
Proceedings

Sixth Annual IEEE Symposium on
LOGIC IN COMPUTER SCIENCE

July 15-18,1991 Amsterdam, The Netherlands

Sponsored by
I E E E Technical Committee on

Mathematical Foundations of Computing
CWI, Amsterdam

Vrije Universiteit, Amsterdam

In cooperation with
Association for Computing Machinery

Association for Symbolic Logic
European Association for Theoretical Computer Science

1951-1991

IEEE Computer Society Press
Los Alamitos, California

Washington # Brussels · Tokyo

Table of Contents

Foreword vii
Preface ix
Additional Reviewers xi
Conference Organization xiii

Session 1
Chair: G. Longo

A Foundational Delineation of Computational Feasibility 2
D. Leivant

Toward a Semantics for the QUEST Language 12
F. Alessi and F. Barbanera

Term Declaration Logic and Generalised Composita 22
P. Aczel

Session 2
Chair: S.Abramsky

Logic Programming in a Fragment of Intuitionistic Linear Logic 32
JS.Hodas and D.Miller

Games Semantics for Linear Logic 43
Y. Lafont and T. Streicher

Linearizing Intuitionistic Implication 51
P. Lincoln, A. Scedrov, and N. Shankar

Some Results on the Interpretation of λ-calculus in
Operator Algebras 63

P. Malacaria and L. Regnier

Session 3
Chair: V. Breazu-Tannen

Unification and Anti-Unification in the Calculus of Constructions .74
F. Pfenning

Partial Objects in the Calculus of Constructions 86
P. Audebaud

An Evaluation Semantics for Classical Proofs 96
CJt. Murthy

Session 4
Chair: B. Steffen

A Theory of Testing for Real-Time 110
R. Cleaveland andA.E. Zwarico

Complexity Bounds of Hoare-style Proof Systems 120
H. Hungar

Semantics of Pointers, Referencing and Dereferencing
With Intensional Logic 127

H.-K. Hung and J J. Zucker

xv

Session 5
Chair: P.-L. Curien

Sequentially and Strong Stability 138
A. Bucciarelli and T. Ehrhard

Parallel PCF has a Unique Extensional Model 146
A. Stoughton

The Fixed Point Property in Synthetic Domain Theory 152
P. Taylor

Session 6
Chair: R. Constable

On Computational Open-Endedness in Martin-Löfs Type Theory 162
DJ. Howe

Predicative Type Universes and Primitive Recursion 173
NJP. Mendler

Session 7
Chair: S. Ronchi Delia Rocca

Freydfs Hierarchy of Combinator Monoids 186
R. Statman

Equational Programming in λ-calculus 191
E. Tronci

An Inverse of the Evaluation Functional for Typed λ-calculus 203
U. Berger andH. Schwichtenberg

Session 8
Chair: S.Abiteboul

A Completeness Theorem for Kleene Algebras and the
Algebra of Regular Events 214

D. Kozen
On First Order Database Query Languages 226

A. Avron and J. Hirshfeld
Specifying and Proving Serializability in Temporal Logic 232

D. Peled, S. Katz, and A. Pnueli

Session 9
Chair: J.Bergstra

CCS with Priority Choice 246
/. Camilleri and G. Winskel

Rabin Measures and Their Applications to
Fairness and Automata Theory 256

N. Klarlund and D. Kozen
Specification and Refinement of Probabilistic Processes . 266

B. Jonsson and KG. Larsen

xvi

Session 10
Chair: E.Shapiro

On the 0-1 Law for the Class of Existential Second Order
Minimal Gödel Sentences with Equality

L. Pacholski and W. Szwast
On the Deduction Rule and the Number of Proof Lines ,

ML. Bonet and SJl. Buss

Session 11
Chair: K. Apt

Logic Programs as Types for Logic Programs
T. Frühwirth, Ε, Shapiro, MY. Vardi, and E. Yardeni

A First-Order Theory of Types and
Polymorphism in Logic Programming

M.KiferandJ. Wu
Prop revisited: Propositional Formula as Abstract Domain
for Groundness Analysis

A. Cortesi, G. Fili, and W. Winsborough
Constructive Negation for Constraint Logic Programming . . .

Ρ J. Stuckey

Session 12
Chair: M. Sato

Higher-Order Critical Pairs
T. Nipkow

A Computation Model for Executable Higher-Order
Algebraic Specification Languages

J.-P. Jouannaud and M. Okada
Defaults and Revision in Structured Theories

Μ. Ryan

Session 13
Chair: U.Goltz

Actions Speak Louder than Words: Proving Bisimilarity for
Context-Free Processes

H. Hüttel and C. Stirling
On the Relationship Between Process Algebra and
Input/Output Automata ,

F.W. Vaandrager
A Compositional Proof System for Dynamic Process Creation

F. de Boer
A Partial Approach to Model Checking

P. Godefroid and P. Wolper

Author Index

xvii

An Inverse of the Evaluation Functional
for Typed λ-calculus

U . Berger

Mathematisches Institut
der L M U München

8000 München 2

Η. Schwichtenberg

Mathematisches Institut
der L M U München

8000 München 2

A b s t r a c t

In any model of typed λ-calculus conianing some basic
arithmetic, a functional p - * (procedure—* expression)
will be defined which inverts the evaluation functio
nal for typed X-terms, Combined with the evaluation
functional, p -e yields an efficient normalization algo
rithm. The method is extended to X-calculi with con
stants and is used to normalize (the X-representations
of) natural deduction proofs of (higher order) arithme
tic. A consequence of theoretical interest is a strong
completeness theorem for βη-reduction, generalizing
results of Friedman [1] and Statman [31: If two X-
terms have the same value in some model containing
representations of the primitive recursive functions
(of level 1) then they are provably equal in the βη-
calculus.

0 Int roduct ion
Normalization is a fundamental but expensive process
in proof theory and proof implementation. In view of
the Curry-Howard correspondence i t is natural to try
to use evaluation of typed Α-terms, which corresponds
to normalization of proofs and is available in functio
nal programming languages, to get r id of the burden
of implementing a normalization procedure 'by hand'.
However in trying so, one is faced with two problems:
1. Terms containing free variables are not accepted by
the compiler. 2. I f the term is of functional type, the
normalized procedure is not shown but only a message
that the result is some procedural object.

