm - ¢ with quantifier—
free 1, ..., om, Y. Then we can find F11,..., Fin,,- - sTmiy---sTmn,, such that

()01[?11]1 e 7‘Pl[ﬁn1]1 R ’¢m[le]’ LR a¢m[7-"mn,..] '- d’

222

Proof. To simplify notation let us assume Vzy F % with quantifier—free ¢,%. By
Section 2.2 we can construct from the given derivation a normal derivation r¥ with free
assumption variables among zV*¥. By induction on the order of branches it is easy to
see that any branch must end with the derivation of a quantifier—free formula and must
begin with the rule V~, i. e. with z¥*%r;. Now replace any such subderivation by y:f’[ri)’
with new assumption variables y;. [

Our next application is the Craig interpolation theorem. We shall use the notation
®1,5--+,@m F¢ @ (cfor classical) to mean that there is a derivation r¥ with free assump-
tion variables among z¢',...,z%" and some stability assumptions yYZ("~PZ—P%) for p
predicate variable in @, ¢, where again -3 denotes ¢ — L with a fixed propositional
variable L.

Theorem 2.4.3. (Interpolation) Assume I', A } . Then we can find a finite list ¥
of formulas such that
I'F° Y and ¥,AF¢ ¢

(where T ¢ §¥ means T ¢ «; for each v; in ¥), and any object or predicate variable free
in 4 occurs free both inT" and in A, ¢.

For the proof we shall use a somewhat more explicit formulation of the theorem: Let r¥
be a derivation with free assumption variables among @, #2. Then we can find a finite
list 777 of derivations with free assumption variables among @' and stability assump-
tions and a derivation r§ with free assumption variables among §7,7* and stability
assumptions, such that any object or predicate variable free in 4 occurs free both in T'
and in A, .

For brevity we shall not mention stability assumptions any more (they will only be
used in Case 2b(ii) below), and write “r# with @T”, to mean the derivation r* with free
assumption variables among @' .

The proof is by induction on the height of the given derivation, which by Section 2.2
we can assume to be normal. We distinguish two cases according to whether it ends
with an introduction rule (i. e. =% or V*) or with an elimination rule.

Case la. (Az¥r¥)¥—¥ with 4T, . By induction hypothesis for r¥ with z%, 4T, 78
we have 77 with @T and r¥ with §77,z%, 2. An application of —* to the latter derivation
yields (Az#r¥)e—¥ with 77,52,

Case 1b. (Mzr4)¥%¢ with 4T ,5®, where z is not free in ', A. By induction hypo-
thesis for r* with 4,7 we have 77 with @’ and r§ with g7, 9. Since z is not free in
T, we know that z is not free in 4. An application of V* to the latter derivation yields
(Azrf)V=e with §7,54.

Case 2a. (wXx—?sX{)A with aT, 72,

Subcasz i. wX—? is among @’. By induction hypothesis for sX with @T, 72 we have
37 with 7 and s¥ with §7,aT. By induction hypothesis for (u?f)® with u?, @, 7 we
have ¥ with u?, & and t$ with 75,98, From these derivations we obtain

OF(E)ufwx—?s5)7~% with &
and

(t9):(z7%57) with 77 50,

where"y’—»gmeans"f—-t&;,...,"f—»&,..

223

_ Subcase ii. wX™? is among #. By induction hypothesis for sX with 47,7 we have
37 with 4T and s¥ with §7,72. By induction hypothesis for (u??)* with u?,aT,7* we
have t-f with 4T and t§ with 7 ,u?, 2. From these derivations we obtain

(51, 8)™ with o

and

(t8)u[w*?s¥] with gfi,ig,ffA.

Case 2b. wY=Xsi with T, 98,

Subcase i. w¥?X is among @T. By induction hypothesis for (uX[*J§)¢ with ux[*], aT,
72 we have t-? with uX®] 4T and t¢¥ with 7,52, Let # be all variables free in ¥ that
are in s, but not free in I'. We now construct derivations

(AZ(E)u[w?Xs))¥*7 with @f
and
(t)g[2¥772] with 77,58,

where VZ¥ means Vz7;,...,VZy,. Note that any object or predicate variable free in
VZz¥ is both free in A, ¢ and free in T'.

