ON BAR RECURSION OF TYPES 0 AND 1

HELMUT SCHWICHTENBERG

For general information on bar recursion the reader should consult the papers of Spector [8], where it was introduced, Howard [2] and Tait [11]. In this note we shall prove that the terms of Gödel's theory T (in its extensional version of Spector [8]) are closed under the rule $BR_{0,1}$ of bar recursion of types 0 and 1. Our method of proof is based on the notion of an infinite term introduced by Tait [9]. The main tools of the proof are (i) the normalization theorem for (notations for) infinite terms and (ii) valuation functionals. Both are elaborated in [6]; for brevity some familiarity with this paper is assumed here. Using (i) and (ii) we reduce $BR_{0,1}$ to ξ -recursion with $\xi < \varepsilon_0$. From this the result follows by work of Tait [10], who gave a reduction of 2^{ξ} -recursion to ξ -recursion at a higher type. At the end of the paper we discuss a perhaps more natural variant of bar recursion introduced by Kreisel in [4].

Related results are due to Kreisel (in his appendix to [8]), who obtains results which imply, using the reduction given by Howard [2] of the constant of bar recursion of type τ to the rule of bar recursion of type $(0 \to \tau) \to \tau$, that T is not closed under the rule of bar recursion of a type of level ≥ 2 , to Diller [1], who gave a reduction of BR_{0,1} to ξ -recursion with ξ bounded by the least ω -critical number, and to Howard [3], who gave an ordinal analysis of the constant of bar recursion of type 0. I am grateful to H. Barendregt, W. Howard and G. Kreisel for many useful comments and discussions.

Recall that a functional F of type $0 \to (0 \to \tau) \to \sigma$ is said to be defined by (the rule of) bar recursion of type τ from Y and functionals G, H of the proper types if

(BR_r)
$$F(n, \alpha) = \begin{cases} G(n, \alpha) & \text{if } Y\alpha_n < n, \\ H(\lambda z. \ F(n+1, \alpha|_n^z), \ n, \alpha) & \text{otherwise,} \end{cases}$$

where $\alpha|_n^2m:=\alpha m$ for $m\neq n$ and :=z for m=n, and $\alpha_nm:=\alpha m$ for m< n and $:=\mathbf{0}$ for $m\geq n$ (0 is the type τ object $\lambda x_1\cdots x_n$. 0). We shall show that, for $\tau=0$ and $\tau=1:=0\to 0$, the functional F defined by BR_{τ} is primitive recursive if Y,G,H are.

We first deal with the case $\tau=0$. So let Y be a primitive recursive functional of type $(0 \to 0) \to 0$. Y can be canonically represented by an (infinite) term t_Y (cf. [6, §2.4]). Let x be a variable of type $0 \to \tau$, i.e. $0 \to 0$. Then $t_Y x$ has type 0. By λ -conversions $t_Y x$ can be reduced to a normal form $(t_Y x)^*$ with rank $R(t_Y x)^* = 0$ and depth $|(t_Y x)^*| < \varepsilon_0$ (cf. [6, §2.10]). Clearly $(t_Y x)^*$ contains at most the variable x free.

We now consider in general (infinite) terms of type 0 in normal form (i.e. Rt = 0)

Received March 17, 1976; revised October 12, 1978.

containing at most the (fixed) variable x free; they will be denoted by t, t_0 , t_1 , These terms have a particularly simple build-up: they can only be of the form xt or $\langle t_i \rangle_{i < \omega} t$ or \bar{n} (the nth numeral). For any such t we define inductively a predicate S_t (S from "secured") by

$$S_{xt}(n, \alpha): \leftrightarrow S_t(n, \alpha) \land n > \operatorname{Val}_x^{\alpha}t,$$

$$S_{\langle t_i \rangle t}(n, \alpha): \leftrightarrow S_t(n, \alpha) \land S_{t_j}(n, \alpha), \quad j = \operatorname{Val}_x^{\alpha}t,$$

$$S_{\bar{b}}(n, \alpha): \leftrightarrow 0 = 0.$$

The (obvious) definition of $Val_r^{\alpha}t$ is written out in [6, §2.2].

LEMMA 1. $S_t(n, \alpha) \wedge \forall m_{m \le n} \alpha m = \beta m \rightarrow \operatorname{Val}_x^{\alpha} t = \operatorname{Val}_x^{\beta} t$.

