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Normalization 

Helmut Schwichtenberg 
Mathemat isches Inst i tut , Universität München 

Theresienstraße 39, D-8000 München 2, Ge rmany 

T h e a im of this paper is to present a central technique from proof theory, Gentzen's 
normal i za t i on for na tu ra l deduct ion Systems, and to discuss some of i ts appl icat ions. 

B y normal i za t ion we mean a col lect ion of a lgor i thms transforming a given deriva-
t i on into a certain no rma l form. A der ivat ion is cal led normal i f i t does not conta in any 
"de tour " i.e. an appl icat ion of an in t roduct ion rule immediate ly followed by a n appl ica-
t i on of a n e l iminat ion rule. Such normal i za t ion a lgor i thms are useful because they al low 
to "s tra ighten ou t " complex derivations and i n this way extract h idden in format ion. 

We w i l l treat many appl icat ions wh ich demonstrate th is , e.g. the subformula p r i n -
ciple, Herbrand 's theorem, the Interpolat ion theorem, an exact character izat ion of the 
in i t i a l cases of transfinite induct ion provable i n ar i thmet ic and a proof that normal i za­
t ion i n (the usual finitary) ar i thmet ic is impossible. 

F r o m the Computer science point of view, an even more interesting field of appl ica­
t ion for normal i za t ion algor i thms is the possibl i l i ty to extract the construct ive content 
of a maybe complex mathemat ica l argument. Such algor i thms can y ie ld verified pro-
grams f rom derivations prov ing that certain specifications can be fulf i l led. O f course, 
the feasabil ity of programs obtained i n this way w i l l depend to a large extent on a good 
choice of the der ivat ion, wh ich should be done on the basis of a good idea for an algo-
r i t h m . However, i n this approach it is possible to use ord inary mathemat ica l machinery 
for the development of programs. 

Chap te r 1 deals w i t h normal i za t ion for m i n i m a l propos i t ional logic, or more preci-
sely for i ts impl i ca t iona l fragment. In Section 1.1 it is shown that — by add ing stabi l i ty 
axioms — classical logic can be embedded i n i t . In Sections 1.2-1.6 we then treat norma­
l i zat ion for this calculus, w i t h special emphasis on complexi ty questions. In Sect ion 1.7 
normal i za t ion (for a na tura l deduct ion system) is .compared w i th cu t - e l im ina t i on (for a 
sequent calculus) . Section 1.8 discusses a decision procedure for m i n i m a l imp l i ca t i ona l 
logic. 

In Chapte r 2 the method of col lapsing types developed i n (Troelstra and van Da len 
1988) is used to lift these results to m i n i m a l first order logic or more precisely to i ts —• V -
fragment, wh ich again suffices for classical logic. Section 2.4 contains some appl icat ions 
of normal i za t i on : the subformula pr inc ip le , Herbrand 's theorem and the interpo lat ion 
theorem. 

T h e final Chapter 3 treats normal i za t ion for ar i thmet ic . Since normal i za t ion for 
finitary ar i thmet ic w i t h the induct ion rule is impossible (this is proved i n Sect ion 3.5), 
we extend i n Section 3.3 the normal i za t ion technique to ar i thmet ic w i t h the u;-rule. T h i s 
is used i n Section 3.4 to give an exact character izat ion of the in i t i a l cases of transfinite 
induc t i on provable i n ar i thmet ic as wel l as i n some Subsystems of ar i thmet ic obta ined 
by res t r ic t ing the complexi ty of the induct ion formulas. 

T h e expert w i l l certainly note that most of the results and proofs e laborated here 
are we l l - known . The only novel points are the fol lowing. 
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• We have based our treatment of normal i za t ion i n Chapters 1 and 2 on a slight 
general ization of /?-conversion: we not only al low ( X x r ) s to be converted into 
r x [ s ] , but more generally ( X x x . r ) s s to be converted into ( X x . r x [ s ] ) s . T h i s allows 
a par t i cu lar ly s imple proof of the existence of the no rma l form (Theorem 1.2.2 
below), wh ich also provides an easy estimate of the number of conversion steps 
needed, and it also makes the results on strong normal i za t ion (Section 1.5) and the 
uniqueness of the no rma l form (Section 1.3) s l ight ly stronger. 

• In Section 1.7 we give an argument that normal i za t ion (for a na tu ra l deduct ion 
system) and cut - e l im ina t i on (for a sequent calculus) are essentially different, us ing 
a recent result of (Hudelmaier 1989). 

• In Section 1.8 we present a decision a lgor i thm for imp l i ca t i ona l logic also due to 
(Hudelmaier 1989), together w i th a new proof of its correctness and completeness. 

• In Theorem 3.5.1 it is stated that a certain weak form of a normal i za t i on theorem 
does not ho ld for ar i thmet ic w i th the induc t i on rule. 

1. Normalization for propositional logic 

1.1 Minimal implicational logic as a typed A-calculus 

Formulas are bu i l t up f rom proposi t ional variables denoted by P , Q by means of 
(y? —> We wri te y>i , . . . , <pm —> rp for (<p\ —» (<p2 - * • • • (y?m —* • • •))• Der ivat ions 
are bui l t up f rom assumpt ion variables by means of the rule - * + of imp l i ca t i on 
in t roduct ion (or A-abstract ion) 

( A u ^ r * ) * " * 

and the rule — o f impl i ca t ion e l iminat ion (or appl icat ion) 

A derivat ion whose free assumpt ion variables are among u f 1 , . . . , uj£m is also cal led a 
der ivat ion of f rom < p \ , . . . , <pm, For readabi l i ty we often leave out f o rmula superscripts 
when they are obvious f rom the context or non-essential . 

For obvious reasons we w i l l also use the word t e rm for derivations and type for 
formulas. T h e possibi l i ty to treat derivations as terms and formulas as types has been 
discovered by H . B . C u r r y and elaborated by W . A . Howard i n (Howard 1980a). Th i s 
correspondence can easily be shown to be an isomorphism; i t is cal led the C u r r y -
Howard- i somorph ism. 

More formally, it can be seen easily that a closed der ivat ion (i. e. one w i thout free 
assumpt ion variables) is determined by 

1. a type-free A - t e rm describing the derivat ion and 

2. the derived formula. 
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T h e formulas i n the derivat ion can be left out since they can easily be reconstructed 
f o rm the given derived formula. 

A s an example, a der ivat ion of 

<p _> <p) 

is given by At iAvu, and a derivat ion of 

W> _> x) ) ((<? -> tfO -> (<p ->x ) ) 

is given by AuAvAtu((uti>)(vu>)). B o t h derivations can be easily wr i t t en i n the more 
usua l tree form. 

Note that our m i n i m a l impl i ca t iona l logic contains füll classical propos i t ional logic, 
as follows. Choose a par t icu lar proposi t ional variable and denote i t by ± (falsity). 
Associate w i t h any formula <p i n the language of classical propos i t ional logic a finite l ist 
<p of formulas i n our impl i ca t iona l language, by induct ion on (p: 

P ^ P 

-*<p I—• <p —• _L 

(ß • %j) t—¥ (p y tp\,. . . (p • ifam 

<p A t/> <py rl> 

tp V rp (<p -> _L), ( $ -> JL) -> JL 

T h e n , i f <p is a formula i n the language of füll classical propos i t ional logic and y>i , . . . , <pm 

is i ts associated l ist , <p is derivable i n classical proposi t ional logic iff each (pi is derivable 
i n m i n i m a l impl i ca t iona l logic f rom stabi l i ty assumptions ->-»P —* P (w i th denot ing 
%j> —• ± ) for a l l proposi t ional variables P i n ip. The essential step i n the proof is to show 
that f rom the stabi l i ty of x/> we can infer the stabi l i ty of <p —• %j>: a der ivat ion of 

(—I-T0 —• -0) —+ ( — i — — • l/>) —• (ip —• ^ ) ) 

is g iven by 

AtziAw2Aw3(uiAu 4 (w2Au5(u 4 (u5W3)))). 
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1.2. Conversion 

We axe interested i n the fol lowing process of s impl i f icat ion of terms: 

( X u u . r ) s s converts into (AtT.r t t[s])ir. 

Here u and s denote finite l ists u i . . . u m and S\...sm, and Xuu.r denotes the term 
A u i . . . X u m X u r . Terms of the form ( X u u . r ) s s are cal led convertible. 

Note that Converting ( X u u . r ) s 3 into (Au.r t t[s])5 may be viewed as first Converting 
( X u u . r ) s s "permutat i ve ly " into ( X u ( X u r ) s ) s and then per forming the inner conversion 
to obta in (A{T.r„[s])S*. One may ask why we take this conversion re lat ion as our basis and 
not the more common ( X u r ) s h-> r u [ s \ . The reason is that our not ion of level is defined 
w i t h the clause lev(<p - » VO = max(lev(<p)+l, lev(^)) and not = max(lev(<p), lev(^) )+l ; 
this i n t u r n seems reasonable since then the level of P i , . . . , P m —» Q ( i . e. of ( P i —> 
( P 2 —•... ( P m —> Q)...)) ) is 1 and hence independent of m . B u t given this definit ion 
of level, and given the need i n some arguments (e. g. i n Theorem 1.2.1) to perform 
conversions of highest level f irst, we must be able to convert ( X u v . r ) s t w i t h u of a low 
and v of a h igh level into (Au.r v[<])$. — I n addi t ion , since we al low more conversions 
here, the results on strong normal i zat ion and upper bounds for the length of arb i t rary 
reduct ion sequences get stronger. 

We wri te r —• r ' i f r ' is obtained from r as follows. M a r k some occurrences of 
convertible subterms i n r . T h e n convert them a l l simultaneously. Hence new convertible 
subterms generated by such a conversion can not be converted. Mo r e precisely, r —• r ' 
is defined by the fol lowing rules 

1. u —> u. 
2. If r —• r ' , then Xur —• Aur ' , 

3. If r —* r ' and s —• 3', then rs —• r ' s ' . 

4. If r —• r ' , s —• s* and s —> s\ then ( X u u . r ) s s —• (Xu.r^ls'Yjs'. 

A s a special case, we take 

r —»1 r ' 

to mean that r1 is obta ined from r by Converting exactly one convertible subterm i n r . 
F i n a l l y 

r — > * r1 ( r reduces to r ' ) 

denotes the transit ive and reflexive closure of —• (or equivalently of —*i). 
A term is sa id to be i n normal form i f i t does not conta in a convertible subterm. 
We want to show now that any te rm reduces to a no rma l form. T h i s can be seen 

easily i f we follow a certain order i n our conversions. To define this order we have to 
make use of the fact that a l l our terms (i.e. derivations) have types (i.e. formulas). 

Define the level of a formula by 

l ev (P ) = 0, 

lev(<p —• %j>) = max(lev(y>) + l,lev(V>)) 

A convertible der ivat ion 
( X u ? u * , r ) s s 
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is also cal led a cut w i th cui-formula (p. B y the level of a cut we mean the level of its 
cu t - f o rmu la . The cut-rank of a der ivat ion r is the least number bigger than the levels 
of a l l cuts i n r . Now let t be a der ivat ion of cu t - rank fc + 1. P i ck a cut 

( X u u . r ) s s 

of the m a x i m a l level fc i n such that s does not conta in another cut of level fc. (E.g. , 
p ick the r ightmost cut of level fc.) T h e n it is easy to see that replac ing the picked 
occurrence of ( X u u . r ) s s i n t by (Ait.r t t [s])J reduces the number of cuts of the m a x i m a l 
level fc i n t by 1. Hence 

T h e o r e m 1.2.1. We have an algorithm which reduces any given term into a no rma l 
form. 