Subcase #. w¥*X is among 7. By induction hypothesis for (u"[’]t-)“’ with uxlel gT
7 we have £ with @ and t¢ with 7%, uCl?) #2. Let 7 be all variables free in § that are
in s, but not free in A, . We now construct derivations

(/\UVZ’-ng(th"l))—-Viﬂg with ‘!-t‘r

and

(AT TV TANG (0(tF)u [w7"Xs]))¥ with gV o

and stability assumptions (which are used to build t™"¥—¢). Note again that any object
or predicate variable free in =V7-§ is both free in T and free in A, . [

224
3. Normalization for arithmetic
3.1. Ordinal notations

We want to discuss the derivability and underivability of initial cases of transfinite
induction in arithmetical systems. In order to do that we shall need some knowledge
and notations for ordinals. Now we do not want to assume set theory here; hence
we introduce a certain initial segment of the ordinal (the ordinals < &) in a formal,
combinatorial way, i.e. via ordinal notations. Our treatment is based on the Cantor
normal form for ordinals; cf. (Bachmann 1955). We also introduce some elementary
relations and operations for such ordinal notations, which will be used later.

We define the two notions

e «a is an ordinal notation
e a < f for ordinal notations a,

simultaneously by induction:

1. If am,...,ap are ordinal notations and o, > ... 2 ap (where a > § means a >
or a = f3), then
[7 2ol N S R

is an ordinal notation. Note that the empty sum denoted by 0 is allowed here.
2. fwo 4 ... 4+ w* and wh» + ... + wPo are ordinal notations, then

w0m+,,,+w¢lo <wﬂn+,,,+wﬂo

iff there is an ¢ > 0 such that am—i < Bn—i, Am-i+1 = Bn—it1s---,&m = Pn, O
elsem <nand ap = Pny...,00 = Pa—m

It is easy to see (by induction on the levels in the inductive definition) that < is a linear
order with 0 being the smallest element.

We shall use the notation 1 for w?, a for w® 4 - - - + w° with a copies of w° and w%a
for w* + -+ - + w™ again with a copies of w®.

We now define addition for ordinal notations:

WO o WP WP WP = O e W% WP 4 WP
where ¢ is minimal such that a; > 8,.

It is easy to see that + is an associative operation which is strictly monotonic in
the second argument and weakly monotonic in the first argument. Note that + is not
commutative: 1+w =w #Fw+1.

The natural (or Hessenberg) sum of two ordinal notations is defined by

(wam + e +wao)#(wﬂn + e +wﬂo) = w'1m+n + ce +w’70’

where Ym4n,--.,70 is a decreasing permutation of am,...,aq,Bn,-.., Po.

225

Again it is easy to see that # is associative, commutative and strictly monotonic
in both arguments.

We will also need to know how ordinal notations of the form 8 + w® can be appro-
ximated from below. First note that

§<a—-pf+uwla<pftuw.
Furthermore, for any v < 8 + w® we can find a § < a and an a such that
v < B +wba.

We now define 2 for ordinal notations a. Let ayy 2 --cap 2w > kpn 2 - 2 k1 >
0. Then

2u°m 4ot w0kt gl 40%a = wwﬁm+...+u¢o Fwrn -l gkt 98

It is easy to see that 2°%! = 2% 4 2% and that 2° is strictly monotonic in a.

In order to work with ordinal notations in a purely arithmetical system we set up a
bijection between ordinal notations and nonnegative integers (i.e., a Gédel numbering).
For its definition it is useful to refer to ordinal notations in the form

w'am + - +w*ag with am >+ > ap.
For any ordinal notation a we define its Gédel number |a| inductively by
0] := 0,

W™ am + - - +w™ao| := ([] i) - 1-
i<m.
For any nonnegative integer z we define its corresponding ordinal notation o(z) induc-
tively by
o(0)=0
o([Tp)-1=) v
i<m i<m
where the sum is to be understood as the natural sum.

Lemma 3.1.1.
1. ofja]) = a,
2. |o(z)| = =.
This can be proved easily by induction. (]
Hence we have a bijection between ordinal notations and nonnegative integers.
Using this bijection we can transfer our relations and operations on ordinal notations to
computable relations and operations on nonnegative integers. We will use the notations

z <y for oz) < o(y),
w® for |w°®),

z@y for |o(z)+ oy)l-

226

3.2. Provability of initial cases of transfinite induction

We now set up some formal systems of arithmetic and derive initial cases of the principle
of transfinite induction in them, i.e. of

Vz(Vy <z : Py — Pz) - Vz <a: Pz

for some numeral a and a predicate variable P. In Section 3.4 we will see that our
results here are optimal in the sense that for larger segments of the ordinals transfinite
induction is underivable. All these results are due to (Gentzen 1943).