The proof is by induction on t. Case xt. Assume $S_{xt}(n, \alpha)$ and $\forall m_{m < n} \alpha m = \beta m$. We have to show $\alpha(\operatorname{Val}_x^{\alpha}t) = \beta(\operatorname{Val}_x^{\beta}t)$. From $S_t(n, \alpha)$ we can conclude by ind. hyp. $\operatorname{Val}_x^{\alpha}t = \operatorname{Val}_x^{\beta}t$. With $n > \operatorname{Val}_x^{\alpha}t$ the above equation follows. Case $\langle t_i \rangle t$. Assume $S_{\langle t_i \rangle t}(n, \alpha)$ and $\forall m_{m < n} \alpha m = \beta m$. We have to show $(\operatorname{Val}_x^{\alpha}\langle t_i \rangle)$ $(\operatorname{Val}_x^{\alpha}t) = (\operatorname{Val}_x^{\beta}\langle t_i \rangle) \cdot (\operatorname{Val}_x^{\alpha}t)$. From $S_t(n, \alpha)$ we can conclude by ind. hyp. $\operatorname{Val}_x^{\alpha}t = \operatorname{Val}_x^{\beta}t = : j$. Hence we have to show $\operatorname{Val}_x^{\alpha}t_j = \operatorname{Val}_x^{\beta}t_j$. This follows by ind. hyp. from $S_{t_j}(n, \alpha)$. Case \bar{k} . Trivial.

LEMMA 2. $S_t(n, \alpha) \wedge m > n \rightarrow S_t(m, \alpha)$.

The proof is by induction on t. Case xt. Assume $S_{xt}(n, \alpha)$ and m > n. From $S_t(n, \alpha)$ we can conclude by ind. hyp. $S_t(m, \alpha)$. Since $m > n > \operatorname{Val}_x^{\alpha}t$ we have $S_{xt}(m, \alpha)$. Case $\langle t_i \rangle t$. Assume $S_{\langle t_i \rangle t}(n, \alpha)$ and m > n. From $S_t(n, \alpha)$ and $S_{t_j}(n, \alpha)$, $j = \operatorname{Val}_x^{\alpha}t$, we can conclude by ind. hyp. $S_t(m, \alpha)$ and $S_{t_j}(m, \alpha)$, and hence $S_{\langle t_i \rangle t}(m, \alpha)$. Case \bar{k} . Trivial.

Let U_t (U from "unsecured") be the complement of S_t , i.e. $U_t(n, \alpha) \leftrightarrow \neg S_t(n, \alpha)$. By Lemma 2, U_t is a tree, i.e. $U_t(n, \alpha) \land m < n \to U_t(m, \alpha)$. We now define an order preserving embedding f_t from U_t in the ordinals $<2^{\omega|t|}$ by induction on t, as follows. $f_t(n, \alpha) := 0$ if $\neg U_t(n, \alpha)$. Otherwise,

$$f_{xt}(n,\alpha) := \begin{cases} (\operatorname{Val}_{x}^{\alpha}t) - n & \text{if } S_{t}(n,\alpha), \\ (\omega + f_{t}(n,\alpha)) & \text{if } U_{t}(n,\alpha), \end{cases}$$

$$f_{\langle t_{i} \rangle t}(n,\alpha) := \begin{cases} f_{t_{j}}(n,\alpha) & \text{with } j = \operatorname{Val}_{x}^{\alpha}t \\ 2^{\omega |\langle t_{i} \rangle |} + f_{t}(n,\alpha) & \text{if } U_{t}(n,\alpha). \end{cases}$$

LEMMA 3. $f_t(n, \alpha) < 2^{\omega|t|}$.

The proof is by induction on t. Case xt. If $S_t(n, \alpha)$, then $f_{xt}(n, \alpha) < \omega < 2^{\omega|xt|}$. If $U_t(n, \alpha)$, then using the ind. hyp. we have $f_{xt}(n, \alpha) = \omega + f_t(n, \alpha) < \omega + 2^{\omega|t|} \le 2^{\omega|t|+1} < 2^{\omega|xt|}$. Case $\langle t_i \rangle t$. If $S_t(n, \alpha)$, then by ind. hyp. $f_{\langle t \rangle t_i}(n, \alpha) = f_{t_j}(n, \alpha) < 2^{\omega|t_j|} < 2^{\omega|\langle t_i \rangle|}$. If $U_t(n, \alpha)$, then again by ind. hyp. $f_{\langle t_i \rangle t}(n, \alpha) = 2^{\omega|\langle t_i \rangle|} + f_t(n, \alpha) < 2^{\omega|\langle t_i \rangle|} + 2^{\omega|t|} \le 2^{\omega(\max(|\langle t_i \rangle), |t|)+1)} = 2^{\omega|\langle t_i \rangle t}|$. Case \bar{k} . Trivial.