We now want to give an estimate of the number of conversion steps our a lgor i thm takes 
u n t i l i t reaches the norma l form. The key Observation for this estimate is the obvious 
fact that replacing one occurrence of 

(Xüu.r)ss by (AiT.r t t[s])s 

i n a given t e rm t at most Squares the length of t; here the length of t is taken to be the 
number of variables i n t (except those immediate ly fol lowing a A-symbol ) . 

A b o u n d $*(/) for the number of steps our a lgor i thm takes to reduce the rank of 
a given te rm of length / by fc can be derived inductively, as follows. Let s o ( l ) := 0. To 
ob ta in s*+i(Z), first note that by induct ion hypothesis i t takes < $*(/) steps to reduce 
the rank by fc. The length of the result ing t e rm is < l2 where s := s*(/) since any 
step (i.e. conversion) at most Squares the length. Now to reduce the rank by one more 
the number of add i t iona l steps is obviously bounded by that length. Hence the to ta l 
number of steps to reduce the rank by fc + 1 is bounded by 

s k ( l ) + l2'ki,) =: s k + 1 ( l ) . 

T h e o r e m 1.2.2. (Upper bound for the complexity of normalization) The nor­
mal i za t ion algorithm given in the proof of Theorem 1.2.1 takes at most Sk(l) steps to 
reduce a given term of c u t - r a n k fc and length l to normal form, where 

s 0 ( l ) : = 0 and s k + 1 ( l ) : = * * ( / ) + *2 • 
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1.3. Uniqueness 

We shal l show that the norma l form of a term is uniquely determined; th is w i l l be 
done by an argument wh ich also applies to type-free terms, i.e. terms w i thout formula 
superscripts. The m a i n idea of the proof (due to J . B . Rosser and W . W . Ta i t ) is to use 
the re lat ion r —> r ' defined i n Section 1.2. Its cruc ia l property is given by 

L e m m a 1.3.1. I t r - > r' and t -* t 1 then r v [ t ] - • rj,[t']. 

T h e proof is by induct ion on the definit ion of r —> r ' . A l l cases are obvious except 
possibly Ru l e 4. So assume r —> r ' , s—• s* and s —• s*. T h e n 

^ W ^ r ' J t ' ] , 3 v [ t ] - * 2 9 [ 1 ? ] and s v [ t ] - > s'9[t'] 

by induct ion hypothesis, and hence 

(\ÜUTv[t))Zv[t]sv[t] -> (At?. (r ; [ t ' ] ) .K[ t # l ] ) i J
f , [ t ' ] . 

^ v ' v v ' 
((\üu.r)?s)v[t] ( ( A * . r i [ j ' ] ) P ) „ [ l ' ] 

by definit ion of —•. • 

L e m m a 1.3.2. A s s u m e r —• r' and r —• r " . Then we can find a term r ' " such that 
r ' - * r ' " a n d r " -> r ' " . 

T h e proof is by induct i on on the definit ion of r —> r ' . A g a i n a l l cases are obvious 
except possibly the Situation where either r —• r ' or r —+ r " is obta ined v i a R u l e 4. B y 
symmetry we may assume the former. B u t then the c la im follows f rom L e m m a 1.3.1: If 

( \ u u . r ) s s —• (Au.r' u[s'])s' 

and 
(\üu.r)ss —» (\üu.r,,)s"s", 

then 
(Aut i . r )S i - (AüVJs'Di* -> ( A ü V J V " ] ) * " ' 

and 
(Auu . r )S i -> ( A u V r > V - * ( A ü V J V " ] ) * " ' , 

and i f 
( X u u v v . r ) s s t t —• (Xüvv.r'^s'Yjs't't1 

and 
( X u u v v . r ) s s i i ( A ü W . r ^ r ^ V ' * 7 ' 

then 

( A t m i w . r ) & f i - (A£fiw.ri[« # ] )P<V -+ ( A u v . r ' ^ J s " ' , t " ' ] ) s r " t T " 
and 

(Atititw.r )aÖ (At/i/v.<[t"]>"3"f' -> (A«t?.r2 #
t W [ « w # , t^] ) « " ' * " ' . 

• 
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T h e o r e m 1.3.3. (Church-Rosser ) A s s u m e r —•* r ' a n d r —•* r " . Then we can find 
a term r ' " such that r ' - 4 * r ' " and r " r ' " . 

T h e proof is immediate f rom L e m m a 1.3.2. • 

Corol lary 1.3.4. (Uniqueness of the normal form) A s s u m e r —>* r ' and r —>* r " , 
where both r ' and r " are i n normal form. Then r ' and r " are identicai. 

1.4. Complexity of normalization: a lower bound 

In Theorem 1.2.2 we have obtained an upper bound on the number of conversion steps 
our par t icu lar normal i za t ion a lgor i thm of Theorem 1.2.1 takes to reach the no rma l form. 
T h i s Upper b ound was superexponential i n the length of the given term. It is tempt ing 
to th ink that by choosing a clever normal i zat ion strategy one might be able to reduce 
that bound significantly. It is the purpose of the present section to show that this is 
impossible. Mo r e precisely, we w i l l construct terms rn of length 3n and show that any 
normal i za t ion a lgor i thm needs at least 2 n - 2 — n conversions (wi th 2o := 1,2 n +i := 2 2 n ) 
to reduce r n to its norma l form. 

T h e fact that there is no elementary a lgor i thm (i.e. whose t ime is exponential ly 
bounded) to compute the norma l form of terms also follows f rom (S ta tman 1979), where 
it is shown more generally that the problem whether two terms 7*1 and vi have the same 
norma l form is not elementary recursive. The simple example treated here is taken from 
(Schwichtenberg 1982, p. 455). 

T h e pure types fc are defined induct ive ly by 0 := P (some fixed proposi t ional 
variable) and k + 1 = k —• k. We define i terat ion terms I n of pure type fc -f 2 by 

/ „ : = A / A u ( / ( / ( . . . / ( / « ) . . . ) ) ) , 

w i t h n occurrences of / after \f\u\ here /, u are variables of type fc -f 1, fc, respectively. 
Let / 0 g be an abbreviat ion for X u ( f ( g u ) ) , and let r = s mean that r and s have the 
same norma l form. W i t h this notat ion we can write 

J» = A / ( / o / o . . . o / ) . 

n 

The m a i n point of our argument is the fol lowing s imple l emma, which can be traced 
back to Rosser (cf. (Church 1941, p. 30)) 

L e m m a 1.4.1. 
( J r o / ) o ( / n / ) = / m + n / , 

Im 0 In = Irn-ni 

Im In = I n m - 0 

As an immediate consequence we have 

r „ := I 2 h . . . I 2 = h n -
> ^ ' 

Now consider any sequence of reduct ion steps transforming r n into i ts no rma l form, and 
let sn denote the to ta l number of reduct ion steps i n this sequence. 

file:///f/u/
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Theo r em 1.4.2. sn > 2 n - 2 — 

Proof. The length of r n is 3n . Note that any conversion step can at most Square the 
length of the or ig ina l term. Hence we have 

2 n < l e n g t h ( i 2 „ ) (the no rma l form of r n ) 

< l e n g t h ( r n ) 2 ' n 

= (Sn ) 2 ' » 

< 2 2 n + ' n (since 3 n < 2 2 " ) , 

and the theorem is proved. • 

1.5. Strong normalization 

In Section 1.2 we have proved that any term can be reduced to a no rma l form, and i n 
Section 1.3 we have seen that this norma l form is uniquely determined. B u t i t is s t i l l 
conceivable that there might be an odd reduct ion sequence wh i ch does not terminate 
at a l l . It is the a i m of the present Section to show that this is impossible . T h i s fact is 
cal led the strong normal i za t ion theorem. 

For the proof we employ a powerful method due to W . W . Ta i t , wh i ch is based on 
so-cal led strong computab i l i t y predicates. These are defined by induc t i on on the types 
(i.e. formulas) as follows. 

A t e rm w i t h <p of level 0 (i. e. a proposi t ional variable) is strongly computable 
iff r is strongly normal izable , i.e. every reduct ion sequence s tar t ing f rom r terminates. 
A t e rm r ^ " * ^ is strongly computable iff for a l l strongly computable also ( r s ) ^ is 
strongly computable. 

A t e rm r is strongly computable u n i e r Substitution iff for a l l strongly computable s 
the result of subst i tut ing s for a l l variables free i n r is again strongly computable . 

L e m m a 1.5.1. L e t tp be a formula. 
1. A n y strongly computable term r * is strongly normalizable. 
2. is strongly computable. 

We prove 1 and 2 simultaneously by induct ion on (p. For (p of level 0 bo th c la ims axe 
obvious. Now consider <p —• tp. For 1, assume that r ^ - * ^ is strongly computable . B y 
induct ion hypothesis 2 and the def init ion of strong computab i l i t y we know that ( ru )^ is 
strongly computable and hence that any reduct ion sequence s tar t ing w i t h ru terminates 
(by induct ion hypothesis 1). B u t this obviously impl ies that the same is true for r . For 
2, assume that f are strongly computable. We have to show that ur (which is to be 
of level 0) is strongly computable , i . e. that any reduct ion sequence s tar t ing w i t h ur 
terminates. B u t this follows f rom induct ion hypothesis 1, wh ich says that any reduct ion 
sequence s tar t ing f rom r , terminates. • 

L e m m a 1.5.2. Ifr —>i r 1 and r is strongly computable, then r1 is strongly computable. 

Proof. Let s be strongly computable. We have to show that r ' s i s strongly computable , 
i . e. that any reduct ion sequence start ing f rom r's* terminates. B u t this is obviously 
true, because otherwise we would also have an infinite reduct ion sequence for r s . • 
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L e m m a 1*5.3. A n y term r is strongly computable under Substitution. 

T h e proof is by induc t i on on the height of r . 
Case u. Obv ious . 
Case r s . Let t be strongly computable . We have to show that r[t]s[t] is strongly 

computable . B u t this holds, since by induc t i on hypothesis we know that r[t\ as wel l as 
s[t\ are strongly computable . 

Case X u u . r . Let t be strongly computable. We have to show that Auu.r[t] is 
strongly computable . So let s, s and r be strongly computable . We must show that 
(Xuu.r[t\)ssf is strongly computable , i.e. that any reduct ion sequence for i t terminates. 
So assume we have an inf inite reduct ion sequence. Since r[t], if,s and f a l l are strongly 
normal izab le , there must be a te rm (AtTu.r[t] ' )s's'r' w i t h r[t] —>* r[t]',jf—•* s ' ^ s —•* s' 
and r —•* r ' i n that reduct ion sequence where a "head convers ion" is appl ied , wh ich we 
may assume to y i e ld 

( \ u . ( r [ t \ ' ) [ A ) s ' r ' . 