Our arithmetical systems are based on a fixed (possibly countably infinite) supply of
function constants and predicate constants which are assumed to denote fixed functions
and predicates on the nonnegative integers for which a computation procedure is known.
Among the function constants there must be a constant S for the successor function
and 0 for (the O0-place function) zero. Among the predicate constants there must be a
constant = for equality and L for (the 0-place predicate) falsity. In order to formulate
the general principle of transfinite induction we also assume that predicate variables
P,Q,... are present.

Terms are built up from object variables z,y,z by means of fry...rn,, where f
is a function constant. We identify closed terms which have the same value; this is a
convenient way to express in our formal systems the assumption that for each function
constant a computation procedure is known. Terms of the form SS...S0 are called
numerals. We use the notation S*0 or even i for them. Formulas are built up from
prime formulas Pr; ...r, with P a predicate constant or a predicate variable by means
of (¢ — ¢) and Vzp. As usual we abbreviate ¢ — L by —.

The azioms of our arithmetical systems will always include the Peano—-axioms

Vay(Sz =Sy - z =y),
Vz(Sz # 0).

Any instance of the induction scheme

(0], Vz(p[z] — ¢[Sz]) — Vzp[2]

with ¢ an arbitrary formula is an axiom of full arithmetic Z. We will also consider
subsystems Z; of Z where the formulas ¢ in the induction scheme are restricted to
II9—formulas; the latter notion is defined inductively, as follows.

1. Any prime formula Pf' is a II3—formula, for any k > 1.

2. If p is quantifier—free and ¢ is a II3-formula, then ¢ — ¥ is a II}—formula.

3. If ¢ is a II}—formula and ¢ is a [I{—formula, then ¢ — % is a IIJ-formula with

p = max(k + 1,1).

4. If ¢ is a II}~formula, then so is Vz¢p.
Note that a formula is a II9-formula iff it is logically equivalent to a formula with a
prefix of k alternating quantifiers beginning with V and a quantifier—free kernel. For
example, VzIyVzPzyz is a [I3-formula. In addition, in any arithmetical system we

have the equality axioms
Vz(z = z),

227

VZg(z1 = y1,. .- Zm = Ym — T = f¥),
VZy(z1 = y1,..-,Zm = Ym, PZ — PY)

for any function constant f and predicate constant or predicate variable P. We also
require for any such P the stability axioms

VE(~—~P% — P3).

We express our assumption that for any predicate constant a decision procedure is
known by adding the axiom

P(5%0)...(5'0)

.
whenever Pi is true, and

-P(5%0)...(5*0)

whenever Pi is false.

We finally allow in any of our arithmetical systems an arbitrary supply of true
II—formuals as axioms. Qur (positive and negative) results concerning initial cases of
transfinite recursion will not depend on which of those axioms we have chosen, except
that for the positive results we always assume

Vz(z £ 0) (3.1)

Vyz(z <y @uwl,z Ay, 2 #y— 1) (3.2)

Vz(z ® 0 = z) (3.3)

Vayz(z @ (y@2) = (z O y) O 2) (3.4)

Vz(0 @z =) (3.5)

Vz(w*0 = 0) (3.6)

Vzy(w*(Sy) = w'y & w*) (3.7)

Vzyz(z < y ®w®,z # 0 = 2 < y ® w/*¥*(gzyz)) (3.8)
Vzyz(z <y Bw®,z2 £0 - fryz < z) (3.9)

where in 3.9 f and g are function constants.

Theorem 3.2.1. (Gentzen) Transfinite induction up to w, (With w; = wW,wn41 =
w“r) i.e. the formula

Vz(Vy < z : ply] = ¢[z]) = Yz < wa 2 p[z]
is derivable in Z.
Proof: To any formula ¢ we assign a formula ¢ (with respect to a fixed variable z) by
et =Vy(Vz <y : (2] 2 V2 <y @ w” : p.[2)).