Although both problems seem to be implementation
dependent, they may be formulated purely mathema
tically, using denotational semantics. The denotatio-
nal value of a term of functional type is a functional
(or procedure) which is an abstract object and the
refore cannot be shown on the screen. But to solve
the second problem we do not need the procedure i t
self but a term in normal form evaluating to i t . So,
i t is our our task to define a functional p—e inverting
the evaluation functional and returning normal forms
only. The first problem asks for an environment bin
ding every free variable χ of the term to be normalized
to some functional which we wil l call mse(x) (make self
evaluating) for reasons (perhaps) becoming appearent
when looking at the definition below.

Let us briefly discuss a first guess how p—« and mse
might be defined: Because p-̂ e should return terms,
i t is clear that a model Μ in which p—*e exists must
contain (representations of) λ-terms. Therefore let,
for simplicity, M° be the set of all typed λ-terms
and Mp~*° = (Μσ)Μ'. Define p - n e , - , € M*"*0 and
msep G Μsimultaneously by

p-*e ö (r) = mse 0 (r) - r

ρ-Ηβ^ σ (α) = Xzfi .p-*ea(a(msep(zp)))

mse p_x,(r)(&) = mse< T(r(p-^ep(6)))

In the definition of p — (a) the bound variable zp

must be 'fresh', i.e. whenever a is the value of a term r
then zp must not occur free in r , where the evaluation
of r takes place in an environment binding every free
variable χ to mse(x). Under this assumption i t is not
hard to show that p-ne does the job.
But how can we find a fresh z?
Being faced with this problem for the first time, we
were working with the LISP dialect SCHEME which
is a functional language but provides also some pro
cedural facilities. Therefore at the computer i t was
no problem to produce such a z. We simply used the
SCHEME procedure gensym creating a new symbol
every time i t is called (such a procedure may be easily
defined in any procedural language).
I t is the aim of this work to solve the inversion pro
blem purely functionally, i.e. inside the theory of ty
ped λ-calculus, avoiding procedural elements. This
w i l l allow us to prove some interesting syntactical and
semantical properties of typed λ-calculus. The most
remarkable one is the following strong completeness
theorem:

I f two closed typed λ-terms have the same
value in some model allowing the represen
tation of primitive recursive functions, then
they are already provably equal in the βη-
calculus.

This generalizes Friedmans 'extended completeness
theorem' [1]. Friedman requires the models to consist

CH3025-4/91/0000/0203$01.00 © 1991 IEEE
203

of the full (set theoretical) function space at all func
tional types whereas in our theorem only for types of
level 1 conditions on the model are imposed.
To achieve our aim we wi l l introduce in the Sections 2
and 3 a renaming and coding machinery for λ-terms
in a large class of models. These models wi l l be called
admissible. The point is that single terms are replaced
by families of α-equivalent terms for which the the
'fresh z' is very easy to compute. In Section 4 we
define the inversion functional for admissible models
and prove the completeness theorem. In Section 5
we construct a specific model where this functional
yields a normalization algorithm which is as efficient
as the one based on gensym. In Section 6 we extend
the results of Section 4 to λ-calculi wi th constants.
Finally in Section 7 we discuss, as an example of such
an extended λ-calculus, the —• V-fragment of (higher
order) logic and arithmetic and show how to normalize
proofs with our method.

1 M o d e l s of t y p e d A-calculus
Types are built up from ground types by — I t w i l l
suffice to consider only one ground type o. λ-terms
are constructed from typed variables xp by applica
tion (tp-°rp)p and abstraction (Xxp.sa)p^a. A ^ is
the set of terms (of type p). We wi l l frequently omit
types and parentneses i f they can be recovered from
the context. Iterated applications are associated to
the left and application binds more than abstraction.
For example Xx.rst stands for Ax.((rs)t) .

As for the notion of a model we follow Friedman [1]
with some change in notation. A pre-structure Μ con
sists of a set Mp, mappings Apy. Μρ-*σ χ Mp —• Μσ

and equivalence relations = p on Mp which are congru
ences for the APta} i.e.

a <r a',6 =p b' =>> APtCab =σ APi9a'V

Furthermore we require extensionality

V6 G MpAPi<fab =σ APi<7a'b α =ρ^σ a'

Hence all the = σ are completely determined by = 0

because

α =0^σ a' V6 G MpAp^ab =, A^a'b

I f 6,6' G Mp then 6 = 6' wi l l always mean 6 =p b1.
Furthermore we w i l l write ab for APyüab and wi l l again
associate to the left.
To define models we need environments which are
type respecting mappings from the variables to M .
Let ENV be the set of environments. For every en
vironment η} variable xp and α G Mp the environ
ment η[χρ a] is defined by η[χρ a](xp) = a and
η[χρ Η* a](y) = η(ρ) i f y φ xp.
A X-model is a pre-structure Μ together with map
pings I · 1'·: Ap χ ENV Mp s.t. (omitt ing types)

1*1»? = = l*Mrfo> |λ*.$|τ?α = \8\η[χ ι - α].

We write Μ \=η r = s i f in Μ the equation \τ\η = |S|T7
holds. Μ \= r = s:<& ¥η:Μ \= r = s. Common
λ-models are the ful l set-theoretic models Τ β where
T% = Β is any set and T j p * = T £ T * [1], domain-
theoretic models D where D° is a domain and Dp~*a

is the set of continuous functions from Dp to D° or
the Kleene-Kreisel functionals. A nice constructive
λ-model is the structure HEO of hereditarily effective
operations where H E O p consist of natural numbers
and APi<Ten = {e}n [4].