B u t r[t\ —>* r[t] ' impl ies A£T.r[s,£] - ** Aü.(r [*]')[$'], and hence the fact that Xu.r is (by 
induc t i on hypothesis) strongly computable under Subst i tut ion together w i t h L e m m a 
1.5.2 impl ies that (Au.(r[t]')[$'] is strongly computable . B u t then, again by L e m m a 
1.5.2, also (At?.(r[t])'[s'])$'r' is strongly computable and therefore strongly normal izable . 
T h i s contradicts our assumpt ion above that we have an infinite reduct ion sequence. • 

F r o m L e m m a 1.5.3 and bo th parts of L e m m a 1.5.1 can conclude immediate ly 

T h e o r e m 1.5.4. A n y term r is strongly normalizable. • 

1 . 6 . C o m p l e x i t y o f n o r m a l i z a t i o n : a n U p p e r b o u n d 

B y Sect ion 1.5 we already know that the füll reduct ion tree for a given te rm is finite; 
hence its height bounds the length of any reduct ion sequence. B u t i t is not obvious how 
a reasonable estimate for that height might be obtained. 

However, us ing a technique due to (Howard 1980b) (which i n t u r n is based on 
(Sanchis 1967) and (Di l ler 1968)) i t can be shown that we have the fol lowing superex-
ponent ia l universal bound . 

T h e o r e m 1.6 .1 . L e t r be a term of the typed X-calculus of level 0. L e t m be a b o u n d 
for the levels of s u b t e r m s of r and k > 2 be a b o u n d for the arities of s u b t e r m s of r. 
Then the length of an arbitrary reduction sequence for r with respect to — * i is b o u n d e d 
by 

j .2m (m+2.height(r)+2*+2) 

For the proof see (Schwichtenberg 1990). • 
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1.7. Cut elimination versus normalization 
U p to now we have considered pure impl ica t iona l logic by means of Gentzen 's rules 
of na tu ra l deduct ion. Now i t is also common to use another type of logical calculus, 
the sequeni calculus also introduced by Gentzen. Instead of formulas i t treats sequents 
r => ipy where T is a finite set of formulas. The rules of the sequent calculus for pure 
imp l i ca t i ona l logic are the fol lowing; here we write I\ <p for T U {y>}. 

A x i o m , h T , <p => <p for </? atomic. 

- + - r i g h t . If h T, <p => tf>, then h T <p - + xj). 
—>-left. If h T, (p i/> => <p and h T, cp V>> ^ X> then h T, y> -+ V> x« 

Cut. If h T x and h T, x =̂  then h T y>. 

It is easy to see that the sequent calculus is equivalent to na tura l deduct ion, i n the sense 
that h T ^ <p iff f rom T we can derive <p by means of the rules —>+ and —• " and the 
assumpt ion rule. 

Now a norma l der ivat ion of <p f rom T has the property that a l l formulas occurr ing i n 
this der ivat ion are subformulas of either <p ov a, f o rmula i n T. The same property holds 
for derivations of T <p i n the sequent calculus wh ich do not use the cut rule . Hence 
it is of interest to know that the cut rule can always be e l iminated f rom derivations i n 
the sequent calculus. 

Gentzen proved this C u t E l im ina t i on Theorem i n his thesis. Here we prove it i n 
such a way that we also obta in a good bound on the length of the resul t ing cut-free 
der ivat ion, i n the form 2 ^ • Z(d), where l ( d ) is the length of the or ig ina l der ivat ion 
and j ( d ) is the m a x i m u m taken over a l l paths i n d of the sum of the degrees of a l l cut 
formulas on the pa th . The not ion of degree used here is rather pecul iar . Its crucia l 
property is 

deg(ip -> + deS(</> - * X) < deg((y> - * V) - » x)- (1.1) 

Th i s can be achieved i f we define 

• deg(y>) = 2 for <p atomic, 

• deg((p -4 V) = 1 + deg(y>) • deg(^). 

For then we have, wr i t ing a := deg(y>), b := deg(V>) and c := deg (C) , 1 + ab + 1 + bc = 
2 + ( a + c ) b < 2 + abc < 1 + c + abc = 1 + (1 + ab)c and hence 1.1. 

M o r e formally, we define the re lat ion T => <p (to be read: r => <p is derivable 
w i t h height < a and cu t - rank < m ) w i th a , m na tura l numbers induct ive ly by the 
fol lowing rules. 

A x i o m . \-m T,ip =$> <p for ip atomic. 

- > - r i g h t . If h ° T,<p 0, then h£+ 1 r tp - > 
->-/«/*. If h« I > -> V Y> and h« I > -> V, V> X , then h « + 1 I\y> x-
Cut. If r =» x and h « T,x =» *>, then r =• y>. 

T h e n the bound mentioned above is a consequence of the fol lowing 

T h e o r e m 1.7.1. (Cut E l iminat ion Theorem) I f h £ + 1 T 9, then T =>y?. 

T h i s theorem is due to (Hudelmaier 1989); its present formulat ion and proof is the result 
of Buchho l z ' analysis (Buchholz 1989) of Hudelmaier 's arguments. 

We need some L e m m a t a before we can give the proof. 
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L e m m a 1.7.2. (Weakening Lemma) If h£ T (p, then I\ A y?. • 

L e m m a 1.7.3. (Inversion) 
i. ffh« T ^ i p ^ i P , then h« i > V-

i i . I f I > -> =• X , * i e n h « I\V> =» X-
i i i . I f I\(y> -> 0) -+ X *hen h « -4 X =» * 

Proof . B y induc t i on on a . We only treat one case of i i i . Assume that 

was inferred f rom 

B y i nduc t i on hypothesis we get 

h ^ r ^ i ^ x ^ ^ ^ and h ^ r ^ ^ x . x ^ « . 
Hence by i 

Now -»- le f t yields T, y>, 0 -+ x Q 

L e m m a 1.7.4. (Cut E l iminat ion Lemma) 
i . I f \-Q r (/? and h£ T, y? V and y? is atomic, then + / ? T V-

i i . I f f-Q r y> —• t/> and T, <p —> tp x and is atomic and ß < a , then 
r =» x w i th m = deg(t/>). 

i i i . ffhj r (y? -> '/>) -» X and h£ I\(y> - )̂ - x =• 0 , <hen h ^ + 2 r => tf, w i th 
m = deg(y> - * VO + deg(^ ~> x)-

Proof. i . B y induct ion on ß. i i . Consider also 

i i ' . If I-Q T <p —• ij) and h f r ^ ^ x and HQ T, <p —• rj> <p and y? is atomic and 
ß < a , then h «+ r =» x, w i th m = deg(t^). 

We prove i i and i i ' s imultaneously by induct ion on ß. 
i i . A ssume 

h ^ 1 I > -> </> and h^"1 I > V X-

Then we have hg" I\ V> X (since ß < a ) . Hence induct ion hypothesis i i ' y ie lds 

i i ' . Case /? = 0. T h e n <p 6 I\ hence 

hd<£(v0 r =̂  X-

Case K Q - 1 r,<̂> —• >̂ =̂  y? and h^ - 1 T,<p —> tl>,tl> (p. T h e n the c l a im follows 
immediate ly f rom the induct ion hypothesis. 
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Case h £ - 1 I\y> -> i> => t? and h£ 1 I\</> V>*7 =» with d - > r) € T and 
t> —• T) ^ y> —• ^- T h e n induct ion hypothesis i i yields 

a n d induc t i on hypothesis i i ' yields 

N o w —>-left gives 
.0+0+1 p 
r dcg ( ^ ) 1 * • 

i i i . B y induc t i on on ß. Assume 

h ^ 1 r,(v>-^)->x=>¥>->tf and h ^ 1 I\(y> - > ^ ) - > X , X = > i » . 

P r o m T (v? —• —> X w e g e t *"o F,y> —• V> => X» hence h j r,̂ > x> hence 
| - Q + 1 r V X- 0 n the other hand , the Inversion L e m m a , Par ts i and i i i , yields 
H ? " 1 T,y>,V> - » X = * ^ h e n c e l"o -> X -> V>- So 

^%:ix) r -> - V-

Furthermore , f rom h ^ " " 1 r,(y? —* 0) - * x»X ^ w e g e < ; ^o"" 1 * \ x ^- Since 
T , y> —• ^ X> a c u t yields 

^ x > - * * 

N o w one further cut gives H ^ + ^ + 2 r tf. • 
W e now prove the C u t E l i m i n a t i o n Theorem, by induc t i on on a . Assume 

w i t h m + 1 = fc + deg(x). If fc ̂  0, then by induc t i on hypothesis 

i - f tT 0 r * x - d H F - f 1 ' r , x=^ , 

hence by cut h 2 ^ T =̂  y>, since fc — 1 + deg(x) = rn. If fc = 0, then the c la im follows 
from the C u t E l i m i n a t i o n L e m m a together w i t h (1). • 

A n interesting consequence of the fact that we have a (Ka lmar ) elementary b o u n d 
o n the length of the cut free derivat ion given by our a lgor i thm i n terms of the o r i g ina l 
der ivat ion is the fol lowing: The cut e l iminat ion a lgor i thm d *-* dF* just descr ibed is 
essential ly different f rom normal i za t ion d i -* d a i

y i n the sense that there cannot exist 
e lementary translat ions d \-> c P e q , d *-* d™at from derivations i n na tura l deductions to 
derivat ions i n the sequent calculus and back, such that d ° f = ( ( d * c q ) c f ) n a t . F o r then 
d \-* a m i would be elementary, wh ich it isn ' t by the counterexample i n Section 1.4. 
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1.8. A decision algorithm for implicational logic 

It is clearly decidable whether a given formula <p is derivable i n m i n i m a l imp l i ca t i ona l lo­
gic: just search systematical ly for a norma l derivat ion of ip. Th i s search must terminate , 
since by the subformula property there are only finitely many such no rma l der ivat ions. 
However it does not seem to be a good idea to t ry to implement this a l go r i thm 

Here we present another decision a lgor i thm wh ich is easy to implement a n d also 
seems to be rather efficient i n cases of interest. It also amounts to searching for a 
" n o r m a l " proof, but now i n a special calculus L H due to (Hudelmaier 1989), designed 
w i t h the intent ion that most rules should be invert ible. A g a i n our fo rmula t ion of L H 
and most proofs are taken f rom (Buchholz 1989). 

T h e calculus L H is again a sequent calculus. To d is t inguish it f rom Gentzen 's 
sequent calculus discussed i n Section 1.7 we wri te 

n H r =• <p 

i f the sequent r =̂  <p is derivable w i t h height < a i n L H . T h e rules of L H are the 
fol lowing; again we wr i te T,<p for r U {<p} 

A x i o m . h£/f T, (p =»• (p for <p atomic. 

K ^ - r i g h t . If h £ H T,<p <p, then h j ^ 1 T <p —> tp. 

II—*-left-atomic. If h£jj r , < p , t p x and <p is atomic, then r - j j 1 T,<p,<p —• rp x -
H - > - f c / t — K If \ - ° H I > , V - X =• * and Y - l H I \ x = M , then T,(<p -> V) -> 

X=>#. 