We first show
 is progressive — o7 is progressive,

228

where “y is progressive” means Vz(Vy < z : ¥[y] — ¥[z]). So assume that ¢ is progres-
sive and

Yy <z :¢t[y). (3.10)
We have to show ¢*[z]. So assume further
Vz <y: (2] (3.11)

and z < y ® w®. We have to show ¢[z]. Case z = 0. From z < y & w® we have by
32z <yVz=y Iz <y, then ¢[z] follows from 3.11, and if z = y, then ¢[2]
follows from 3.11 and the progressiveness of . Case z # 0. From 2z < y @ w* we obtain
z2 < y®wl*¥*gzyz by 3.8 and fzyz < z by 3.9. From 3.10 we obtain ¢*[fzyz]. By the
definition of ¢t we get
Yu < y @ w/™v : pfu] — Vu < (y ® w/*%v) @ w7 : p[u]
and hence, using 3.4 and 3.7
Vu <y @ w0 : plu] — Vu < y ® wf™*(Sv) : plu).
Also from 3.11 and 3.6, 3.3 we obtain
Yu < y ® w/™0 : o[u].
Using an appropriate instance of the induction scheme we can conclude
Vu <y @w*V*gzyz : plu]

and hence ¢[z].

We now show, by induction on n, how to obtain a derivation of

Vz(Vy < z : p[y] = ¢[z]) = V= < wn : o[z}

So assume the left-hand side, i.e. assume that ¢ is progressive. Case 0. From z < wy
we get z = 0 by 3.5, 3.2 and 3.1, and ¢[0] follows from the progressiveness of ¢ by 3.1.
Case n+ 1. Since ¢ is progressive, by what we have shown above also ¢ is progressive.
Applying the induction hypothesis to ¢t yields Vz < wy, : ¢*[z], and hence ¢t |wy]
by the progressiveness of ¢t [z]. Now the definition of ¢t (together with 3.1 and 3.5)
yields Vz < w“n : p[2]. OJ

Note that in these derivations the induction scheme was used for formulas of un-
bounded complexity.

We now want to refine Theorem 3.2.1 to a corresponding result for the subsystems
Zj of Z. Note first that if ¢ is a [I3—-formula, then the formula % constructed in the
proof of Theorem 3.2.1 is a IT9 4+1—formula, and for the proof of

¢ is progressive — 7 is progressive
we have used induction with a IIY induction formula.

Now let ¢ be a II}—formula, and let ¢° := ¢, ! := (p')*. Then ¥ is a I} ;-
formula, and hence in Z; we can derive that if ¢ is progressive, then also ¢!, ¢?,...*
are all progressive. Let w;[m] := m,w;41[m] = w*[™. Since in Z; we can derive that
* is progressive, we can also derive ¢¥[0],o*[1], »*[2] and generally ¢*[m] for any m,
i.e. p¥[wi[m]]. But since

F = (P =Vy(Ve <yt 2] o V2 <y @ Wt kTN 2)),
we first get (with y = 0) Vz < wa[m) : ¢*~[2] and then ¢*~?[wz[m)]] by the progres-
siveness of ¢*~!. Repeating this argument we finally obtain ¢°[wk+1(m]]. Hence we
have

229

Theorem 3.2.2. Let ¢ be all{—formula. Then in Z) we can derive transfinite induction
for ¢ up to wi41[m)] for any m, i.e.

Zy FVz(Vy < 7 : ply] = ¢[z]) = VT < wig1[m] : p[z).3

If more generally we start out with a II)—formula ¢ instead, where 1 < I < k, then a
similar argument yields the following result of (Parsons 1973)

Theorem 3.2.3. Let ¢ be a II]—formula, 1 < ! < k. Then in Z; we can derive
transfinite induction for ¢ up to wi42—i[m] for any m, i.e.

Zx FVz(Vy < z : ply] = ¢[z]) = VI < wrp2—i[m] : p[z].]

Our next aim is to prove that these bounds are sharp. More precisely, we will show
that in Z (no matter how many true II}—formulas we have added as axioms) one cannot
derive transfinite induction up to &g, i.e. the formula

Vz(Vy < z : Py — Pz) — Vz Pz

with a free predicate variable P, and that in Z; one cannot derive transfinite induction
up to wi+1, i.e. the formula

Vz(Vy < z : Py — Pz) — Vz < wiy41 : Pz.

This will follow from the method of normalization applied to arithmetical systems, which
we have to develop first.

3.3. Normalization for arithmetic with the .—rule

We will show in Section 3.5 that a normalization theorem does not hold for a system of
arithmetic like Z in Section 3.2, in the sense that for any formula ¢ derivable in Z there
is a derivation of the same formula ¢ in Z which only uses formulas of a level bounded
by the level of . The reason for this failure is the presence of the induction axioms,
which can be of arbitrary level.

Here we remove that obstacle against normalization and replace the induction
axioms by a rule with infinitely many premisses, the so-called w-rule (suggested by Hil-
bert and studied by Lorenzen, Novikov and Schiitte), which allows to conclude Vzyp|[z]
from (0], ¢[1], ¢[2], - . ..