2 N o r m a l forms a n d α - e q u a l i t y
/3-reduction, based on ^-conversion (Xx.r)s \-+ r\s/x],
and /?-normalforms are defined as usual. We wi l l pre
fer long ß-normalforms which have the form

\ζ{ι...λχζ*Υι σ ^ ° 8 γ sk

with s\,..., sk in long /?-normalform (σ χ —• . . . —•
ak —• ο is associated to the right) [3, §0]. Obviously
each term in /?-normalform may fee transformed into
long /?-normalform by suitable 77-expansions. The
refore each term r may be transformed into a uni
que long /?-normalform r* by /^-conversions and 77-
expansions.
I t is common (and was done above) to identify α-equal
terms i.e. terms interconvertible by bound renaming.
However, for the algorithms we w i l l define, concrete
λ-terms with specific bound variables are needed. For
every finite 0-1 sequence Jb let akr be the result of
replacing each bound variable ya in r wi th binding
position / G {0 ,1}* by (* denotes concatenation).
We can make this precise t>y defining inductively

akx = x

akrs = (a * * 0 r) (a * * i s)

«k(Xyp-r) = Xxlak.o(r[xp
k/yP))

L e m m a 1 .

(a) r =a s => akr = aks.

(b) If r contains no free variables of the form xk+i
then otkr = α r .

Proof: Induction on the length of r . •

By this lemma, for every term r G A p , the term family
E M B r : {0 ,1}* — A>, defined by

EMBrifc : = ak(r)

may be viewed as a representation of r (by (b)) which
abstracts from α-equality (by (a)), (b) also tells us
how toA recover Aan α-variant of r from E M B r : Take
EMBrJk where Jb is such that there is no index in the
finite set {/ G {0, free in r } extending k. This
set can be computed easily because a variable in r
is free in r iff i t is not changed in EMBrfc when k

204

changes. Therefore we only need to determine all /
s.t. x\ appears in EMBre and EMBrO at the same
position (e is the empty sequence, 0 stands for the
sequence containing only 0). In fact ib only depends
on E M B r and is well defined not only for E M B r but
for any term family F : {0,1}* —• A. Therefore we
may define E X T R A C T (F) : = EMBFJfe. Let us sum
marize some properties of E M B : A —• A^ 0 , 1 ^* and
E X T R A C T : A ^ 0 ' 1 * * —• A.

L e m m a 2.

(a) r = e a =• E M B (r) = EMB(«) .

(b) E X T R A C T (E M B r) = e r .

(c) EMB(EMBrib)ib = EMBrfc.

Proof: (a) : is Lemma 1(a) and u <=" follows from
(b) of this lemma, (b) follows from Lemma 1(b) and
the definition of E X T R A C T , (c) is proved by induc
tion on r . •

3 A d m i s s i b l e λ - m o d e l s and p r - m o d e l s
Now we tackle the problem of inverting the evalua
tion functional | · |. Because the final solution wi l l
be rather technical, i t might be helpful to sketch the
algorithms in a particular model where things are
simple. Suppose Μ is a λ-model s.t. M° contains
syntactical material such as indices (0-1 sequences)
and λ-terms and assume that all usual syntactic ope
rations exist in Μ. In particular EMB G M°~*° and
EXTRACT G M(°^-° (We assume that Μρ~*σ con
sists of set theoretic functions). The inversion functio
nal wi l l be based on funct ional Φρ G Mp~*(0~*0) and
» , G Λί<β->β>-*> defined by

Φ 0 Γ = E M B r

Φ β / = E X T R A C T /

Φ^σαί = λχ£ .Φ ρ (α(Ψ ρ (ΕΜΒχ£))) (* * 0)

Ψ ρ ^ / α = (ί-ΑΡΡ/(Φ,β))

where f-APP is application for term families i.e.
f -APP(EMBr)(EMBs) = EMB(rs) should hold. The
crucial property of Φ is

• If r is a closed term in long /?-normalform then
Φ|Γ| = EMBr .

Now we define p-*ep: Mp —• Ap by

ρ-Ηβ,(α) = EXTRACT(4»,a) .

This works because i f α G Mp is λ-definable then there
is a term r in long /?-normalform s.t. |r| = α and
consequently

|p-*ep(a)| = IEXTR ACT(EM Β r) | = |r| = a,

i.e. ρ-πβρ(α) is a term with value a. Furthermore, for
closed r G A p ,

norm(r) : = p-*,(|r|)

is the long /?-normalform of r , because |r| = |r*| and
therefore

norm(r)
= EXTRACT^,|r*|)
= E X T R A C T (E M B r *)

= « r*

which means that norm(r) is (as an α-variant of r *)
the long /?-normalform ot r as well. A third conse
quence is a completeness result for /?77-reduction: Let
r, 8 G A p be closed wi th |r| = Then norm(r) =
p-iep(|r|) = p-«p(|s|) = norm(s) and therefore r and
s are provably equal in the /?t7-calculus.
To prove the stated property of Φ for closed terms, one
has to show a more general statement involving also
Φ and open terms. For any substitution θ define η$ G
ENV by η9{νρ) - Φ , (ΕΜΒ(00*)) . Now i t is an easy
but very instructive exercise to show (by induction on
r distinguishing the cases ρ = ο and ρ φ ο) that the
equation

Φ{\ΑηΒ) = EMB(r0)

holds for every term r in long /?-normalform. A detai
led proof of this equation in a more general framework
wil l be carried out in Lemma 5 in the next section.

Now we w i l l precisely describe the requirements on a
λ-model making these constructions possible. In fact
we w i l l describe a more general situation which wi l l
strengthen our completeness result and allows for the
definition of an efficient normalization procedure.
Call a λ-model admissible i f there are types f (type
of term families) and L (type of indices), coding fun
ctions f .]° :A — Αί°, Γ·|':{0,1}* — Ml and objects
append G M * " * ' " * * , mvar p G M 4 " 4 0 , app G M°^°^°,
abst p G M^°^° (for every type p), emb G M°~* f ,
fun G M f ~^ 4 "*°) and extract G M^°^° s.t. the fol
lowing holds (omitt ing types)

(append) append fir] [7] = \k * f|

(mvar) mvarp|"Jfc] = \x

(app) appfrlfel = fr«|

(abst) abet pr*lM = Γλ**·Γ1

([.]) [r] = |Y| => E M B r = EMBs

(emb) E M B r = EMBs => embfr] = emb|Y|

(fun) fun(emb|"r])fjbl = [EMBrfc]