Hudelmaier has observed — and we w i l l prove it below — that this calculus is equi-
valent to m i n i m a l impl i ca t iona l logic. Now the point i n these stränge rules is that they 
are a l l invert ible, w i th the sole exception of the last one which is only "ha l f i nve r t ib l e " : 

Inversion L e m m a 1.8.1. 
i . I f r => y> -+ t/>, then \-%H I > rj>. 

ii. If\~iH r , t p , < p —> xp => x and ip is atomic, then h £ H T,<p,rp x-
i i i . l f \ ~ l H r , ( < p ^ x / > ) - > x ^ # , then h g H I \ x =» 0. • 

Clear l y the last rule H — y - l e f t — • cannot be ful ly invert ible. A counterexample is 

p,((g-»±)-±)-»g=>p, 

which is clearly derivable, whereas 

is not. Now the decision a lgor i thm derived from the Inversion L e m m a runs as follows. 
G i ven a sequent F <p, first apply Par ts i and i i of the Inversion L e m m a as l ong as 
possible. If you end up w i th a sequent wh ich does not conta in le f t- i terated imp l i ca t i ons 
(y> —> xp) —• x, then by the form of the L H - r u l e s it is derivable i f and only i f i t is an 
ax iom. Now assume there are some left- i terated impl icat ions (<p —• xp) —* x among the 
premiss-formulas I\ Choose one of them (this step may lead to backtracking! ) , f o rm its 
premisses according to the rule H — > - l e f t — a n d continue w i t h bo th sequents. 
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A n example for the necessity of backtracking is the sequent 

- " Q -> Q, -»-»(P - > Q ) , P = > Q . 

If the second occurence of a left- i terated impl i ca t ion is choosen, i.e. -»-»(P —> Q ) , we 
obta in by H—»-left—• 

• n - i Q ^ Q , P ^ Q , _ L ^ ± , P = * - L 

and 
- i - Q - > Q , - L , P = > Q . 

Now the first of these sequents is clearly underivable, hence this pa th i n the search-tree 
fails, and we have to backtrack and choose the other le f t- i terated imp l i ca t i on —> Q 
instead. 

It remains to be shown that the calculus L H is equivalent to m i n i m a l imp l i ca t i ona l 
logic. One direct ion is easy, namely that any sequent derivable i n L H is also derivable 
i n m i n i m a l imp l i ca t iona l logic. We only consider the rule H — > - l e f t — a n d argue i n -
formally. So assume T and (<p —* xp) —> x- T h e n clearly xp —• X ( f ° r i f w e assume rp, 
we certainly have <p —+ xp hence x)- So by the first premiss (p —* xp, hence X by our 
assumpt ion, hence x9 by the second premiss. 

For the other direct ion we need a Lemma. 

L e m m a 1.8.2. If r-^H T,<p —• xp ip and \~LH I\0 x9 and (p is atomic, then 
^LH T , < p - > x P = > d . 

The proof is by induct ion on a . 
1. Assume <p e V. T h e n from \~LH I \V —• $ we get \~LH F,y> —• xp x9 by 

H—+-left-atomic. 
2. Let T = A,(y>i —• T^ I ) - • X i and assume that 

^ L H A>(V>1 ~* V>l) ~+ Xl,¥> - > x P = > < p 

was inferred f rom 

h ^ 1 A , v ? ! , ^ i - xi»V> - V> =>Vi (1.2) 

and 

h ^ 1 A , x u < P ( L 3 ) 

by H-+- le f t—• . F i r s t note that f rom the second premiss of the L e m m a we get 

\-LH A , x i , 0 = M (1.4) 

by the Inversion L e m m a , Paxt i i i . Now from 1.3 and 1.4 we obta in by the induc t i on 
hypothesis 

\~LH A , x i , ¥ > - > ^ = » 0 . (1.5) 

The rule H—>-left—• yields form 1.2 and 1.5 

\ - L H A,(y>! V i ) - » Xi,¥> -> V> => 
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3. Let r = A ,y? i , y? i —• i/>i w i t h (pi atomic and different f rom y>, and assume that 

was inferred f rom 

h ^ 1 & , < p u t l > u < p ^ tl>=><p (1.6) 

by H—•-left-atomic. F i r s t note that f rom the second premiss of the L e m m a we get 
Y-LH A , ? i , i h f t f = » 0 (1.7) 

by the Inversion L e m m a , Pa r t i i . Now from 1.6 and 1.7 we obta in by the induct ion 
hypothesis 

^~LH A,y>i,Vi,y> xp i9. (1.8) 

A n appl icat ion of H-»-left-atomic to 1.8 yields 

t~LH A , ^ ! , ^ tf>i,<p - + x p = > x 9 . 

• 
T h e o r e m 1.8.3. If h T tf, then h L H T i9. 

Proof . B y the C u t E l i m i n a t i o n Theorem i n Section 1.7 i t suffices to prove that \-% T => x9 
impl ies \~LH P => Th i s is done by induct ion on a . Since the c la im is obvious for the 
rules Axiom and —y-right and since Ctit cannot occur, we only treat the rule —>-left. 

Case 1. Let r = A,y> —• xp w i th y> atomic and assume that 

was inferred f rom 

h J - ' A , ? ( 1 - 9 ) 

and 

h ? " 1 A ,¥>-»^,0=»t f . (1.10) 

FVom 1.10 we get by the Inversion L e m m a 1.7.3, Pa r t i i 

h J - ' A , ^ * . (1.11) 

B y induct ion hypothesis we can replace i n 1.9 and 1.11 by \~LH- N O W the L e m m a 
yields 

Y-LH A,y> -> V => 

C<we Let T = A , (y> —• V ) —> x ^ assume that 

h f A , ( ? - > * ) - > * = • * 

was inferred f rom 
h j - 1 A , ( t p -» 0) - » X =• V (1.12) 

and 

h r 1 A , ( Y > - » * ) - » X , X = * * . (1-13) 

file:///~lh-
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F r o m 1.12 we get by the Inversion L e m m a 1.7.3, Pa r t i i i 

and hence 

y - r 1 A . ^ - ^ X ^ V - - (i.i4) 
F r o m 1.13 we get by the Inversion L e m m a 1.7.3, Pa r t i i 

h ^ A . x ^ t f . (1-15) 

B y induc t i on hypothesis we can replace h j " 1 i n 1.14 and 1.15 by K L / / - N O W H - * - l e f t — * 
yields 

\ - L H A , ( Y > ^ V ) - X 

It is also possible to prove the Theorem direct ly for na tura l deductions i n m i n i m a l 
imp l i ca t iona l logic. We sketch the proof. So let a no rma l der ivat ion of x9 f rom assump-
tions T be given. We may assume that i n any brauch (see Section 2.4) of this n o r m a l 
der ivat ion the m i n i m a l formula (see Section 2.4) is atomic, and use induct ion on the 
length of this der ivat ion. 

Case 1. r = A,y> —• xp w i th ip atomic. In 

I 
<p —*• xp (p 

xp 

I 

we can apply the induct ion hypothesis to the subderivations of ip f rom A,y? —• xp and 
of %9 f rom A , xp (any assumpt ion (p —* xp here can be cancelled, since we already have 
assumed xp). So we get 

^ L H A,y> -> xp =̂  tp and h i n A , xp —• t9, 

and the c la im follows by the Lemma . 
Case 2. T = A , ((p —* xp) —• x« Replace an uppermost occurrence of the assumpt ion 

(<p _> ^) x 

I 
<p-*xp <p 

xP 

^ ) x <p _> ^, 

X 

I 
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by 

tp - > xp 

ip —• Xp Xp 

X 
I 

d 

A p p l y the induc t i on hypothesis to the subderivat ion of xp from A,y>, xp —• \, and of \9 
from A , x (any assumpt ion {ip —• xp) —> x here can be cancelled, since we already have 
assumed x)- So we get 

^LH A , ip, xp x V and h L i / A , x =• 

and the c l a im follows by an appl icat ion of H—•-left—•. 

2. Normalization for first-order logic 

We restrict our attent ion to the -»V-fragment of first-order logic w i t h just in t roduct ion 
and e l iminat ion rules for bo th Symbols, i.e. w i t h m i n i m a l logic formulated i n na tura l 
deduct ion style. Th i s restr ict ion does not mean a loss i n generality, since i t is well 
known that füll classical first-order can be embedded i n this System; the argument for 
that fact is sketched i n Section 2.1. Equa l i t y is not treated as a logical symbo l , but can 
be added v i a suitable equality axioms. 

W e extend our results and estimates on normal i za t ion to first-order logic by the 
method of col lapsing types. Appl icat ions include the subformula property, Herbrand 's 
theorem and the interpolat ion theorem. 
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2.1. The ->v-fragment as a typed A-calculus 

Assume that a fixed (at most countable) supply of funct ion variables f , g , h , . . . and 
predicate variables P , Q , . . . is given, each w i th an ar i ty > 0. Terms are bu i l t up from 
object variables x , y, z by means of f r \ . . . r m . F o r m u l a s are bu i l t up f rom pr ime formu­
las P r \ . . . r m by means of (ip —• xp) and W x i p . D e r i v a t i o n s are bu i l t up f rom assumption 
variables x^^y* by means of the rule - + + of imp l i ca t i on in t roduct ion 

( \ x * r + y - * + , 

the rule — o f imp l i ca t i on e l iminat ion 

the rule V + of V - in t roduc t i on 

( \ x r * ) " x * , 
prov ided that no assumpt ion variable y ^ free i n r v has x free i n its type xp, and finally 
the rule V"" of V - e l im ina t i on 

E a c h of the rules —* + , V + and V ~ has a uniquely determined der ivat ion as its p r e m i s s , 
whereas —*~ has the two derivations t * ^ and s* as premisses. Here r^~*^ is cal led the 
m a i n p r e m i s s and s* is cal led the s i d e p r e m i s s . 

A s an example we give a der ivat ion of 

V x ( P x Q x ) ( V x P x - > V x Q x ) . 

Such a derivat ion is 
A u V x ( P x - Q x ) A v V x P x A x ( ( u x ) ( v x ^ 

Derivat ions can be easily wr i t ten i n the more usual tree form. We w i l l continue to use 
the word t e rm for derivations (as long as this does not lead to confusion w i t h the not ion 
of (object) t e rm inherent i n f i rst-order logic), and type for formula. 

Note that our (—• V-fragment of) m i n i m a l logic contains füll classical f i rst-order 
logic. Th i s can be seen as follows: 

1. Choose a par t icu lar proposi t ional variable and denote i t by _L (falsity). Associate 
w i t h any fo rmula ip i n the language of classical first-order logic a finite l ist (p of formulas 
i n our —»V-fragment, by induct ion on <p: 

P f ^ P f 

—«p y — * i p — * l _ 

<p A xp H + <p, xp 

tp V xp t-> ((p -+ _L), (xp JL) _L 

V x i p »-> Vx</?i, . . . , V x t p m 

3xip H+ Vx(<£ —• J _ ) —• ± 
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2. In any mode l M where J _ is interpreted by falsity, we clearly have that a fo rmula 
(p i n the language of füll first-order logic holds under an assignment a iff a l l formulas 
i n the assigned sequence (p ho ld under a . 

3. O u r derivat ion calculus for the —• V-fragment is complete i n the fol lowing sense: 
A f o rmula (p is derivable f rom stabi l i ty assumptions 

Vx ( - . - . Px -> P x ) 

for a l l predicate Symbols P i n <p iff (p is va l id i n any mode l under any assignment. 