Clearly this w-rule can also be used to replace the rule V*. As a consequence we
do not need to consider free object variables.

So we introduce the system Z%° of w-arithmetic as follows. Z° has the same
language and — apart from the induction axioms — the same axioms as Z. Derivations
in Z* are infinite objects; they are built up from assumption variables z¥,y¥ and
constants ax¥ for any axiom ¢ of Z other than an induction axiom by means of the
rules

(A zv,.d')w—°¢

(te¥sP)Y

230

(retilyvze

(tvwi)w[ﬂ

denoted by =%, =~ ,w and V™, respectively.

More precisely, we define the notion of an F-derivation (i. e. a derivation in Z*
with free assumption variables among Z') of height < a and degree < k inductively, as
below.

Note that derivations are infinite objects now. They may be viewed as mappings
from finite sequences of natural numbers (= nodes in the derivation tree) to lists of data
including the formula appearing at that node, the rule applied last, a list of assumption
variables including all those free in the subderivation (starting at that node), a bound
on the height of the subderivation, and a bound on the degree of the subderivation.

Intuitively, the degree of a derivation is the least number > the level of any subde-
rivation Azr in a context (Azr)s or (ri)i<. in a context (r;)i<.j, where the level of a
derivation is the level of its type, i.e. the formula it derives. This notion of a degree is
needed for the normalization proof we give below.

* Any assumption variable z¥ and any axiom ax¥ is an Z—derivation of height < «
and degree < k, for any list ¥ of assumption variables (containing z in the first
case), ordinal & and number k.

—+ If r¥ is an 7, z, §-derivation of height < ag < « and degree < k, then (Az¥r¥)¢—¥
is an I, §j~derivation of height < o and degree < k.

—~ Ift¥? and s¥ are 7-derivations of heights < a; < « and degrees < k; < k (i=
1,2), then (¢¥—¥s¥)¥ is an Z-derivation of height < o and degree < m with
m = max(k,lev(y — 9)), if ¥ is generated by the rule =%, or of degree < k
otherwise.

wlIf ,.:f[ﬂ are £-derivations of heights < a; < o and degrees < k; <k (i <w), then

(ret?)12 is an #-derivation of height < & and degree < k.

V- If tY¥ is an #-derivation of height < ag < & and degree < k, then (t¥*¢:)#l!l is an
F-derivation of height < a and degree < m with m = max(k, level Vzy), if tY2¢ is
generated by the rule w, or of degree < k otherwise.

We now embed our systems Z; (i. e. arithmetic with induction restricted to II‘,:—
formulas) and hence Z into Z*°.

Lemma 3.3.1. Let r¥ be a derivation in Z; with free assumption variables among 7%
which contains < m instances of the induction scheme all with induction formulas of
level < k. Let o be a substitution of numerals for object variables such that go, %o do
not contain free object variables. Then we can find an %% -derivation (1o)¥° in Z* of
height < w™ + h for some h < w and degree < k.

Proof. First note that from any normal derivation in first—order logic we can construct
a normal derivation r(',” with the same free assumption variable #%, such that in rY
any branch has a prime formula as its minimal formula (cf. Section 2.4). For if ¢ is a
minimal formula which is not prime we can first apply elimination rules until a prime
formula is reached and later build a up again by the corresponding introduction rules.

The lemma is proved by induction on the height of the given derivation r. By

the Normalization Theorem 2.2.3 and the note above we can assume that r is normal

231

with prime minimal formulas. The only case which requires some argument is when r
consists of two applications of —~ to an instance of the induction scheme. Then r must
have the form

ax®l0):Vz(p[z]—¢[Sz]) =Vze[z] ;[0] (\z Ay¥lzlgelSe]).

By induction hypothesis we obtain derivations

tS[s2] of height <w™'-2+hy,
el [pelll[g#0]) of height <w™ !-3+hy

s?0 of height <w™ !+ ho

and so on, all of degree < k. Combining all these derivations of [i] as premisses of the
w-rtule yields a derivation to, of Vzip[z] of height < w™ and degree < k. [

A derivation is called convertible if it is of the form (Azr)s or else (r;)i<wj, which can
be converted into r;[s] or rj, respectively. Here r;[s] is obtained from r by substituting
s for all free occurences of z in r. A derivation is called normal if it does not contain a
convertible subderivation. Note that a derivation of degree 0 must be normal.

