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LOGIC AND THE AXIOM OF CHOICE

H. Schwichtenberg (Munich)

We shall prove the following:

(1) Vx3y o(x,y) » 3fvx @(x,fx) is conservative over classical

first order) logic.

(2) Vx3y o(x,y) » If¥x ©(x,fx) is conservative over intuitionistic

logic without equality.

(3) vx3y o(x,y) » 3fV¥Vx ©(x,fx) is conservative over intuitionistic

logic with decidable equality.

(4)  Vx3y o(x,y) » IfVx @(x,fx) is not conservative over

intuitionistic logic.

i 3 7 9 1 = A

(5) /)(}V:xlE!}l...Vxnayn[/)i(\to(xi,Ji) A/i)Qj(xi X, vy yiﬂ—)
T k]

> 3fV¥yx O(x,fx)

is conservative over classical and intuitionistic logic.

More precisely: Addition of finitely many instances of the respec-
tive schema with all (number and function) parameters generalized

is conservative over any first order theory in the respective logic.

None of these results is new. (1) is already in Hilbert-Bernays
1939 (p. 141 in the second edition). (2) - (4) are due to Minc 1966,
1974, 19663 note that (3) is an immediate consequence of (5). As to
(&), a simpler counterexample is in Osswald 1975 and probably the
simplest (which is reproduced here) in Smorynski 1978. (5) is due
to Minc and Smorynski; it was first announced in Minc 1977. Proofs
are in Smorynski 1978 and (in a generalized fg}m dealing with

"simultaneous Skolem functors") in Luckhardt A.

The proofs given here are relatively simple. For (5) the proof
consists in a procedure which transform a derivation of a first
order formula involving the axiom of choice into a derivation not

involving it. The main technical tool is the use of a new type of

351



352 H. SCHWICHTENBERG

function variables: Whenever terms r.,...,r , S.,,...,S_are intro-
1° >“n 1 >“n

duced, then f% is a function variable. The intended meaning of f%

is that it should range over all functions mapping r in s (provided
L, $ determine a finite function, i.e. 4?eri = rj - osy = Sj))‘
L

As already noted, (3) and also (1) are eaéy consequences of (5),
since the premiss of the implication in (5) is under the assumption
Vx,y (x = y v x ¥ y) equivalent to Vx3y ©(x,y). So we start with a
proof of (2), then give Smorynski's counterexample to prove (4), and
finally extend the method for proving (2) to a proof of (5); only

this last step involves the function variables f%.

~

Note: (1) - (5) remain valid - with essentially the same proofs -
when all variables x, y, f, ... are replaced by finite sequences
X, ¥» £, ... of variables; fx then means fli,...,fnl. However, for

simplicity we only deal with single variables here.

Note: (2), (4) and (5) also hold for minimal logic. This is seen

easily from the proofs.

Proof of (2):
In this section we only consider first order intuitionistic
logic without equality. We shall work with a Gentzen sequent
calculus as described in Kleene 1852, p. 481 (there it is called G3).
For simplicity we modify it to include 1 (falsum) as a propositional
constant and treat -¢ as defined by ¢ » L. First note that (2) can
be reduced to
(2)' IfF Vvx o(x,fx), A » ¥ with A,¥ of first order and without f,
then F Vx3y ©(x,y), &4 > VY.

Proof of (2) from (2)': Let a cut-free derivation of T,A = ¥ be
given with A,¥Y of first order and I' a list of generalizations of
instances the schema Vx3y @(x,y) = 3fVx @(x,fx). By induction on the
length of this derivation we construct a derivation of A - V. It

suffices to consider an inference

Vx3y - 3fVx, T', 0 » Vx3Iy ©(x,y) 3IfVx @©(x,fx), ¥x3dy - Ifvx, T'',0 -» ¥
vx3y - 3Ifvx, I'', 0 -» ¥

First the leftmost 3f in the right hand subderivation can be
cancelled by an inversion lemma. Then the occurences of Vx3y - 3fvx,
I'' in the antecedent of both subderivations can be cancelled by

induction hypothesis. Then by (2)' Vx W(x,fx) in the antecedent of
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the right hand subderivation can be replaced by Vx3y @(x,y). A cut

then gives the desired derivation/of 0 - Y.

Proof of (2)': Let a cut-free derivation of Vx @(x,fx), A » ¥ with
A,¥ of ‘first order and without f be given. By induction on the length
of this derivation we construct a derivation of Vx3y @(x,y), A = VY.

It suffices to consider

Case 1 w(t,ft), ¥Vx @o(x,fx), I » x
Vx 0(x,fx), I = ¥

Replace all occurrences of ft in this derivation by a new
variable w. This gives a derivation of ©(t,w), Vx 0w(x,fx), I = X. By
induction hypothesis we obtain a derivation of @(t,w),

Vx3dy @w(x,y), ' » x. Application of (3-) and (Vo) gives the desired
derivation of V¥x3y @o(x,y), I = ¥x.