2.2. Strong normalization 
Here we use the method of col lapsing types (cf . (Troelstra and van Da len 1988,p.560)) to 
transfer our results and estimates concerning strong normal i za t ion f rom impl i ca t i ona l 
logic to first-order logic. 

The notions concerning conversion introduced i n Sect ion 1.2 can be easily extended 
to f i rst -order logic. In par t icu lar , we have 

( X x x . r ) s s converts into ( \ x . r x [ s ] ) s , 

where the variables x , x now can be either assumpt ion variables or eise object variables. 
The rules generating the re lat ion r —» r' are extended by requir ing r —• r for object 
terms r of our first-order logic. A g a i n a derivat ion is sa id to be i n normal form i f i t 
does not contain a convertible subderivat ion. 

For any formula <p of first-order logic we define its collapse <pc by 

( P f ) c = P 
(ip —• tp)c = (pc —• ipc 

(Vx<p)c = T - ipc 

where T := L —• ± w i t h _L a fixed proposi t ional variable (i.e. T means t ruth ) . The 
level of a formula <p of first-order logic is defined to be the level of its collapse <pc. For 
any derivat ion i n first-order logic we can now define its collapse ( r^ ) c . It is p ia in 
from this definit ion that for any derivat ion i n first-order logic w i th free assumpt ion 
variables x f 1 , . . . , x m

m the collapse ( r ^ ) c is a derivat ion ( r c ) ^ i n imp l i ca t i ona l logic 

w i th free assumption variables x * 1 , . . . , x m
m • 

{ x * ) c = x * * 

( \ x * r ) c = \ x * C r c 

( t ^ + s ) c = t c s c 

( \ x r ) c = A x T r c 

( i * x * s ) c = t c ( A z x ^ - L ) T 

Note that for any derivat ion r ^ , assumpt ion variable x * and der ivat ion we have 
that r c [ s c ] is a derivation i n impl i ca t iona l logic (where the Subst i tut ion of sc is done for 
the assumpt ion variable x ^ ), wh ich is the collapse of r[s]. A l so for any derivat ion r ^ , 
object variable x and t e rm s we have that r x [ s ] is a der ivat ion of xßx[s] w i t h collapse 
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L e m m a 2.2.1. i f r - * i r' in first-order logic, then rc —>i ( r ' ) c in implicational logic. 

T h e proof is by induc t i on on the generation of r — * i r ' . We only treat the case 

( X x r ) s r x [ s ] . 

I i x is an assumpt ion variable, then 

( ( A s « V * ) * * ) c s ( X x ^ r c ) s c 

- i r c [ * C ) 

by the note above. If x is a n object variable, then 

( ( A * * » c = ( X x T r c ) ( X z ± z ± ) r 

= M * D C ) , 

again by the note above. • 
Hence f rom Theorem 1.5.1 we can conclude 

T h e o r e m 2.2.2. A n y derivation r in first-order logic is strongly normalizable. • 

A lso we can apply Theorem 1.6.1 to obta in an upper bound for the length of 
arb i t rary reduct ion sequences. 

T h e o r e m 2.2.3. L e t r be a derivation in first-order logic of a formula of level 0, i.e. 
a p r i m e formula. L e t rc be the collapse of r into implicational logic. L e t m b e a b o u n d 
for the levels of s u b t e r m s of rc and k > 2 be a bound for the axities of s u b t e r m s of r°. 
Then the length of an arbitrary reduction sequence for r with respect to -+i is b o u n d e d 
by 

j f e2m (m+2.height(r e )+2*+2) 

2.3. Uniqueness 

T h e Church-Rosse r Theorem and hence the uniqueness of the no rma l form for deriva­
tions i n f i rst-order logic can be proved exactly as i n Section 1.3. We do not repeat this 
here. 
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2.4. Applications 

Here we want to draw some conclusions f rom the fact that any der ivat ion i n first-order 
logic can be transformed into no rma l form. The arguments i n this section are based 
on P r a w i t z ' book (Prawi t z 1965). We begin w i t h an analysis of the form of no rma l 
derivations. 

Let a der ivat ion r be given. A sequence r i , . . . , r m of subderivations of r is a brauch 
i f 

1. n is an assumpt ion variable, 

2. r , is the m a i n premiss of r ;+ i , and 

3. r m is either the whole derivat ion r or eise the side premiss of an instance of the 
rule — w i t h i n r . 

It is obvious that any subderivat ion of r belongs to exact ly one brauch . The order 
of the b rauch ending w i t h the whole derivat ion r is defined to be 0, and i f the order of 
the b rauch through the m a i n premise t of some instance t v " * ^ « v of the rule —*"~ i n r is 
fc, then the order of the branch ending w i th that s v is defined to be fc -f 1. 

The re lat ion "<p is a subformula of xp" is defined to be the transit ive and reflexive 
closure of the re lat ion " immediate subformula" , defined by 

1. ip and xp are immediate subformulas of (p —* xp, 

2. <px[r] is an immediate subformula of Wx(p. 

We w i l l also need the not ion "ip is a strictly positive subformula of xp", wh ich is 
defined to be the transit ive and reflexive closure of the re lat ion " immediate str ic t ly 
posit ive sub formula " , defined by 

1. xp is an immediate str ic t ly posit ive subformula of (p —• xp, 

2. tpz[r] is an immediate str ict ly posit ive subformula of Vx<p. 

In a no rma l der ivat ion r any branch r j f l , . . . , rm
m has a rather perspicious form: a l l 

e l iminat ion rules must come before a l l in t roduct ion rules. Hence, i f i is m a x i m a l such 
that rf{ ends w i t h an e l iminat ion rule, then <pi must be a str ic t ly posit ive subformula 
of a l l <pj for ^ i . Th i s (pi is called the minimal formula of the branch. A lso , any <pj 
w i t h j < i is a str ic t ly posit ive subformula of <p\, and any (pj w i t h j > i is a s tr ic t ly 
posit ive subformula of ( p m . 

T h e o r e m 2.4.1. (Subformula property) If r* is a n o r m a l derivation with free as­
sumption variables a m o n g x * 1 , . ' . . yxf^1 and is a s u b d e r i v a t i o n of r*, then xp is a 
subformula of (p or of s o m e <pi. 

The proof is by induct ion on the order of branches i n r , us ing the property of branches 
i n no rma l derivations mentioned above. • 

We wr i te ( p i , . . . , <pm h (p to mean that there is a der ivat ion w i t h free assumpt ion 
variables among x * 1 , . . . , a;£m. 

T h e o r e m 2.4.2. (Herbrand) A s s u m e that V x * i y ? i , . . . , V x m < p m h xp with quantißer-
free < p u </?m, xp. T h e n we can find r n , . . . , r l n i , . . . , r m l , . . . , r m „ m such that 

Y>i [ rn ] , . . . , ¥>i[ri„J, • • . ^ m [ r m i ] , . . . , < P m [ r m n m ] I" V> 
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Proof. To simpli fy notat ion let us assume Vxtp h xp w i t h quantif ier-free ip,xp. B y 
Section 2.2 we can construct from the given der ivat ion a no rma l der ivat ion w i th free 
assumpt ion variables among x V x v > . B y induct ion on the order of branches it is easy to 
see that any branch must end w i th the derivat ion of a quantifier-free f o rmula and must 
begin w i t h the rule V , i . e. w i th x V z < *V,- . Now replace any such subder ivat ion by y f ' r ' ' , 
w i t h new assumpt ion variables y,-. • 

O u r next appl icat ion is the C ra i g interpolat ion theorem. We shal l use the nota t ion 
..., <pm h c ip (c for classical) to mean that there is a der ivat ion w i t h free assump­

t ion variables among x f l , . . . , xjjjm and some stabi l i ty assumptions y v ? ( - , _ , P l — P % ) f o r p 
predicate variable i n Cp, ip, where again -^xp denotes xp —> X w i t h a fixed propos i t ional 
variable _L 

T h e o r e m 2.4.3. (Interpolation) A s s u m e r , A h f Then we can find a finite list 7 
o f formulas such that 

T h c 7 and 7 , A h c ip 

( w h e r e V h c 7 means T h c 7,- for each 7; i n 7 ) , and any object or predicate variable free 
in 7 occurs free both in T and in A , <p. 

For the proof we sha l l use a somewhat more expl ic i t formulat ion of the theorem: Let 
be a der ivat ion w i t h free assumption variables among u 1 " , i f A . T h e n we can find a finite 
l ist r " i 7 of derivations w i t h free assumpt ion variables among u r and stabi l i ty assump­
tions and a der ivat ion r$ w i th free assumption variables among xp,xJA and stabi l i ty 
assumptions, such that any object or predicate variable free i n 7 occurs free bo th i n V 
and i n A , ip. 

For brevi ty we shal l not ment ion stabi l i ty assumptions any more (they w i l l only be 
used i n Case 2 b ( i i ) below), and write " r ^ w i th u r " , to mean the der ivat ion r v w i th free 
assumpt ion variables among u r . 

The proof is by induct ion on the height of the given der ivat ion, wh ich by Sect ion 2.2 
we can assume to be norma l . We dist inguish two cases according to whether it ends 
w i t h an in t roduct ion rule (i. e. —>+ or V + ) or w i t h an e l iminat ion rule. 

Case l a . ( A x * r * ) * - * w i t h xf ', vA. B y induct ion hypothesis for w i th x * , u r , v A 

we have f f w i t h u r and r$ w i t h y * , x ^ , x7A. A n appl icat ion of —>+ to the latter der ivat ion 
yields ( A x * r J ) * - * * w i t h y * , v A . 

Case l b . ( \ x r A Y x < p w i th u r , v A , where x is not free i n T, A . B y induc t i on hypo­
thesis for r v w i t h t ? r , v A we have f f w i th ür and w i th y \ v A . Since x is not free i n 
T , we know that x is not free i n 7. A n appl icat ion of V + to the latter der ivat ion yields 
( A x r £ ) v * * w i t h y * , t ? \ 

Case 2a. ( w ^ s x t ) A w i t h t x r , v A . 
Subcasz i. wx~~*d is among u r . B y induct ion hypothesis for sx w i t h üT,xjA we have 

s f w i t h v A and sx w i t h x p , x f . B y induct ion hypothesis for ( u ^ t ) * w i t h u * , t T r , t T A we 
have i? w i t h u * , t T r and t% w i t h £^ , v A . F r o m these derivations we ob ta in 

( ^ ( * i ) « k x ^ 3 j ] ) ^ ' w i t h u r 

and 
w ^ x ^ > A , 

where 7 —• 6 means 7 —> £ 1 , . . . , 7 —» £ n . 



223 

Subcase ii. wx~~¥d is among v A . B y induct ion hypothesis for sx w i t h u r , v A we have 
s l w i t h i f and sx w i t h y * y v A . B y induct i on hypothesis for (t/*t) v w i t h u^tT 1 " , v A we 
have w i t h u 1 * and w i t h z? , u * , v A . P r om these derivations we obta in 

w i t h i f 

and 

( < ? ) « [w x ^ * *J ] w i t h y ^ , / , i ? A . 

Caae 26. t/> V x x sf w i t h t ^ , v A . 