We want to define an operation which by repeated conversions transforms a given
derivation into a normal one with the same end formula and no more assumption va-
riables. The methods employed in Sections 1 and 2 to achieve such a task have to be
adapted properly in order to deal with the new situation of infinitary derivations. Here
we give a particularly simple argument due to (Tait 1965).

Lemma 3.3.2. Ifr is an 7, 2%, y—derivation of height < « and degree < k and s¥ is an
T, §—derivation of height < B and degree < I, then r,[s] is an T,{-derivation of height
< B + a and degree < max(k, !, level s).

This is proved by a straightforward induction on the height of r. (J

Lemma 3.3.3. For any Z—derivation r¥ of height < a and degree < k + 1 we can find
an £-derivation (r¥)® of height < 2* and degree < k.

The proof is by induction on . The only case which requires some argument is when r
is of the form ts with t of height < a; < a and s of height < az < a. We first consider
the subcase where t* = Azt; and lev(t) = k + 1. Then lev(s) < k by the definition
of level, and hence (t;);[s*] has degree < k by Lemma 3.3.2. Furthermore, also by
Lemma 3.3.2, (t;)[s*] has height < 292 421 < gmax(az,1)+1 < 9o Hence we can take
(ts)¥ to be (t1)z[s¥]. If we are not in the above subcase, we can simply take (ts)* to be
tksk. This derivation clearly has height < 22. Also it has degree < k, which can be seen
as follows. If lev(t) < k we are done. If however lev(t) > k + 2, then ¢ must be of the
form oty ...tm for some assumption variable or axiom ¢¢ (since r has degree < k + 1).
But then t* has the form tot¥ ...tk and we are done again. (To be completely precise,
this last statement has to be added to the formulation of the Lemma above and proved
simultaneously with it). (J
As an immediate consequence we obtain

Theorem 3.3.4. (Normalization for Z*°) For any 7—derivation r¥ of height < «a
and degree < k we can find a normal —derivation (r*)¥ of height < 2;a (where 2pa =
a,2m+1a = 22;‘)

232

3.4. Unprovable initial cases of transfinite induction

We now apply the technique of normalization for arithmetic with the w-rule for a proof
that transfinite induction up to ¢o is underivable in Z, i.e. of

ZWYVz(Vy<z: Py —» Pz) - VzPz

with a predicate variable P, and that transfinite induction up to wg41 is underivable in
Zy, i.e. of

Zy Y Vz(Vy <z : Py = Pz) = Vz < wiy : Pz.

Our proof is based on an idea of Schiitte, which consists in adding a so—called progression
rule to the infinitary systems. This rule allows to conclude Pj (where j is any numeral)
from all Ps for i < j.

More precisely, we define the notion of an F-derivation in Z* + Prog(P) of height

< a and degree < k by the inductive clauses of Section 3.2 and the additional clause
Prog(P):

If rPi are F-derivations of heights < a; < a and degrees < ki < k (¢ < j), then
(rP ‘), 2; is an Z—derivation of height < o and degree < k.

Since this progression rule only deals with derivations of prime formulas it does not
affect the degrees of derivations. Hence the proof of normalization for Z™ carries over
unchanged to Z* + Prog(P). In particular we have

Lemma 3.4.1. For any &-derivation r¥ in Z* + Prog(P) of height < a and degree
< k+1 we can find an Z-derivation (r*)¥ in Z* 4+ Prog(P) of height < 2* and degree
<k

We now show that from the progression rule for P we can easily derive the progressi-
veness of P.

Lemma 3.4.2. We have a normal derivation of Vz(Vy < z : Py — Pz) in Z*° +
Prog(P) with height < 5.

Proof. By the w-rule it suffices to derive Vy < j : Py — Pj for any j with height < 4.
We argue informally. Assume Vy < j : Py. By V~ we have { < j — Pi for any :. Now
for any 1 < j we have ¢ < j as an axiom; hence Pi for any such i. An application of
the progression rule yields Pj, with a derivation of height < 3. Now by =% and w the
claim follows. (]

The crucial observation now is that a normal derivation of P|S| must essentially
have a height of at least 5. However, to-obtain the right estimates for our subsystems
Z, we cannot apply Lemma 3.4.1 down to degree 0 (i.e. to the normal form) but
must stop already at degree 1. Such derivations, i.e. those of degree < 1, will be
called almost normal; they can also be analyzed easily. An almost normal derivation
r in Z%° + Prog(P) is called a P|a|,-|P|ﬂ|—refutatwn if r derives a formula ¢ — ¥
with @ and the free assumptions in r among P|&| := Pla|,..., Plam| and -P|f| :=
=P|Bl,...,~P|Bn| and true prime formulas, and ¢ a false prime formula or else among

~P|B|.