LEMMA 4. $U_t(n, \alpha) \wedge n > m \rightarrow f_t(n, \alpha) < f_t(m, \alpha)$.

The proof is by induction on t. Case xt. Assume $U_{xt}(n,\alpha)$ and n > m. If $S_t(m,\alpha)$, then by Lemma 2, $S_t(n,\alpha)$ and hence, since n > m, $f_{xt}(n,\alpha) < f_{xt}(m,\alpha)$. If $U_t(m,\alpha)$ and $S_t(n,\alpha)$, then we have $f_{xt}(n,\alpha) < \omega \le f_{xt}(m,\alpha)$. If $U_t(m,\alpha)$ and $U_t(n,\alpha)$, then by ind. hyp. $f_t(n,\alpha) < f_t(m,\alpha)$ and hence $f_{xt}(n,\alpha) < f_{xt}(m,\alpha)$. Case $\langle t_i \rangle t$. Assume $U_{\langle t_i \rangle t}(n,\alpha)$ and n > m. If $S_t(m,\alpha)$, then again by Lemma 2, $S_t(n,\alpha)$. Hence we have $U_{t_i}(n,\alpha)$ with $j = \operatorname{Val}_x^{\alpha} t$ and from this by ind. hyp. $f_{t_i}(n,\alpha) < f_{t_i}(m,\alpha)$, hence $f_{\langle t_i \rangle t}(n,\alpha) < f_{\langle t_i \rangle t}(m,\alpha)$. If $U_t(m,\alpha)$ and $S_t(n,\alpha)$, then

by Lemma 3, $f_{\langle t_i \rangle t}(n, \alpha) = f_{t_j}(n, \alpha) < 2^{\omega |t_j|} < 2^{\omega |\langle t_i \rangle|} \le 2^{\omega |\langle t_i \rangle|} + f_t(m, \alpha) = f_{\langle t_i \rangle t}(m, \alpha)$. If $U_t(n, \alpha)$, then by ind. hyp. $f_t(n, \alpha) < f_t(m, \alpha)$ and hence $f_{\langle t_i \rangle t}(n, \alpha) < f_{\langle t_i \rangle t}(m, \alpha)$. Case k. Trivial.

From U_t we define a somewhat bigger tree \overline{U}_t by $\overline{U}_t(n, \alpha) : \leftrightarrow U_t(n, \alpha) \vee \operatorname{Val}_x^{\alpha} t \geq n$. Hence outside of \overline{U}_t , i.e. for n, α with $\neg \overline{U}_t(n, \alpha)$, we have $\operatorname{Val}_x^{\alpha} t < n$. By Lemma 2, we know that \overline{U}_t is a tree, i.e. $\overline{U}_t(n, \alpha) \wedge m < n \to \overline{U}_t(m, \alpha)$. Furthermore, \overline{U}_t can be embedded by the following \overline{f}_t in the ordinals $< \alpha + 2^{\omega |t|}$: $\overline{f}_t(n, \alpha) := 0$, if $\neg \overline{U}_t(n, \alpha)$. Otherwise,

$$\bar{f}_t(n, \alpha) := \begin{cases} (\operatorname{Val}_x^{\alpha} t) - n & \text{if } S_t(n, \alpha), \\ \omega + f_t(n, \alpha) & \text{if } U_t(n, \alpha). \end{cases}$$

By Lemmas 3 and 4 we then have immediately $\bar{f}_t(n, \alpha) < \omega + 2^{\omega |t|}$ and $\bar{U}_t(n, \alpha) \wedge m < n \to \bar{f}_t(m, \alpha) < \bar{f}_t(n, \alpha)$.