Subcase i. t/>V x x is among ür. B y induct ion hypothesis for ( u x M $ ) v w i t h u x M , u r , 
v A we have t f w i t h u ^ j t ? and t% w i t h y * , v A . Let z be a l l variables free i n 7 that 
are i n s, but not free i n T. We now construct derivations 

(A^ *7 ) » w i t h tx r 

and 

(tf)*!*****] w i t h « " ^ S * , 

where VZ7 means V 2 7 1 , . . . , V S 7 m . Note that any object or predicate variable free i n 
V f 7 is bo th free i n A , ip and free i n T. 

Subcase ii. t ü V x x is among vA. B y induct ion hypothesis for ( i t x ' * ' t ) v u X'*'> ^ r> 
v A we have t f w i t h u r and t$ w i t h y^, u c M , t ; A . Let z be a l l variables free i n 6 that are 
i n s, but not free i n A,<p. We now construct derivations 

( X v ^ i v z h ) ) ^ ' ^ w i th t? r 

and 

( t ^ ^ A ü ^ . « " v ^ A £ X y ( t ; ( < J ) l l [ u ; V Ä X 3 ] ) ) v w i t h x ^ ' ö * 

and stabi l i ty assumptions (which are used to bu i l d f " ^ " "^ ) . Note again that any object 

or predicate variable free i n ->V?-iÄ is bo th free i n T and free i n A , ip. • 
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3. Normalization for arithmetic 

3.1. Ordinal notations 

We want to discuss the derivabi l i ty and under ivabi l i ty of i n i t i a l cases of transf inite 
induc t i on i n ar i thmet ica l Systems. In order to do that we shal l need some knowledge 
and notat ions for ordinals . Now we do not want to assume set theory here; hence 
we introduce a certain in i t i a l segment of the o rd ina l (the ord inals < e o ) i n a f o rma l , 
combinator ia l way, i.e. v i a o rd ina l notations. O u r treatment is based on the Can to r 
no rma l form for ordinals ; cf. (Bachmann 1955). We also introduce some elementary 
relations and Operations for such o rd ina l notat ions, wh i ch w i l l be used later. 

We define the two notions 

• a is an o rd ina l notat ion 

• a < ß for o rd ina l notat ions a , ß 

simultaneously by induct ion : 

1. If a m , . . . , c*o are o rd ina l notations and a m > . . . > t*o (where a > ß means a > ß 
or a = /?), then 

u> 0 m + • • • + u a o 

is an o rd ina l notat ion. Note that the empty sum denoted by 0 is al lowed here. 

2. If L J Q m H h w 0 0 and u A H h u A are o rd ina l notat ions, then 

w ° m H h u)a° < u A H h u ß o 

iff there is an i > 0 such that a m - i < a m - t + i = /? n _ ,+ i , . . . , a m = /? n , or 
eise m < n and a m = / ? n , . . . , a 0 = ßn-m 

It is easy to see (by induc t i on on the levels i n the induct ive definition) that < is a l inear 
order w i t h 0 be ing the smallest element. 

We sha l l use the notat ion 1 for a for u° H (- u ; 0 w i t h a copies of u ; 0 a n d u a a 
for u a H h again w i t h a copies of u>a. 

We now define add i t ion for o rd ina l notations: 

w t t m + ••• + u ; O 0 + a ; ^ n : = w a m + • • • + u > a i + u ß n + • • • + u > ß o 

where i is m i n i m a l such that > ßn. 
It is easy to see that -f is an associative Operation wh ich is s t r ic t ly monoton ic i n 

the second argument and weakly monotonic i n the first argument. Note that + is not 
commutat ive : l + u > = u ; ^ u ; + l . 

The natural (or Hessenberg) sum of two ord ina l notations is defined by 

( u ; a m + • • • + u a o ) # ( u ß n H |-w^0) := u > 7 m + n 

where 7 m + n , . . . , 7 0 is a decreasing permutat ion of a m , . . . , ao,/? n , • • •, ßo-



225 

A g a i n i t is easy to see that # is associative, commutat ive and str ic t ly monotonic 
i n b o th arguments. 

We w i l l also need to know how ord ina l notations of the form ß + u Q can be appro-
x imated f rom below. F i r s t note that 

6 < a - + ß + u>*a<ß + u a . 

Furthermore , for any 7 < ß + u>a we can f ind a 6 < a and an a such that 

7 < 0+ w 6 a . 

We now define 2 a for o rd ina l notations a . Let a m > • • • ao > u> > k n > • • • > k\ > 
0. T h e n 

2 W f t m + - + w a ° + w k B + - + w * l + w ° o . _ a ; u ; a m + ...+w < , ,o+u;* n" l + - -+w k i * " 1 2a 

It is easy to see that 2 a + 1 = 2 a + 2 a and that 2 a is s tr ic t ly monotonic i n a . 
In order to work w i t h o rd ina l notat ions i n a pure ly ar i thmet ica l System we set up a 

bi ject ion between o rd ina l notat ions and nonnegative integers (i.e., a Gödel numbering) . 
For i ts def init ion i t is useful to refer to ord ina l notat ions i n the fo rm 

w ° m a m + • • • + u ) a o a o w i t h a m > • • • > <*0. 

For any o rd ina l notat ion a we define its Gödel number \a\ induct ive ly by 

|0| : = 0 , 

K - « » + " - + « e , 0 « o | : = ( I I ^ « , | ) - 1 -
i<m. 

For any nonnegative integer x we define its corresponding o rd ina l notat ion o ( x ) induc­
t ively by 

o(0) = 0 

o ( ( n r f , ) - i ) = E ^ o ( 0 a « 
»<m t<m 

where the s u m is to be understood as the na tura l sum. 

L e m m a 3.1.1. 
1. o(\a\) = a, 
2. \o(x)\ = x . 

Th i s can be proved easily by induct ion . • 
Hence we have a bi jection between ord ina l notat ions and nonnegative integers. 

Us ing this bi ject ion we can transfer our relations and Operations on o rd ina l notat ions to 
computable relations and Operations on nonnegative integers. We w i l l use the notat ions 

x X y for o ( x ) < o(y), 

u>* for 

£ © y for |o(x) + o(y)|. 
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3.2. Provability of initial cases of transfinite induction 

We now set u p some formal Systems of ar i thmet ic and derive i n i t i a l cases of the pr inc ip le 
of transf inite induc t i on i n them, i.e. of 

Vx (Vy X x : P y P x ) - + V x X a : P x 

for some numera l a and a predicate variable P. In Section 3.4 we w i l l see that our 
results here are op t ima l i n the sense that for larger segments of the ordinals transf inite 
induc t i on is underivable. A l l these results are due to (Gentzen 1943). 

O u r ar i thmet ica l Systems are based on a fixed (possibly countably infinite) supply of 
funct ion constants and predicate constants wh ich are assumed to denote fixed functions 
and predicates on the nonnegative integers for wh ich a computat ion procedure is known . 
A m o n g the funct ion constants there must be a constant 5 for the successor funct ion 
and 0 for (the 0-place function) zero. A m o n g the predicate constants there must be a 
constant = for equality and J . for (the 0-place predicate) falsity. In order to formulate 
the general pr inc ip le of transfinite induct ion we also assume that predicate variables 
P , Q,... are present. 

Terms are bu i l t up f rom object variables x , y , 2 by means of fr\ .. . r m , where / 
is a funct ion constant. We identify closed terms wh ich have the same value; this is a 
convenient way to express i n our formal Systems the assumpt ion that for each funct ion 
constant a computat ion procedure is known. Terms of the form S S . . . 50 are cal led 
numerals. W e use the notat ion S*0 or even i for them. Formulas are bui l t up f rom 
pr ime formulas P r \ . . . r m w i t h P a predicate constant or a predicate variable by means 
of (<p —• xp) and Vx<p. A s usua l we abbreviate ip —• J _ by 

T h e axioms of our ar i thmet ica l Systems w i l l always inc lude the Peano-ax ioms 

V x y ( S x = S y -» x = y) , 

V x ( S x ^ 0). 

A n y instance of the induct ion scheme 

¥>[0],Vx(y>[x] ip[Sx]) Vxip[x] 

w i t h ip an arb i t rary formula is an ax iom of füll ar i thmet ic Z . We w i l l also consider 
Subsystems Zk of Z where the formulas ip i n the induct ion scheme are restricted to 
n j - f o r m u l a s ; the latter not ion is defined inductively, as follows. 

1. A n y pr ime fo rmula P f is a üj-formula, for any k > 1. 

2. If ip is quantif ier-free and ip is a üj-formula, then ip —• ip is a üj-formula. 

3. If ip is a üj-formula and ip is a I IJ- formula , then ip —• ip is a üj-formula w i t h 
p = max(fc + 1,/). 

4. If ip is a üj-formula, then so is Vxy>. 

Note that a formula is a üj-formula iff i t is logical ly equivalent to a formula w i t h a 
prefix of k a l ternat ing quantifiers beginning w i t h V and a quantifier-free kernel. For 
example, V x B y V z P x y z is a I l^ - formula . In add i t ion , i n any ar i thmet ica l system we 
have the equal i ty axioms 

Vx (x = x ) , 
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V x y ( * i = y u . . . , x m = y m - > f x = f y ) , 

V x y ( x i = y i , . . . , x m = y m > P x - > P y ) 

for any funct ion constant / and predicate constant or predicate variable P. We also 
require for any such P the stabi l i ty axioms 

V x ( - ^ P x -> P x ) . 

W e express our assumpt ion that for any predicate constant a decision procedure is 
known by add ing the ax iom 

P ( S i l 0 ) . . . ( S i m 0 ) 

whenever P i is true, and 
^ P ( S i l 0 ) . . . ( S i m 0 ) 

whenever P i is false. 
We finally al low i n any of our ar i thmet ica l Systems an arb i t rary supply of true 

I l i - f o rmua l s as axioms. O u r (positive and negative) results concerning in i t i a l cases of 
transfinite recursion w i l l not depend on which of those axioms we have chosen, except 
that for the posit ive results we always assume 

Vx ( x £ 0) (3.1) 

V y z ( z ^ e w ^ / y . ^ y ^ l ) (3.2) 

Vx ( x © 0 = x) (3.3) 

V x y z ( x © (y © z ) = (x © y) 0 z ) (3.4) 

Vx (0 © x = x) (3.5) 

Vx (u ; x 0 = 0) (3.6) 

Vxy (u>* (Sy )=u ; x y©u> x ) (3.7) 

V x y z ( z - < y © ü > x , x ^ 0 - + * - « y © u f x y z ( g x y z ) ) (3.8) 

V x y z ( z - < y © t * ; x , x ^ 0 - > f x y z -< x ) (3.9) 

where i n 3.9 / and g are funct ion constants. 

T h e o r e m 3.2.1. ( G e n t z e n ) Transfinite induction up to u n ( w i t h u>\ := u;,u>n+i := 
u ) " " ) i.e. the formula 

Vx (Vy -< x : ip[y] —> <p[x\) —• Vx -< u>n : <p[x] 

is derivable in Z . 

Proof: To any fo rmula ip we assign a formula y>+ (wi th respect to a fixed variable x ) by 

ip+ := Vy (Vz X y : tpx[z] -+Vz-<y®ux : <pt[z]). 