(extract) VJb: afibl = Γ Ε Μ Β Γ Μ

=> extract(a) = [E X T R A C T (E M B r)]

205

A l l infinite λ-models mentioned in Section 1 are easily
seen to be admissible by letting ι = ο and f = ο —• ο.
Because the definition given above is not very com
prehensible, we wi l l define a more natural, smaller but
stil l very large class of λ-models, showing that admis
sibility is in fact a very weak requirement.
Call a λ-model Μ a pr-model i f all binary primitive
recursive functions are represented in i t . This shall
mean that there is an injection ν:ω —» M° and for
every binary primitive recursive function Α: ω 2 —• u;
an object Λ € M°"*°"*0 s.t. Λ(ι/η)(ι/τη) = u(hnm) for
all n , m € u;. In fact in a pr-model all primitive recur
sive functions are represented because every primitive
recursive function is explicitely definable from binary
ones. However we wi l l only need that in pr-models
all unary and binary primitive recursive functions are
represented.

L e m m a 3. Every pr-model is admissible.

Proof: Let r i , Γ 2 , . . . resp. Jbi, £ 2 , . . . be effective re-
piti t ion free numberings of A resp. {0 ,1}* . 'Effective'
shall mean that there are primitive recursive functions
APPEND, MVARp, APP, ABST, EXEMB and
ALPHA s.t.

*APPEND(n,m) = kn*km,

rMVAR,(n) = XP
kn

rAPP(n,m) = r n r m

^ABSTp(n,m) = ^xkn
rm

ΓΕΧΕΜΒ(η) = E X T R A C T (E M B r n)

rALPHA(n,m) = E M B r n f c m

In the previous section we
defined E X T I U C T f E M B r) = EMBrJb where k can
be computed from EM Β re and EMBrO. Hence we
may assume furthermore that there exists a primitive
recursive function I N D E X T s.t. i f EMBre = r n and
EMBrO = r m then

EXTRACT(EMBr) = E M B r J b I N D E X T (n i m)

Now we turn Μ into an admissible model by letting
t = 0, f = o, [r n] ° = i/n, \kny = i/n, append =
APPEND, mvar p = M V A R , , app = APP, abst p =
ABSTp, emb = EXEMB, fun = A L P H A and define
extract € M^°^° by

extract(a) = a(INDEXT(afcl)(a[OD)

extract exists in Μ because i t is explicitely defined
from elements of Μ and Μ is a λ-model. We have
to verify the laws for admissibility, (append), (mvar),

app), (abet), ([·]) and (emb) clearly hold,
fun):

fun(embrr„l)rfcml
= ALPHA(EXEMBz/n)(i/m)
= i/(ALPHA(EXEMBn)m)
= |"r ALPH A(EXEMBn)ml
= TEMBrEXEMBntml
= [E M B (E X T R A C T (E M B r n)) Jkm"l
= rEMBr n Jb m]

by Lemma 2 (a) and (b) .
(extract): Let EMBre = r n and EMBrO = r m and
assume a\k] = [EMBrJb] for all Jb G {0 ,1}* . Then in

farticular a(Y| = [EMBre] = [r n] = i/n and likewise
a0] = um. Hence

extract (a)
= a(INDEXT(a[e]) (a[o]))

= a(INDEXT(i/n)(i/m))
= a(i/(INDEXTnm))
= ö[fclNDEXT(n,m)]
= [EMB rtiNDEXT(n ,m)]
= [E X T R A C T (E M B r)]

using the assumption again. •

To improve the readability of the calculations in the
next section we introduce some auxiliary objects. Let
Μ be an admissible model and define f-extract 6
M f ^ ° , f-app G M f - * f - * f and fam € M^°^{ by

f-extract / = extract (fun/)

f-app/<7 = emb(app(f-extract/)(f-extract<7))

fam(a) = emb(extract(a))

L e m m a 4. In every admissible X-model Μ the follo
wing equations hold:

(a) f-extract(emb[r]) = [E X T R A C T (E M B r)]

(b) emb(f-extract(emb[r])) = emb[r]

(c) f-app(emb[r])(emb[s]) = emb[rs]

(d) VJb : a[Jb] = [EMBrJb] => fam(a) = emb[r]

Proof:
(a) : f-extract(emb[r]) = extract(fun(emb[r])). By
(fun), fun(emb[r])| Jb] = [EMBrJb] for all Jb and hence,
by (extract),

extract(fun(emb[r])) = [E X T R A C T (E M B r)]

(b) : E M B (E X T R A C T (E M B r)) = EMBr , by Lemma
2. Hence, by (emb), emb[EXTRACTfEMBrVl =
emb[r] . Therefore, by (a), emb(f-extract(emb[r|)) =

206

emb[r|.
(c) : By (a), (app) and (emb), we have

f-app(emb f r])(emb f s])
= emb(app(f-extract(emb f r]))(f-extract (emb |Y|)))
= emb[(EXTRACT(EMBr)) (EXTRACT(EMBs)) l
= emb \rs]

(d) : I f a\k] = [EMBrfc] for all k then, by (extract),
extract(a) = [E X T R A C T (E M B r)] . Hence

fam(a) = emb(extract(a)) — embfr]

by (emb). •

4 I n v e r s i o n , normal izat ion and com
pleteness

Let Μ be an admissible λ-model. By recursion on ρ
we define terms Φρ G A ^ f and Φ ρ G A f ~ * p :

Φ ο = emb,
Φ σ = f-extract,
Φρ^σ = λα^σ.fam(λp^abstp(fun(Φ< τ(αV'b]))(pO)))

where t/>[p] stands for ¥ p (emb(mvar p p)) and pO is short
for appendpfO].

Φρ^„ = λ/ .λα>. * σ (Γ - Α ρρ/(Φ ρ α)) .
Here of course e m b , . . . , f-app denote constants, i.e.
variables with the valuations e m b , . . . , f-app G Μ re
spectively. As with e m b , . . . , f-app the values \ΦΡ\ G
M p ~ * f resp. |ΦΡ| G M*"** are denoted by Φ ρ resp.
Φ ρ again. Furthermore for f,g G M f we wi l l write
fg for f-app/(j and /1/2...Λ1 wi l l be associated to
the left. Clearly for ρ = />i —•...—•/>„ —• ο and
αϊ G Mpl,...,an G M p *

Φρ/αχ . . .a„ = f - e x t r a c t (/ ^ P l a i) ^ , w a n))

For any substitution θ define η$ G ENV by η$(νρ) =
« (e m b | V l) .