233

Lemma 3.4.3. Let r be an almost normal P|G|, ~P|B]|-refutation of height < |r| with
& and B disjoint. Then .

min g < |r| + #4&,
where #a denotes the number of ordinals in &.

Proof. By induction on |r|. Note that we may assume that r does not contain either w
or else V™. Note also that r cannot be an equality axiom axPIYLIVI=181=PI8l with v = §
true, since we have assumed that & and f§ are disjoint. We distinguish cases according
to the last rule in r.

Case —*. By our definition of refutations the claim follows immediately from the
induction hypothesis.

Case —»~. Then r = t*~(#=¥)s¢ [f o is a true prime formula, the claim follows
from the induction hypothesis for t. If ¢ is a false prime formula, the claim follows
from the induction hypothesis for s. If ¢ is ~~P|y| (and hence t = axV=(""Pz—P2)|4|),
then since the level of ~~P|y| is 2 the derivation s™~P|7l must end with an introduction
rule, i. e. s = Az™F |"|3(J,' (for otherwise, since no axiom contains some —-—Pry as a
strictly positive subformula, we would get a contradiction against the assumption that
r has degree < 1). The claim now follows from the induction hypothesis for so. The
only remaining case is when ¢ is P|y|. Then ¢ is an almost normal P|7|,P|&’|,-P|ﬁ|
-refutation and s is an almost normal P|&)|, ~P|f|, ~P|y| -refutation. We may assume
that - is not among &, since otherwise the claim follows immediately from the induction
hypothesis for t. Hence we have by the induction hypothesis for ¢

minf < |t| + #a@+ 1 < |r| + #&.
Case Prog(P). Then r = (r; Iﬁl)PI'rl By induction hypothesis, since rs is a P|d|,
-P|f|, ~P|6| -refutation, we have for all § <

min(B,6) < |rs| + #& < |r| + #a
and hence -
min(8,7) < |r| + #&.
O
Now we can show the following result of (Mints 1971) and (Parsons 1973)

Theorem 3.4.4. Transfinite induction up to €q is underivable in Z, i.e.
Z Y Vz(Vy <z : Py = Pz) - VzPz
with a predicate variable P, and transfinite induction up to wi41 is underivable in Z,
ie.
Zy Y Vz(Vz <z : Py = Pz) = Vz < wg4 : Pz.

Proof. We restrict ourselves to the second part. So assume that transfinite induction up
to wg41 is derivable in Z;. Then by the embedding of Z; into Z*° (Lemma 3.3.1) and
the normal derivability of the progressiveness of P in Z* + Prog(P) with finite height
(Lemma 3.4.2) we can conclude that Vz < wi41 : Pz is derivable in Z°° + Prog(P) with
height < w™ + h for some m,h < w and degree < k. Now k — 1 applications of Lemma
3.4.1 yield a derivation of the same formula Vz < w41 : Pz in Z* 4 Prog(P) with
height < v < 2x—1(w™ + k) < wi41 and degree < 1, hence alse a derivation of P|y + 1|
in Z°° 4 Prog(P) with height < 4 and degree < 1. But this contradicts Lemma 3.4.3.
O

234

3.5. Normalization for arithmetic is impossible

The normalization theorem for first—order logic applied to arithmetic Z is not parti-
cularly useful since we may have used in our derivation induction axioms of arbitrary
complexity. Hence it is tempting to first eliminate the induction scheme in favour of an
induction rule allowing to conclude Vzy[z] from a derivation of ¢[0] and a derivation of
¢[Sz] with an additional assumption ¢[z] to be cancelled at this point (note that this
rule is equivalent to the induction scheme), and then to try to normalize the resulting
derivation in the new system Z with the induction rule. We will apply our results from
Section 3.4 to show that even a very weak form of the normalization theorem cannot
hold in Z with the induction rule.

Theorem 3.5.1. The following weak form of a normalization theorem for Z with the
induction rule is false: For any £®-derivation r¥ with @,v II?—formulas there is an
#¥—derivation (r*)¥ containing only II}—formulas, with k depending only on l.