We first show 
ip is progressive —• v? + is progressive, 
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where "tp is progressive" means Vx (Vy X x : tp[y] —• tp[x)). So assume that (p is progres­
sive and 

Vy X x : y>+[y]. (3.10) 

We have to show y>+[x]. So assume further 

V ^ y : <p[z] (3.11) 
and z X y © u ; x . We have to show <p[z], Case x = 0. F r o m z X y 0 u>° we have by 
3.2 z X y V z = y. If z X y , then (p[z] follows from 3.11, and i f z = y , then y>[z] 
follows f rom 3.11 and the progressiveness of <p. Case x ^ 0. F r o m z - < y © w x we ob ta in 
z X y®w*xyzgxyz by 3.8 and / x y z X x by 3.9. F r o m 3.10 we ob ta in y? + [/xyz ] . B y the 
def init ion of y>+ we get 

V u X y 0 u> / x y *v : tp[u] - > V u X (y 0 w ' * » * » ) 0 u > / l J " : p[u] 

and hence, us ing 3.4 and 3.7 

V u X y 0 u> / x ! " t ; : <p[u] -> V u X y 0 a ; / x s " (5 t ; ) : y?[u]. 

A l so from 3.11 and 3.6, 3.3 we obta in 

V u X y 0 i o / x j " O : v > [ u ] . 

Us ing an appropriate instance of the induct ion scheme we can conclude 

V u X y 0 w * x y z g x y z : <p[u] 

and hence <p[z], 
We now show, by induc t i on on n , how to obta in a der ivat ion of 

Vx (Vy X x : <̂ [y] —• <p[x]) -> V x X u>n : y?[xj. 

So assume the le f t -hand side, i.e. assume that tp is progressive. Case 0. F r o m x X u>0 

we get x = 0 by 3.5, 3.2 and 3.1, and (p[Ö\ follows f rom the progressiveness of <p by 3.1. 
Case n 4-1. Since ip is progressive, by what we have shown above also y>+ is progressive. 
A p p l y i n g the induc t i on hypothesis to y>+ yields V x X u ; n : y>+[x], and hence y>+[u>n] 
by the progressiveness of y>+[x]. Now the definit ion of y? + (together w i t h 3.1 and 3.5) 
yields V z X u W n : tp[z]. • 

Note that i n these derivations the induct ion scheme was used for formulas of u n -
bounded complexity. 

We now want to refine Theorem 3.2.1 to a corresponding result for the Subsystems 
Zk of Z . Note first that i f <p is a I I { - formula, then the formula y> + constructed i n the 
proof of Theorem 3.2.1 is a I I J + 1 - f o r m u l a , and for the proof of 

(p is progressive —* y>+ is progressive 

we have used induct ion w i th a I l j induct ion formula. 
Now let (p be a I I?- formula, and let (p° := y>,y> , +1 := (v>')+- T h e n Y>* i s a n * + i ~ 

formula , and hence i n Zk we can derive that i f (p is progressive, then also i p 1 , y ? 2 , . . .<pk 

are a l l progressive. Let u>i[m] := m , <<;,•+i[m] = u ^ m h Since i n Zk we can derive that 
<pk is progressive, we can also derive ¥>*[0],y>*[l], y>*[2] and generally ^*[m] for any m , 
i.e. ¥>*[u>i[m]]. B u t since 

ipk = (ip16'1)+ = Vy (Vz X y : Z " 1 [z] -> V z X y 0 u x : < p k ~ l [*]), 

we first get (w i th y = 0) V z X u>2[m] : y)*""1^] and then ^*" 1 [w2[m]] by the progres­
siveness of y>* - 1 . Repeat ing this argument we finally obta in y?°[u>fc+i[m]]. Hence we 
have 
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T h e o r e m 3.2.2. L e t ( p b e a U i - f o r m u l a . Then in Zk we can derive transfiniteinduction 
for <p up to u>k+i[™] for any m , i.e. 

Zk h Vx (Vy X x : ip[y] - + (p[x]) V x X M : <p[x ]d 

If more generally we start out w i t h a I I|- formula <p instead, where 1 < / < fc, then a 
s imi lar argument yields the fol lowing result of (Parsons 1973) 

T h e o r e m 3.2.3. L e t <p be a Ttf-formula, 1 < / < fc. Then i n Zk we can derive 
transfinite induction for (p up to u>*+2-/[ra] for any m , i.e. 

Zk \~ Vx (Vy X x : <p[y] —• <p[x]) —• V x X u>*+2-/[m] : y>[x]£D 

O u r next a i m is to prove that these bounds are sharp. M o r e precisely, we w i l l show 
that i n Z (no matter how many true H\-formulas we have added as axioms) one cannot 
derive transfinite induct ion up to eo, i.e. the fo rmula 

Vx (Vy X x : P y —• P x ) —• V x P x 

w i t h a free predicate variable P , and that i n Zk one cannot derive transfinite induct ion 
up to Wfc+i, i.e. the fo rmula 

Vx (Vy -< x : P y —• P x ) V x X u>*+i : P x . 

Th i s w i l l follow f rom the method of normal i zat ion appl ied to ar i thmet ica l Systems, wh ich 
we have to develop first. 

3.3. Normalization for arithmetic with the w - ru le 

We w i l l show i n Section 3.5 that a normal i zat ion theorem does not ho ld for a System of 
ar i thmet ic l ike Z i n Section 3.2, i n the sense that for any fo rmula <p derivable i n Z there 
is a der ivat ion of the same formula tp i n Z wh ich only uses formulas of a level bounded 
by the level of (p. The reason for this failure is the presence of the induc t i on axioms, 
which can be of arb i t rary level. 

Here we remove that obstacle against normal i za t ion and replace the induc t i on 
axioms by a rule w i th inf initely many premisses, the so-cal led w- ru l e (suggested by H i l ­
bert and studied by Lorenzen, Novikov and Schütte), wh i ch allows to conclude Vxy>[x] 
from ^[0],vp[l],y>[2], . . . . 

C lear ly this u;-rule can also be used to replace the rule V + . A s a consequence we 
do not need to consider free object variables. 

So we introduce the System Z°° of a ; -ar i thmet ic as follows. Z°° has the same 
language and — apart from the induct ion axioms — the same axioms as Z . Derivat ions 
in Z°° are inf inite objects; they are bui l t up from assumpt ion variables x ^ , y ^ and 
constants ax^ for any ax iom <p of Z other than an induc t i on ax iom by means of the 
rules 

( A x ^ r * ) ^ 

( t * ^ * s * ) + 
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V i /t"<u/ 

denoted by —fr"*",—*~",u> and V ~ , respectively. 
Mo r e precisely, we define the not ion of an x -der i va t i on (i. e. a der ivat ion i n Z ° ° 

w i t h free assumpt ion variables among x ) of height < a and degree < fc induct ively, as 
below. 

Note that derivations are infinite objects now. They may be viewed as mappings 
from finite sequences of na tura l numbers (= nodes i n the der ivat ion tree) to lists of data 
inc lud ing the fo rmula appear ing at that node, the rule appl ied last, a l ist of assumption 
variables inc lud ing a l l those free i n the subder ivat ion (start ing at that node), a bound 
on the height of the subder ivat ion, and a bound on the degree of the subder ivat ion. 

Intuit ively, the degree of a der ivat ion is the least number > the level of any subde­
r ivat ion Xxr i n a context ( X x r ) s or (r,-)j<w i n a context (r j )t< W t ; , where the level of a 
der ivat ion is the level of its type, i.e. the formula i t derives. T h i s not ion of a degree is 
needed for the normal i za t ion proof we give below. 

* A n y assumpt ion variable x * and any ax iom a x v is an x -der i va t i on of height < a 
and degree < fc, for any l ist x of assumpt ion variables (containing x i n the first 
case), o rd ina l a and number fc. 

_>+ j f R V > i s an ä?,x,y-derivation of height < Q Q < a and degree < fc, then ( A x ^ r ^ ) ^ - ^ 
is an x , y -der iva t ion of height < a and degree < fc. 

—»~ If r^ " *^ and are x-der ivat ions of heights < < a and degrees < fct < fc ( i = 
1,2), then ( t ^ ^ s ^ ) ^ is an x -der i va t i on of height < a and degree < m w i th 
m = max(fc,lev(</? —• ^)), i f W*1^ is generated by the rule — o r of degree < fc 
otherwise. 

LJ If r f ^ are x-der ivat ions of heights < oti < a and degrees < fcj < fc ( i < o;), then 

( rr ' ' ' )T<w 1S 8 1 1 ^ -der iva t ion of height < a and degree < fc. 

y - If t * x < p is an x -der i va t ion of height < ao < a and degree < fc, then ( t ^ ^ i ) ^ is an 

x -der i va t i on of height < a and degree < m w i t h m = max(fc, level Vxy>), i f t V x v is 

generated by the rule or of degree < fc otherwise. 

We now embed our Systems Zk ( i . e. ar i thmet ic w i t h induc t i on restr icted to U°k-
formulas) and hence Z into Z°°. 

L e m m a 3 .3 .1. L e t b e a derivation i n Zk with free assumption variables a m o n g x $ 
which contains < m instances of the i n d u c t i o n s c h e m e all with i n d u c t i o n formulas of 
level < fc. L e t o b e a Substitution of numerals for o b j e c t variables such that (pa^rjxj do 
not contain free object variables. T h e n we can End an x?°-derivation { t o o ^ 0 m Z°° of 
height < u>m + h for s o m e h < u and degree < fc. 

Proof . F i r s t note that f rom any norma l derivat ion i n first-order logic we can construct 
a no rma l der ivat ion r $ w i t h the same free assumpt ion variable x ^ , such that i n T Q 
any branch has a pr ime formula as its m i n i m a l f o rmula (cf. Sect ion 2.4). For i f ^ is a 
m i n i m a l fo rmula which is not pr ime we can first apply e l iminat ion rules un t i l a pr ime 
formula is reached and later bu i l d a up again by the corresponding in t roduct ion rules. 

T h e l e m m a is proved by induct ion on the height of the given derivat ion r . B y 
the Norma l i za t i on Theorem 2.2.3 and the note above we can assume that r is no rma l 
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w i t h pr ime m i n i m a l formulas. The only case wh ich requires some argument is when r 
consists of two appl icat ions of — t o an instance of the induc t i on scheme. T h e n r must 
have the form 

a x V > [ 0 ] , V x ( V [ x ] ^ ^ [ 5 x ] ) ^ V i V ? [ x ] 5 V [ 0 ] ^ A x A y v ' W t ¥ > [ S x ] ^ 

B y induc t i on hypothesis we obta in derivations 

sä 0 ] of height ^ w ^ + f c o 

* Ä ä 0 ] ] of height < u m ~ l - 2 + h u 

' ä 2 WW ] ] ] of height < « • , — 1 . 3 + Ä2 

and so on, a l l of degree < fc. Comb in ing a l l these derivations of ip[i] as premisses of the 
w - ru l e yields a der ivat ion *«> of Vx<p[x] of height < w m and degree < fc. • 

A derivation is cal led convertible i f i t is of the form (Axr)s or eise ( r ^ i ^ j , wh ich can 
be converted into r x [ s ] or ry, respectively. Here r x [ s ] is obta ined from r by subst i tut ing 
s for a l l free occurences of x i n r . A derivat ion is cal led n o r m a l i f i t does not conta in a 
convertible subderivat ion. Note that a derivat ion of degree 0 must be norma l . 