L e m m a 5 (M a i n L e m m a) . For every X-term r G
A p in long β-normalform and every substitution θ

Φ,(|Γ|ι„) = βιηΙ>(ΓΓ01)

Moreover if ρ = ο then \τ\ηφ = \rff].

Proof: Induction on r . Recall that fg stands for
f-app/0.
1. ρ = ο, r = χΡι-+—>Ρ*-°8{1 . .

\xsi ...8η\η$
= *(embria?l)|ei|»?...|«n|»7
= Γ-βχ^Ι((βπιΒΓχί1)(Φ|βι|ν).. . (Φ | « η Μ)
= f -extract((emb[xÖ]) (embf5iöl) . . . (emb|"s„0l))
= f-extract (emb \(xs\ ... sn)0])
= [EXTR A C T (EM Β r 0)1

But EXTRACT(EMBr0) = α r0, by Lemma 2(c)
and since substitution is determined only up to in
equivalence, we may write EXTRACT(EMBrf l) = τθ.
2. ρ σ, r = λ χ ρ . * σ (w.l.o.g. 0 χ ρ = xp and x p not
free in Oy for any y φ xp free in β σ) :
Φρ-» σ(|λ2 .*|ΐ)*) = fam(a), where α G Μ*" 1 , 0 is s.t.
(using the same abbreviations as in the definition of

ap = abst,p(fun^<,(|s|ty[£ Φ\ρ]]))(ρΟ))

for all ρ G Af*. We have to show fam(a) =
embf(A2 .e)0] . By virtue of lemma 4 (d) i t wil l suffice
to show a\k] = |ΈΜΒ((λχ.*)0)*1 for all Jfc G {0,1}*:

a\k]
= &8ίρμ](ΐηη(Φσ(*\ηθ[χ -> if>[\k}))))(Γ*1 * PD)
= βΙ^^ΛΚΛιιι ίΦ^ίμΐιι^^]))^ * 0])
= abstp[Jbl(fun(embrs(Ö[a: ^ χ£])1)|** * Ol)
= 3b8tp\k]\EMB(s(e[x^xk]))(k*0)]
= Γλχ£.ΕΜΒ($0[χ*/χ])(* * 0)1
= ΓΕΜΒ(λχ.(50))*1

Because Xx.(sO) = (λχ.$)0 we are done. •

For every 6 G fA"| let 6"" G A be any term s.t. |~6~] = 6.
By (emb), we then have [r] ~ = a r for every r G A.
Now define partial functions p-*e p: Mp —• Ap by

p—«p(a) ~ (f -ex t rad^ p (a))~

Call a G A/ p λ-definable i f there is a closed term r G
A ' s.t. |r| = a.

T h e o r e m 1 . Let Μ be an admissible X-model.

1. I n v e r s i o n : If α £ Mp is X-definable then
p—«p(o) is a closed term of type ρ s.t. |p-«p(a)| =
a.

2. N o r m a l i z a t i o n a n d s u b s t i t u t i o n : For every
term r G Ap and every substitution θ

p-*v(l rlw) =<* r * °

3. Completeness : If Μ (= r = s then r and s are
provably equal in the βη-calculus.

Proof: 1 . : Let α = |r| wi th r G A p closed and in long
/?-normalform. By Lemma 5 and Lemma 4(a)

f -extract^pa)
= f-extract (Φρ I r I)
= f-extract (emb [r|)
= f E X T R A C T (E M B r) !

Hence p-nep(a) = f E X T R A C T (E M B r) l ~ = e r .

207

2. :

f -extract^ p |r | 7 j0)
= f-extract(<&p |r*\η$)
= f-extract(embrr*i])
= fEXTRACT(EMB(r*0))]

Hence p-ep(|r|r/,) = fEXTRACT(EMBr*0)] = « r ' 0 .
3. : I f Μ \= r = s then |r|iftd = |*|ffci and therefore, by
2., Γ * = α 5 * . •

Let us reformulate this theorem in terms of the more
natural pr-models (see Section 3). Recall that wi th
every pr-model Μ we associated an injection ι/:ω —•
M° and that |Vj = ι/n whenever r = r„ in the (fixed)
effective, repetition free numbering Γχ, Γ 2 , . . . of A. We
call [r] the canonical code of r in Af.

I n v e r s i o n a n d n o r m a l i z a t i o n t h e o r e m
In a pr-model Μ there exists for every ρ an object
invp G Mp~*° s.t., for every λ-definable a G M p , inv p a
is the canonical code of a closed term r G A p in long
ß-normalform s.t. |r| = a. Hence, for every term s
of type />, invp|s| is the canonical code of the long
ß-normalform of s.

Proof: By Lemma 3, Af is admissible. Hence,
by the previous theorem, we may define i n v p

by inv p a = f-extract(4^pa). We could define
even simpler inv^a = Φρα because in pr-models
f-extract(embjV]) = embfr] and therefore, for clo
sed r G A p , t-extract^ p|r|) = f-extract (embfr]) =
embfr] = Φ Ρ|Γ|. •

Completeness T h e o r e m
I f r and s are X-terms of type ρ s.t. there exists a pr-
model Μ in which Μ f= r = s holds, then r and s are
provably equal in the βη-calculus.
Proof: By Lemma 5 and Theorem 1.3. •