Now we come back to $(t_Y x)^* = : r$ constructed above. Outside of \overline{U}_r , i.e. in the case $\neg U_r(n,\alpha)$, we then have $\operatorname{Val}_x^{\alpha} r < n$ and $S_r(n,\alpha)$. With Lemma 1, we can conclude $\operatorname{Val}_x^{\alpha} r = \operatorname{Val}_x^{\alpha} (t_Y x)^* = \operatorname{Val}_x^{\alpha} t_Y x = Y\alpha_n$, so $Y\alpha_n < n$, i.e. outside of \overline{U}_r we are in the initial case of BR_0 . Hence BR_0 can be considered as a recursion on the tree \overline{U}_r , and, since we have an order preserving embedding \overline{f}_r of \overline{U}_r in the ordinals $<\omega+2^{\omega|r|}<\varepsilon_0$, also as a recursion on a section $<\varepsilon_0$ of the ordinals.

Hence it suffices to find analogs of \overline{U}_r and \overline{f}_r definable in T. For this we use term numbers as in $[6, \S 3]$. Sufficiently big bounds $\xi < \varepsilon_0$ for all depth bounds occurring in the term numbers and M for the set of all types in the term numbers can be fixed in advance (cf. $[6, \S 3.1]$). From the definitions of S_t , f_t etc. it is immediately clear how one can define correspondingly $\lambda un\alpha$. $S_u(n, \alpha)$, $\lambda un\alpha$. $f_u(n, \alpha)$ etc. in T_{ξ} (i.e. T_{\prec} as explained in $[6, \S 4.1]$, where \prec is a standard wellordering of order type ξ) and hence also on T. By the same proofs one then obtains analogs to the properties of S_t , f_t etc. proved above, e.g. for Lemma $3: u \in \text{Num} \to f_u(n, \alpha) < \lceil 2^{\omega_t \cdot 0(\lfloor u \rfloor)} \rceil$. Now from this we can conclude that BR_0 is reducible to a ξ -recursion and hence (Tait [10]) also to primitive recursions of higher types.

The formalizability of this proof in HA_{ξ}^{ω} (cf. [6, §4.1]) is immediately clear. But then we also have the formalizability in T, since HA_{ξ}^{ω} is a conservative extension of T (cf. Tait [10]).

For the case $\tau=1$ only minimal changes are necessary. In the definitions and proofs by induction on t one has to replace xt by xts. Everything else remains unchanged.

Variants of bar recursion. Let us consider again the general rule of bar recursion

(BR_{\tau})
$$F(n, \alpha) = \begin{cases} G(n, \alpha) & \text{if } Y\alpha \leq n, \\ H(\lambda x. \ F(n+1, \alpha|_{x})) & \text{if } Y\alpha > n. \end{cases}$$

It is natural to ask whether, given G, H and Y, there will always be an F satisfying BR_{τ} . Now already Spector answered this in the affirmative, provided one asumes extensionality and Y satisfies

$$\forall \alpha \exists n \forall \beta (\bar{\alpha}n = \bar{\beta}n \to Y\alpha = Y\beta)$$

(this is true e.g. for continuous Y). The argument goes as follows. Obviously BR_{τ} can be considered as a recursion on the partial ordering given by

$$(n, \alpha) < (m, \beta) \leftrightarrow n > m \text{ and } \bar{\alpha}m = \bar{\beta}m$$

with field $\{(n, \alpha) | Y\alpha > n\}$. Now it suffices to show that there are no infinite descending sequences w.r.t. \prec . Assume there would be one, i.e. $(n_{i+1}, \alpha_{i+1}) \prec (n_i, \alpha_i)$ for all *i*. Define α by $\alpha m = \alpha_i m$ if $n_i > m$; this clearly does not depend on *i*. Chose *n* by (*) such that $Y\alpha$ only depends on $\bar{\alpha}n$. Chose *i* such that $n_i > n$ and $n_i \geq Y\alpha$. Then we have $Y\alpha_i = Y\alpha \leq n_i$ (since $\bar{\alpha}_i n = \bar{\alpha}n$) and hence (n_i, α_i) is not in the field of our ordering \prec , a contradiction.

Here we needed the condition (*) to ensure that there will always be a solution to BR_{τ} . It seems to be natural to look for variants of BR_{τ} which make this condition somewhat more explicit, e.g. by requiring that there is a modulus of continuity M_Y for Y satisfying

$$\bar{\alpha}(M_{Y}\alpha) = \bar{\beta}(M_{Y}\alpha) \to Y\alpha = Y\beta;$$

the rule (BR_{τ}) with this condition (**) added has been called natural bar recursion by Kreisel in [4]. He also mentions yet another variant there where, in addition, the condition $Y\alpha \leq n$ in BR_{τ} is replaced by $M_{Y}\alpha \leq n$.