We want to define an Operation wh ich by repeated conversions transforms a given 
der ivat ion into a no rma l one w i th the same end formula and no more assumpt ion va­
riables. The methods employed i n Sections 1 and 2 to achieve such a task have to be 
adapted properly i n order to deal w i t h the new Situation of inf in i tary derivations. Here 
we give a par t icu lar ly s imple argument due to (Tait 1965). 

L e m m a 3 .3 .2 . I f r i s a n x , x ^ , y - d e r i v a t i o n of height < a and degree < fc and is an 
x , y - d e r i v a t i o n of height < ß and degree < /, then r x [ s ] is an x , y - d e r i v a t i o n of height 
< ß + a and degree < max(fc, /, level s ) . 

T h i s is proved by a straightforward induct ion on the height of r . • 

L e m m a 3 .3 .3 . For any x - d e r i v a t i o n r* of height < a and degree < fc + 1 we can find 
an x - d e r i v a t i o n ( r * ) v o f height < 2 a and degree < fc. 

The proof is by induct ion on a . The only case wh ich requires some argument is when r 
is of the form ts w i t h t of height < a\ < a and s of height < ct2 < <*. We first consider 
the subcase where t k = Xxti and lev(t) = fc + 1. T h e n lev(s) < fc by the def init ion 
of level, and hence (*i)x[s*] has degree < fc by L e m m a 3.3.2. Furthermore , also by 
L e m m a 3.3.2, ( t i ) x [ s k ) has height < 2 * ' + 2 a i < 2 m a x < 0 f 2 ' 0 f l )+ 1 < 2 ° . Hence we can take 
( t s ) k to be (*i)x[s*]- If we are not i n the above subcase, we can s imply take ( t s ) k to be 
t k s k . Th i s derivat ion clearly has height < 2 Q . A l so i t has degree < fc, wh ich can be seen 
as follows. If lev(tf) < fc we are done. If however lev(t) > fc + 2, then t must be of the 
form tot\ . . . t m for some assumpt ion variable or ax iom to (since r has degree < fc + 1). 
B u t then t k has the form t o t k ... t ^ and we are done again. (To be completely precise, 
this last statement has to be added to the formulat ion of the L e m m a above and proved 
simultaneously w i t h i t ) . • 

A s an immediate consequence we obta in 

T h e o r e m 3 .3 .4 . ( N o r m a l i z a t i o n f o r Z°°) F o r any x - d e r i v a t i o n r* of height < a 
and degree < fc we can find a n o r m a l x - d e r i v a t i o n ( r * ) v o f height < 2 * a ( w h e r e 2o « = 
a , 2 m + i a = 2 2m). 
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3.4. Unprovable initial cases of transfinite induction 

We now apply the technique of normal i zat ion for ar i thmet ic w i t h the w - ru l e for a proof 
that transfinite induc t i on up to €o is underivable i n Z y i.e. of 

Z \f Vx (Vy X x : P y -> P x ) V x P x 

w i t h a predicate variable P , and that transfinite induc t i on up to C J * + I is under ivable i n 
Z * , i.e. of 

Z k V Vx (Vy X x : P y -+ P x ) V x X : P x . 

O u r proof is based o n an idea of Schütte, wh ich consists i n add ing a so-ca l led progression 
rule to the inf ini tary Systems. T h i s rule allows to conclude P j (where j is any numeral ) 
from a l l P i for i -< j . 

M o r e precisely, we define the not ion of an x -der i va t i on i n Z°° + P r o g ( P ) of height 
< a and degree < fc by the induct ive clauses of Sect ion 3.2 and the add i t i ona l clause 
P rog (P ) : 

If r f * are x-der ivat ions of heights < < a and degrees < fcj < k ( i -< j ) , then 

( r f 1 8 8 1 1 1 ^ -der i va t ion of height < a and degree < fc. 

Since this progression rule only deals w i t h derivations of pr ime formulas i t does not 
afFect the degrees of derivations. Hence the proof of normal i za t ion for Z°° carries over 
unchanged to Z°° + P rog (P ) . In part icu lar we have 

L e m m a 3.4.1. For any x - d e r i v a t i o n r* in Z°° + P r o g ( P ) of height < ot and degree 
< fc + 1 we can und an x - d e r i v a t i o n ( r * ) v i n Z°° + P r o g ( P ) of height < 2° and degree 
<fc. 

We now show that from the progression rule for P we can easily derive the progressi­
veness of P . 

L e m m a 3.4.2. We have a normal derivation of Vx (Vy -< x : P y —• P x ) in Z°° + 
P r o g ( P ) with height < 5. 

Proof . B y the o;-rule i t suffices to derive Vy X j : P y —• P j for any j w i t h height < 4. 
We argue informally. Assume Vy -< j : P y . B y V ~ we have t •< j —> P i for any t. Now 
for any % -< j we have i -< j as an ax iom; hence P i for any such t. A n app l i ca t ion of 
the progression rule yields P j , w i t h a derivat ion of height < 3. Now by —•+ and u; the 
c l a im follows. • 

T h e cruc ia l Observation now is that a norma l der ivat ion of P\ß\ must essentially 
have a height of at least ß. However, to obta in the right estimates for our Subsystems 
Zk we cannot app ly L e m m a 3.4.1 down to degree 0 (i.e. to the no rma l form) but 
must otop already at degree 1. Such derivations, i.e. those of degree < 1, w i l l be 
cal led olmost normal] they can also be analyzed easily. A n almost no rma l der ivat ion 
r i n Z°° + P r og (P ) is cal led a P\3\,-yP\ß\-refutation i f r derives a f o rmula dp —> yj 
w i t h (p and the free assumptions i n r among P|ö?| := P | O J I | , . . . , P | a m | and ~^P\ß\ : = 
~*P\ß\ |,..., "»Pl^nl and true pr ime formulas, and %l> a false pr ime fo rmula or eise among 
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L e m m a 3.4.3. L e t r be an almost normal P\a\, ->P\ß\-refutation of height < \r\ with 
S and ß disJoint. Then 

min/?<|r| + # 5 , 

where # a denotes the n u m b e r of ordinals in S . 
Proof . B y induc t i on on |r|. Note that we may assume that r does not conta in either u 
or eise V ~ . Note also that r cannot be an equality ax i om a x p l 7 l , ' 7 ' = s l * l " ' p ^ l w i th 7 = 6 
t rue , since we have assumed that a and ß are disjoint. We d is t inguish cases according 
to the last rule i n r . 

Case — B y our def init ion of refutations the c l a im follows immediate ly from the 
induc t i on hypothesis. 

Case — T h e n r = t ^ ~ " ^ " ~ ^ s v . If tp is a true pr ime formula , the c l a im follows 
from the induc t i on hypothesis for t. If is a false pr ime formula , the c l a im follows 
from the induc t i on hypothesis for s. If <p is - , - , P | 7 | (and hence t = ax V x ^" 1 " , i ! > x ~ ' P x ^|7|) , 
then since the level of ->-«P|7| is 2 the derivat ion s " 1 " ^ ' 7 ' must end w i t h an in t roduct ion 
rule , i . e. s = \ X ~ * P

M S Q (for otherwise, since no ax i om contains some -»- iPr 0 as a 
s t r ic t ly posit ive subformula, we would get a contradict ion against the assumpt ion that 
r has degree < 1). The c la im now follows from the induct ion hypothesis for so. The 
only remain ing case is when <p is P|7|. T h e n t is an almost norma l P|7|, P|ö?|, ~*P\ß\ 
- re futat ion and s is an almost no rma l P|<3|,-»P|/?|,-«P|7| -re futat ion. We may assume 
that 7 is not among a , since otherwise the c la im follows immediate ly f rom the induct ion 
hypothesis for t. Hence we have by the induct ion hypothesis for t 

m i n ^ < | t | + # c ? - h l < | r | + # a . 

Case P r og ( P ) . T h e n r = ( r f *')£l7y'. B y induct ion hypothesis, since r$ is a P|a|, 

-«P|/?|, ~»P|£| -re futat ion, we have for a l l 6 < 7 

min(^,Ä)<|rÄ| + # c f < | r | - h # 5 

and hence 
minO?, 7 )<|r| + #a. 

• 
Now we can show the fol lowing result of (M in ts 1971) and (Parsons 1973) 

T h e o r e m 3.4.4. Transßnite induction up to 6Q is underivable in Z , i.e. 

Z \f Vx (Vy < x : P y - * P x ) - + V x P x 
with a predicate variable P , and transßnite induction up to cjjk+i is underivable in Zk, 
i.e. 

Z k 1/Vx(Vx < x : P y -+ P x ) Vx X a ; f c + i : P x . 
Proof . We restrict ourselves to the second part . So assume that transfinite induc t i on up 
to Wjk+i is derivable i n Zfc. T h e n by the embedding of Zk into Z°° ( L e m m a 3.3.1) and 
the n o r m a l der ivabi l i ty of the progressiveness of P i n Z°° + P r og ( P ) w i t h finite height 
( L e m m a 3.4.2) we can conclude that V x X u>k+i • P x is derivable i n Z°° -f P r o g ( P ) w i t h 
height < u j m + h for some m , h < u) and degree < k. Now fc — 1 appl icat ions of L e m m a 
3.4.1 y ie ld a der ivat ion of the same formula V x -< u;*+i : P x i n Z°° + P r og ( P ) w i th 
height < 7 < 2 jk_ i (u ; m + h) < u>*+i and degree < 1, hence also a der ivat ion of P|7 + 1| 
i n Z°° + P r o g ( P ) w i t h height < 7 and degree < 1. B u t this contradicts L e m m a 3.4.3. 
• 
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3.5. Normalization for arithmetic is impossible 

T h e normal i za t ion theorem for first-order logic appl ied to ar i thmet ic Z is not par t i -
cu lar ly useful since we may have used i n our der ivat ion induc t i on axioms of arb i t rary 
complexity. Hence i t is tempt ing to first e l iminate the induc t i on scheme i n favour of an 
induc t i on rule a l lowing to conclude Vxy>[x] from a der ivat ion of y>[0] and a der ivat ion of 
(p[Sx] w i th an add i t iona l assumpt ion y>[x] to be cancelled at this point (note that this 
rule is equivalent to the induct ion scheme), and then to t ry to normal ize the resul t ing 
derivat ion i n the new system Z w i t h the induct ion rule. We w i l l app ly our results f rom 
Section 3.4 to show that even a very weak form of the normal i za t ion theorem cannot 
ho ld i n Z w i t h the induct ion rule. 

T h e o r e m 3.5.1. The following weak form of a normalization theorem for Z with the 
induction rule is false: For any x $ - d e r i v a t i o n with (p,%l> Itf-formulas there is an 
x $ - d e r i v a t i o n ( r* )^ containing only nj- formuias, with k depending only on l. 

Proof. Assume that such a normal i zat ion theorem would ho ld . Consider the n°- formula 

Vx (Vy X x : P y —• P x ) -> V x X w n + i • P x 

expressing transfinite induct ion up to u>n+i- B y Theorem 3.2.1 i t is derivable i n Z . 
Hence there exists a der ivat ion of the same formula containing only nj- formulas, for 
some k independent of n . Hence Zk derives transfinite induct ion up to u; n +i for any n . 
B u t this clearly contradicts Theorem 3.4.1. • 
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