Case 2 Vx @(x,fx), T > x(r(ftl,...,ftn))
¥x @o(x,fx), T » 3Jz x(z)

where ftl,...,ftn are all outermost occurrences of f-terms in

r(ftl,...,ftn). Replace again all outermost occurrences of

ft .,ftn in this derivation by new variables w ,Ww_. This gives

[EEE IEERE a

a derivation of

@(tl,w ),...,w(tn,wn), Vx @(x,fx), T - X(r(wl,...,wn)). Then apply

1
the induction hypothesis, (»3), n times (3-) and n times (V-).

Proof of (u):
In this section we only consider first order intuitionistic

logic (with equality). It suffices to prove

I vx3y (x#y) - Vxlay

b B2 +*= = =
1Vx,3y, (xl.yl A X FY A (x1 Xy 2 ¥, yz)).

Consider the Kripke model

al i a~ec b ~ d a2 :a~b c d

a, : a b c d

This is obviously a model of the equality axioms. Furthermore,
a I ¥x3y (x # y) since aiIF a#d, b #* c for all i. But
< + = = .
aOlF leayle23y2 (xl *+ Yy A X%, Y, A (xl X, >y, y2)) To see

this assume the contrary. Choose a for X Then Y, must be d. Choose
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b for Xoe Then y, must be c. Hence aOIF (a = b > c = d). But this is
a contradiction, since a2|F a = b, a2|F ¢ = d. (This counterexample

is due to Smorynski 1978)

Proof of (5):

We only consider first order intuitionistic logic; it is easily
seen that the same proof also applies to classical logic. First note
that (5) can be reduced to
(5)' If F Vx o(x,fx), A » ¥ with A,¥ of first order and without f,

then there is an n such that
F Vxlﬂyl...Vx HynL4§§w(xi,yi) A Fet(x3;y)l,A » ¥ ,where Fct(x,y)
abbreviates/?%?(xi = xj >y T yj).

(5) can be proved from (5)' exactly as we proved (2) from (2)' above.
To prove (5)' we cannot proceed as simply as in the proof of (2)'.
For, the replacement of ft by a new variable w in case 1 would not
lead to a derivation anymore, since an equality axiom t=s ft=fs
would be transformed into an underivable formula t=s w=fs. The idea
now is to replace f by a new variable fz with the intended meaning
that it should range over functions mapping w into t. To make this
precise we first extend our language. Variables and terms and now
generated simultaneously with the additional clause

If rl,...,rn Sl"'

functicn variable (where f is any of the countably many symbols

cas (short: r, s) are terms, then fi is a

reserved for function variables).

Corresponding to the intended meaning of fi we add the following

axioms to our logical formalism:
Fct(r;s) £3r.=s, for all i.
r i i

We now formulate a generalization of (5)' involving these new
function variables, which can then be proved by induction.
()" If |- vx w(x,féx), Fet(r;s), & » ¥ with A,Y of first order and
without fi, tHen there is an n such that - Vx_3y._...¥x 3y
r 171 n “n
[4§§®(xi,yi)A Fet(r,x3s,y)), & - V.

Proof of (5)": For simplicity we only write out the case for p, s
empty. The general case can be dealt with in exactly the same manner.
We use induction on the length of the given derivation, which we may

assume to be cut-free. It suffices to consider
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Case 1 e(t,ft), Vxo(x,fx), T -» x
vxp(x,fx , T = x

We first describe the well-known technique of "extracting f-sub-
terms from ft". Let ftl,...,ftn = ft be all f-subterms of ft ordered
IERRRE LN be new variables.
For any subterm s of ft denote by s* the result of replacing all

by increasing depth of nesting of f. Let w

outermost occurrences of f-subterms ft, ”"’fti in s by
tig X
Wi aeeenWoo Using the new axioms on f; one can prove easily by
1 k X

induction on s

W
(*) Fet(g*sw) = s(f7,) = s*.

~

-»t_ 3 note t, contains only Wy with § < i.
w
- Now replace all occurrences of f in the given derivation by ft

t* denotes of course tyse-
~

Writing t(f) for t one obtains a derivation of
w W w W
w(t(f¥* s f;*t(f;*)) . wa(x,f?*x) ,[ -
Using (*) this derivation can easily be transformed into a derivation
of

w
Wlt*,w ), VxO(x, fryx) , Fet(t*;u),T = x

of the same lenght (it is necessary her to allow as axioms all quasi-
tautologics, i.e. all tautological consequences of the equality

s
axioms including the new axioms on f; ).

~

By induction hypothesis we then obtain a derivation of

w(t*,wn) ) leayl...meaym [ . w(xi,yi) A Fct(:*,i;z,x)],r - X.

Now th*,wn) can be cancelled since it follows from the second
member of the antecedent (we may assume m = 1). Then using the
rules (3-») , (V-») we obtain

Vulawl...Vunﬂanxlayl...meHym [ : w(xi,yi) A Fct(g,ﬁ;g,l)],r > X

Case 2 Vx @(x,fx) , T = x(t)
Vx ©(x,fx) , I = 3zx(z)
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Here again we extract the f-subterms from t and then replace f

W
by f;*. This gives as above a derivation of

W
wa(x,f;*x) Fct(t*;w) , T - x(t*)

By induction hypothesis we then obtain a derivation of
Vx 3y, ..Yx 3y [4§&w(xi,yi) A Fet(t*,x3w,y) T > x(t*)

Now apply (-3) and then proceed as in case 1 above.
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