Proof. Assume that such a normalization theorem would hold. Consider the II3—formula
Vz(Vy <z : Py — Pz) = Vz < wpqy : Pz

expressing transfinite induction up to wp4;. By Theorem 3.2.1 it is derivable in Z.
Hence there exists a derivation of the same formula containing only IT{—formulas, for
some k independent of n. Hence Z derives transfinite induction up to wp4 for any n.
But this clearly contradicts Theorem 3.4.1. [

Bibliography

Bachmann, H.: Transfinite Zahlen. Berlin: Springer 1955
Barendregt, H.P.: The lambda calculus. Amsterdam: North-Holland 1984

Buchholz, W.: Bemerkungen zur Dissertation Hudelmaier. Unverdffentlichtes Ma-
nuskript, Miinchen: 1989

Church, A.: The calculi of lambda-conversion. Annals of Math. Studies No.6, Prin-
ceton: 1941

Diller, J.: Zur Berechenbarkeit primitiv-rekursiver Funktionale endlicher Typen.
In: Contributions to mathematical logic (K. Schiitte, ed.), pp. 109-120. Amsterdam:
North-Holland 1968

Gandy, R.O.: An early proof of normalization. In: To H.B. Curry: Essays on com-
binatory logic, lambda calculus and formalism (J.P. Seldin and J.R. Hindley, eds.), pp.
453-455. Academic Press 1980a

Gandy, R.O.: Proofs of strong of normalization. In: To H.B. Curry: Essays on
combinatory logic, lambda calculus and formalism (J.P. Seldin, J.R. Hindley, eds.) pp.
457-477. Academic Press 1980b

Gentzen, G.: Beweisbarkeit und Unbeweisbarkeit von Anfangsfallen der transfiniten
Induktion in der reinen Zahlentheorie. Mathematische Annalen 119, 140-161 (1943)

Girard, J.Y.: Proof theory and logical complexity. Napoli: Bibliopolis 1987

235

Howard, W.A.: The formulae-as-types notion of construction. In: To H.B. Curry:
Essays on combinatory logic, lambda calculus and formalism (J.P. Seldin and J.R. Hind-
ley, eds.), pp. 479-490. Academic Press 1980a

Howard, W.A.: Ordinal analysis of terms of finite type. J. Symbolic Logic 45, 493-
504 (1980b)

Hudelmaier, J.: Bounds for cut—elimination in intuitionistic propositional logic.
Dissertation, Tibingen: 1989

Mints, G.E.: Exact estimates of the provability of transfinite induction in the initial

segmants of arithmetic. Zapiski Nauch. Sem Leningrad 20, 134-144 (1971). Translated
in: J. Soviet Math. 1, 85-91 (1973)

Parsons, C.: Transfinite induction in subsystems of number theory (abstract) J.
Symbolic Logic 36, 544-545 (1973)

Prawitz, D.: Natural deduction. Stockholm: Almqvist & Wiksell 1965

Sanchis, L.E.: Functionals defined by recursion. Notre Dame J. Formal Logic 8,
161-174 (1967)

Schiitte, K.: Proof theory. Berlin: Springer 1977

Schwichtenberg, H.: Proof theory: Some applications of cut—elimination. In: Hand-

book of mathematical logic (J. Barwise, ed.), pp. 867-895. Amsterdam: North-Holland
1977

Schwichtenberg, H.: Complexity of normalization in the pure typed A-calculus. In:
The L.E.J. Brouwer centenary symposium (A.S. Troelstra and D. van Dalen, eds.), pp.
453—458. Amsterdam: North-Holland 1982

Schwichtenberg, H.: A normal form for natural deductions in a type theory with
realizing terms. In: Atti del con(fresso logica e filosofia della scienza, oggi. Vol.1-Logica.
(V.M. Abrusci and E.Casari, eds.), pp. 95-138. Bologna: CLUEB 1986

Schwichtenberg, H.: An upper bound for reduction sequences in the typed A-
calculus. Archive Math. Logic, to appear 1990

Statman, R.: The typed A-calculus is not elementary recursive. Theoretical Com-
puter Science 9, 73-81 (1979)

Tait, W.W.: Infinitely long terms of transfinite type. In: Formal systems and recur-

sive functions (J. Crossley and M. Dummett, eds.), pp. 176-185. Amsterdam: North—
Holland 1965

Takeuti, G.: Proof theory. Second edition. Amsterdam: North-Holland 1987

Troelstra, A., editor. Metamathematical investigations of intuitionistic arithmetic
and analysis. Lecture Notes in Mathematics, Vol. 344, Berlin: Springer 1973

Troelstra, A. and van Dalen, D.: Constructivism in mathematics. An introduction.
%tlﬁiiez in Logic and the Foundations of Mathematics, Vol. 121, 123 Amsterdam: North-
olland 1988