Note that the conditions on a λ-model for being a
pr-model refer only to the types ο and ο —• ο —• ο.
For higher types nothing is required. Thus this com-
pletenss result is considerably stronger than that ob
tained by Friedman [1 , Theorem 3] because there the
models are required to be ful l type structures T # over
an infinite set B. Statman proves another comple
teness theorem [3, Theorem 2]: For every closed λ -
term r there is a finite set E, such that for all clo
sed s, TE \= r = s r —βη s. Let us briefly in
dicate how this may be generalized by our method:
Call a λ-model admissible below a natural number n ,
i f i t has the same properties as an admissible model
but everything is restricted to indices of length < η
and terms of length < n built up from η variables.
I f any syntactical operation exeeds this finite set of
indices and terms, then an error element should be
retourned. Clearly this determines an increasing se
quence of finite sets of terms A n having A as their

union s.t. for every model Μ admissible below π and
every closed r in long normal form, Ρ - « Μ (Ι Η) = R

i f r G A n and ρ-*Λ/(Μ) = e r r o r otherwise. Now
let Μ be admissible below η and let r be closed s.t.
r* € A n . Then for every closed s s.t. Μ \= r = s we
have p-«A/(k|) = r* φ error and hence s* G A n and
r* = s*. Because clearly for every η there is a finite set
Ε s.t. TE is admissible below η we have generalized
Statmans theorem.
The completeness theorem may be formulated equiva
lent^ as follows: In every pr-model Μ and every type
Ρ = Pi pn ο

Vr, s G Ap(r φβη s =• 3η G ENV, α : \τ\ηα φ |e|qa)

holds where η and α: = α χ , . . . , a n G Mpl χ . . . χ Mpn

may depend on r and s. But in fact η and α may
be chosen independently from r and 8 because we can
take η = Tfaj and α,· = ¥ p . (emb(zQ Q)). Therefore

the stronger formula

3η G ENVBSVr, s G A ' (r φβη s => \ν\ηα φ |φα)

is true in every pr-model.

5 A n efficient normalization algorithm
So far we were studying the theoretical consequences
of our inversion method. Now we w i l l discuss the
question i f our results also are of practical interest.
In particular we wi l l examine the normalization pro
cedure defined in the previous section. This proce
dure is based on Φ and Ψ and hence on EMB and
E X T R A C T which are rather expensive operations.
Now i f we work in the naive model described in Section
3, emb = EMB and extract = f-extract = EXTRACT
and hence we have not gained very much on the com
putational side. In pr-models the algorithms are even
worse. Therefore, i f we want an efficient normaliza
tion procedure, we must look for a more sophisticated
model where emb and extract are as simple as possi
ble. A t this point the generality of admissible models
pays out: We can find an admissible λ-model where
emb = extract = identity. Before we define such a
model, let us look how Φ and Φ may then be compu
ted.
Assume Μ to be an admissible λ-model s.t. f = o,
M° = Λ* 0· 1**, Μρ-σ = (Mp)M\ Αρ>σ = function
application, \r\° = E M B r and emb = f-extract =
identity. Then Φ0 = Φ σ = identity and by Lemma
5 for r = Xx.s G Αρ"~*σ in long /?-normalform, any
substitution θ and any Jb G {0, l } *

Φρ - ,Οφ*)*
= emb(\re])k
= ΕΜΒ(Χχ.8(θ[χ Η- *])) *
= λ*£.ΕΜΒ(*(0[χ ι - Xk]))(k * 0)
= Xxl.*p(\8\q$[s„gk])(k*Q)
= Χχ>.Φρ(\8\ηθ[χ H+ *p(emb\xk])])(k * 0)

= λ * £ . Φ ρ (| * | ^ (» ρ (Ε Μ Β * *))) (* * 0)

208

i.e, for all a G Μρ~*σ of the form α = |r|^

Φ ^ α * = λ * 2 . Φ , (β (» , (Ε Μ Β * *))) (* * 0).

Furthermore for t € Αρ~*σ and r G A p , defining
f-APP/0* = / (* * O) * (* * l) ,

«^^(EMB0|r|i»
= »,(f-app(EMB<)|r|i»)
= Φ , (f-app(emb \t])(emb |>0~|))
= *,(embf*(r0)"|)
= « , (E M B (i (r i)))
= » , (f - A P P (E M B i) (E M B (r i)))
= Φ ^ - Α Ρ Ρ (Ε Μ Β *) (Φ ρ | φ *))

i.e. for / G EMB(A'~**) and t of the form 6 = |r|q*
we have

V * * / * = »(Γ-ΑΡΡ/(Φ,*)) .
These very easy recursion equations for Φ and Φ sug
gest to define Φ Ρ G Mp^° and Φ ρ G M p " *° by

Φ β / = Ψ β / = /

Φ ρ ^ σ α * = λ χ £ . Φ ρ (α (Ψ ρ (Ε Μ Β χ *))) (* * 0)

* ^ , / 6 = * , (f - A P P / (5 , 6))

for α / / / E M ° , a G Μρ^σ and 6 G Μ ρ .
Now i t can be shown that for r G A p in long β-
normalform again the equation Φ ρ (| Γ | ^) = EMB(r0)
holds, where ηΛχρ) = Φ ρ (Ε Μ Β χ ρ) , wi th a proof much
simpler than the proof for Φ in Lemma 5.
Thus for r G A p containing no variables x* free we get
an efficient normalization algorithm by defining

norm(r) = *P{\r\qxd)e.

The hard part in the computation of norm(r) is to
compute |r|r/id which is done by the compiler of a func
tional programming language. Therefore, this norma
lization procedure w i l l be as efficient as the compiler
is.
Note that the definitions of Φ and Φ are external, i.e.
Φ and Φ are not defined as the values in Μ of certain
Α-terms. The definition takes place in a different λ -
model Μ over ground types ο and__t with M° = A,
M * = {0,1}* and MP^° = (Μ°)Ή' (Hence Mp =

I t remains to define an admissible λ-model Μ with
the properties postulated at the beginning of this sec
tion: M° = Α<°·1>·> Μρ^σ = {MP)M\ APt<T = fun
ction application, ι = f = o, M ° = EMBr, [Jfc] =
EMBx£. For the definition ot the remaining func
tions we use the auxiliary function ~' :M° —• {0,1}*
defined by F' = Jk i f Fe = x°k) otherwise Fl -

anything. Now define appendFG = \Fl * G '] ' ,
m v a r p F = E M B (x ^) , app = f-APP, abs t p FG =
E M B (A x ^ . E X T R A C T (G)) , embF = F , funFG =
E M B (F G ') , extractaJfc = a[Jfe"|Jfc.
Let's verify the laws
for admissibility: (append), (mvar), (app), (abst), ([.])
and (emb) clearly hold.
(fun): fun(embfrl)fifel = EMB (emb(E M B r) pfc]*) =
tEMBrJbl.
(extract): I f f a i l = [EMBrJfcl then extracted =
a\k]k = [EMB Hb] Jfc = EMB(EMBrJfc)Jfc = EMBrJfc
by Lemma 2 (c). Because by assumption this
is true for all Jfc, we get extracta = E M B r =
E M B (E X T R A C T (E M B r)) = [E X T R A C T (E M B r)] .