Now for which types does a modulus of continuity M_Y for a Y definable in T and of type $(0 \to \tau) \to 0$ exist? It is known that for $\tau = 0$, 1 such a M_Y can be defined within T such that (**) becomes provable in T. This was first proved by Kreisel in lectures 1971/72; other proofs are in [5], [7] and [12]. The proof in [5] uses the present method of infinite terms and goes as follows. For any t define M_t inductively by

$$M_{xt}\alpha = \max(M_t\alpha, (\operatorname{Val}_x^{\alpha}t) + 1),$$

 $M_{\langle t_i \rangle t}\alpha = \max(M_t\alpha, M_{t_j}\alpha),$ where $j = \operatorname{Val}_x^{\alpha}t,$
 $M_{\bar{k}}\alpha = 0.$

One can prove easily by induction on t that M_t is in fact a modulus of continuity for the functional $\lambda \alpha$ Val $_x^{\alpha}t$, i.e.

$$\bar{\alpha}(M_t \alpha) = \bar{\beta}(M_t \alpha) \to \operatorname{Val}_x^{\alpha} t = \operatorname{Val}_x^{\beta} t.$$

As above, one can then formalize this proof in T. However, for $\tau=2$ there are functionals Y definable in T, e.g. $Y_0=\lambda\alpha^{0-2}$. $\alpha 0$ (λn . $\alpha (n+1)0^1$), which do not even possess a continuous modulus of continuity. This result is due, independently, to W. Howard, W. Hyland and W. Vogel; it answers a question asked previously by Kreisel. Now this situation gives rise to another natural question, also asked by Kreisel: Is T closed under natural bar recursion? Or, more explicitly: Assume Y has a modulus of continuity Y0 such that (**) is provable in T1. Is T1 closed under T2 for such T3 T4 present T3 do not know the answer.

REFERENCES

- [1] J. DILLER, Zur Theorie rekursiver Funktionale höherer Typen, Habilitationsschrift, München, 1968.
- [2] W. A. HOWARD, Functional interpretation of bar induction by bar recursion, Compositio Mathematica, vol. 20(1968), pp. 107-124.
 - [3] — , Ordinal analysis of bar recursion of type zero, 1970 (unpublished).

- [4] G. Kreisel, Review of the paper "The model G of the theory BR" by Ersov, Zentralblatt für Mathematik und ihre Grenzgebiete, vol. 312(1976), 02034.
- [5] H. SCHWICHTENBERG, Einige Anwendungen von unendlichen Termen und Wertfunktionalen, Habilitationsschrift, Münster, 1973.
- [6] ——, Elimination of higher type levels in definitions of primitive recursive functionals by means of transfinite recursion, Logic Colloquium '73 (H. E. Rose and J. C. Shepherdson, Editors), North-Holland, Amsterdam, 1975, pp. 279–303.
- [7] ——, Proof theory: Some applications of cut elimination, Handbook of mathematical logic (J. Barwise, Editor), North-Holland, Amsterdam, 1977, pp. 867-895.
- [8] C. Spector, Provably recursive functionals of analysis: A consistency proof of analysis by an extension of principles formulated in current intuitionistic mathematics, Recursive function theory (J. Dekker, Editor), American Mathematical Society, Providence, RI, 1962, pp. 1–27.
- [9] W. W. TAIT, Infinitely long terms of transfinite type, Formal systems and recursive functions (J. N. Crossley and M. A. E. Dummet, Editors), North-Holland, Amsterdam, 1965, pp. 176–185.
- [10] ——, Constructive reasoning, Logic, methodology and the philosophy of science. III. (B. van Rootselaar and J. F. Staal, Editors), North-Holland, Amsterdam, 1976, pp. 185-19
- [11] ——, Normal form theorem for bar recursive functions of finite type, Proceeding of the Second Scandinavian Logic Symposium (J.E. Fenstad, Editor), North-Holland, Amsterdam, 1971, pp. 352-367.
- [12] A. S. Troelstra, Metamathematical investigation of intuitionistic arithmetic and analysis, Springer, Berlin, 1973.

MATHEMATISCHES INSTITUT DER UNIVERSITÄT D-8000 MÜNCHEN 2, FEDERAL REPUBLIC OF GERMANY