β Integrating constants
In this section we w i l l extend our method from pure
terms to terms containing constants. Suppose we
are given a set C of typed constants equipped with
an operational semantics o p c given by C-conversions
cr\... r n 8 for several c G C . These, together with
/^-conversion and rj-expansion, induce a reduction re
lation —*c o r * the set Ac of λ-terms possibly containing
constants from C. Call r G Ac in C-normal form i f i t
is in normal form wi th respect to -+c> i.e., r is in long
^-normal form and doesn't contain C-convertible sub-
terms, ορς is weakly normalizing iff every term Ac is
reducible oy —•c, ^-reduction and τ^-expansion to a
term in C-normalform.

A C-model is a λ-model Μ together wi th an inter
pretation CM G Μp for every constant c G C of type
p. This extends to an interpretation |r|r; G C for all
r G Ac and all η G ENV in the obvious way. A C-
model Μ is called admissible for o p c iff i t is admissible
(where of course [r] has to be defined for all r G Ac)
and for all substitution θ the following holds:

(CI) I f r s by a C-conversion then |r|^ = \sfae.

(C2) For all terms of type ο of the form csi... (c a
constant) in C-normal form

\c8i...8n\ = Φ(€πΛ[ο|)|5ι|7/*...|5η|τ7*.

Now we may extend the results of Section 4:

L e m m a 6 (Extended M a i n L e m m a) . Let Μ be
a C-model admissible for opc. Then for every r G A£
in C-normal form and every substitution θ

Φ,(|Γ|ι ? ί) = βιηΚΓΓ(?1)

Moreover if ρ = ο then \rfa$ = \rff\.

Proof: Copy the proof of Lemma 5. There is only one
additional case, namely when ρ = ο and r has the form
cs\ . . .<sn. But then (C2) applies. •

209

T h e o r e m 2. Let o p c be weakly normalizing and let
Μ be a C-model admissible for o p c .

1. I n v e r s i o n : If α G Mp is λ-definable from C then
ρ-«ρ(α) is a closed term in A£ s.t. |ρ-Ηβρ(α)| = α.

2. N o r m a l i z a t i o n a n d confluence: The reduc
tion relation —•c is confluent. In particular every
term r Ε A£ reduces to a unique C-norma Iform
r* which my be computed by

P^e,(|r|?7id) = r*

3. Completeness: If Μ ^ r = 8 then r and 8 are
provably equal in the ßrfi-calculus.

Proof: Clearly, by (C I) , \r\q$ = |«|ffe i f r —>c s.
Hence, if r — s wi th an β in C-normal form, then
\Γ\η$ = |S|TJ0. NOW we may prove the theorem in the
same manner as Theorem 1, using Lemma 6 instead
of Lemma 5. •

7 Normalization of proofs
By the Curry-Howard correspondence every proof in
the —» V-fragment of Gentzens natural deduction cal
culus may be represented as a typed λ-term. The
type of a term (derivation) άφ is the formula φ being
derived, variables correspond to assumptions and λ -
abstraction resp. application correspond to the intro
duction resp. elimination rules for —• and V. This cor
respondence is the basis for the use of proofs as pro
grams, where execution of programs is performed by
normalizing proofs [2].
We now show how the normalization procedure de
rived in the previous sections may be used for the
normalization of proofs. A t first glance there seems
to be a difficulty because we only considered terms
typed by ο and ρ —• σ and not by arbitrary —* V-
formulas. But note that the normal form of a typed
term is completely determined by the underlying type
free term (obtained by erasing all types). Therefore we
only need to define for every —• V-formula φ a type
τ(φ) (built up from ο and —•) such that i f d is a de
rivation then r(d) is a wellformed typed term, where
r(d) is obtained from d by replacing all formulas φ
by τ{φ). The definition of τ is obvious: τ(π) = ο for
atomic formulas π, τ(φ —> φ) τ{ψ) —• τ(φ) and
r(Vxp<p) = τ(ρ) —• τ(φ), where for types ρ over gro
und types other than ο, r(p) is defined by replacing all
ground types by o. Hence a derivation d of a formula φ
may be normalized by computing p-He r(v>)(k(d)|^id).
A t least from this we obtain the type free term under
lying the normal form of d. A t the end of this section
i t is indicated how we can recover therefrom the com
plete normalized derivation.
One important point is sti l l missing: In the V-
elimination rule, which may be written as the term
construction rule (c f ^ r) ^ / * ! the derived formula is
obtained by a substitution. Therefore i f r and s are of
functional type then <p[r/x] may contain non-normal

object terms which we may want to normalize. These
substitutions and normalizations may be performed
by our method i f we represent formulas as λ-terms
of a new ground type formula. Predicate symbols for
predicates over objects of type p\,...,pn are then con
stants of type p\ pn —• formula, implication
is a constant of type formula —• formula —* formula
and quantification over objects of type ρ is represen
ted by a constant V p of type (p —• formula) —• formula.
Vxp<p then stands for Vp\xp.<p. Now the normal form
of <p[r/x] may be computed by normalizing (λχ .^)Γ .
Since we have no conversion rules for the logical
constants —• and V p , we have, by (C2) of the pre
vious section, to interpret them by mse0—0_>0(—•) and
mse(T(p)^ (< >)_ 0(Vp) respectively, where for r Ε Ap we
define mse p (r) = * p (e m b f r]) (make self evaluating,
see introduction).
So far we have only considered pure logic. To nor
malize proofs in (higher order} arithmetic we have to
deal wi th further constants: A t the object level con
stants 0 for zero, flt, flf for the boolean objects, S for
the successor and R p for recursion operators of type

rec(p) \— ρ —+ (nat —•/>-+/?)—• nat —• p.

At the proof level constants I y * ^) for induction over
the natural numbers

ind(V*vK*)) : = V>(0) — Vx(v?(z) — <p(Sx)) -+ Vx<p(x),

constants IyJ^J*,) for boolean induction (case analysis)

and a t ruth constant Τ of type atom(t)t), where atom is
a constant of type boole —• formula, i.e., a predicate
symbol (in fact i t suffices to have atom as the only
predicate symbol).
Note that we can define proofs of the 'stability axioms'
- i - i ^ —• φ for every arithmetical formula φ by induc
tion on φ (~*<p := φ —• atom(jtf)). For prime formu
las a t o m i t l stability is proved by boolean induction.
Hence, i t 3 and V are defined as usual, we get full
classical arithmetic.
In order to use arithmetical proofs as programs, the
purely logical /^-conversion has to be supplemented
by conversion rules for the recursion and induction
constants. W i t h a recursion constant Wp we associate
the usual conversions

R prsO r

Rprs(St) st(Rprst)

Similary for induction over the natual numbers I y * ^)
(omitting formulas)

Inat</eO d

Inat</e(S<) Η- etil^det)

210

and for case analysis I y J ^)

I b o o l e d e t t t i - > d

I b o o l e d e j t f h-> e

Note that r(ind(Vxy>(x))) = r(rec(/>)) provided
τ(φ(χ)) = r(/>). Hence for the purpose of normaliza
t ion, recursion and induction over the natural numbers
may be identified.
By the results of the previous section we have to inter
pret the arithmetical constants in an admissible mo
del Af in such a way that (C I) and (C2) are satis
fied. Hence we define O M = mse0(Q) (= [0]) etc.,
SM = mse0_>0(S) and for a recursion constant R p ,
regarded as a constant of type r(rec(p)), we define
(ommitt ing types)

R M ab\0] = a,

RMab\Si] =b\t}(RMab\t]),

R M ate = mseRa6c otherwise.

Case analysis is interpreted similary. Of course we
must have chosen a model Μ in which RA/ exists (For
the model defined in Section 5 this is certainly the
case). The properties (CI) and (C2) are rather ob
vious. (CI) immediately follows from Lemma 6(a)
(which doesn't use (CI) !) . To prove (C2), Lemma
6(a) is needed too. But Lemma 6 in turn needs (C2).
Therefore one has to prove (C2) and Lemma 6 simoul-
taneously by induction on the length of the term.

Now, because of the well known fact that the ope
rative semantics defined by the conversions above is
(even strongly) normalizing, we can apply Theorem
2.2 which gives us a normalization algorithm.

Remark: Our arithmetical system includes the calcu
lus of primitive recursive funct ional in all finite types
(Gödels Τ, R-A-calculus [1]). Because the ful l type
structure over the naturals T w clearly is admissible, we
can conclude from Theorem 2.3 that for closed pr imi
tive recursive terms (of finite type) T w r = s holds
if and only if r and s nave the same normal form. Since
normal forms may be computed, this means that equa
lity between pr im. rec. terms in Ύω is decidable. This
sharply contrasts Friedmans result that, for pr im. rec.
terms r, s, the relation Ύω (= r = s is complete IIJ [1,
Theorem 6]. The point is that the arithmetical con
stants are interpreted differently: In [1] they operate
on the natural numbers as usual whereas we coded all
(possibly open) terms into u>. Therefore Ύω \= r = s
in our sense is much stronger than in the usual sense.

Presently we experiment with an implementation of
proofs along these lines. There are two technical
points in this implementation which are worth noti
cing: 1. In an implication elimination (cf^~*^ex)^ we
don't require the formulas φ and χ to be identical. I t
suffices if they have α-identical normal forms. This

means that a big deal of (in most cases) uninteresting
equational reasoning is shifted from the proof into the
evaluation mechaism of the programming language.
2. We don't save complete proofs but only three cha
racteristic components: a list of the free object and
assumption variables together w i t h their types, the
derived formula and the underlying type-free λ-term
of the proof. I f the proof is in normalform then the
completely typed proof expression may be recovered
from these data. This yields a very compact represen
tation of proofs making i t possible to handle even very
large proofs. In [2] this has been done for proofs using
the ful l strength of Peano arithmetic.

8 Summary and conclusions
I t has been shown how to invert the evaluation func
tional for typed λ-calculus in a large class of models.
The main consequences where an efficient normaliza
tion procedure for typed λ-terms and a completeness
theorem for the /Jij-calculus. Furthermore we used the
normalization procedure to normalize natural deduc
tion proofs of higher order arithmetic.
We think that the normalization method presented
here is an excellent example for the use of the abstract
concept of funct ional of higher type in constructing
and analyzing concrete algorithms: The normalization
algorithm takes and returns concrete objects (terms)
but i t uses the evaluation procedure which returns fun
c t i o n a l in all higher types.
Our technique may be extended to infinite terms and
terms containing ful l recursion, i.e., fixed point ope
rators. We also plan to extend i t to second order A -
calculus.

References
[1] H . F R I E D M A N , Equality between funct ional ,

L e c t u r e Notes in M a t h e m a t i c s (R . Parikh,
Editor), vol. 453, Springer-Verlag, Berlin and
New York, 1975, pp. 22-37.

[2] H . S C H W I C H T E N B E R G , Proofs as Programs,
Leeds: Proof theory '90 (P. Aczel, H . Simmons,
Editors), 1991.

[3] R. S T A T M A N , Completeness, invariance and A-
definability, T h e J o u r n a l o f S y m b o l i c Logic,
Vol. 47, no. 1, 1982, pp. 17-26.

[4] A . S. T R O E L S T R A , Metamathematical investi
gation of intuitionistic arithmetic and analysis,
L e c t u r e Notes in M a t h e m a t i c s , vol. 344,
Springer-Verlag, Berlin and New York, 1973.

211

