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A b s t r a c t 

In any model of typed λ-calculus conianing some basic 
arithmetic, a functional p - * (procedure—* expression) 
will be defined which inverts the evaluation functio
nal for typed X-terms, Combined with the evaluation 
functional, p -e yields an efficient normalization algo
rithm. The method is extended to X-calculi with con
stants and is used to normalize (the X-representations 
of) natural deduction proofs of (higher order) arithme
tic. A consequence of theoretical interest is a strong 
completeness theorem for βη-reduction, generalizing 
results of Friedman [1] and Statman [31: If two X-
terms have the same value in some model containing 
representations of the primitive recursive functions 
(of level 1) then they are provably equal in the βη-
calculus. 

0 Int roduct ion 
Normalization is a fundamental but expensive process 
in proof theory and proof implementation. In view of 
the Curry-Howard correspondence i t is natural to try 
to use evaluation of typed Α-terms, which corresponds 
to normalization of proofs and is available in functio
nal programming languages, to get r id of the burden 
of implementing a normalization procedure 'by hand'. 
However in trying so, one is faced with two problems: 
1. Terms containing free variables are not accepted by 
the compiler. 2. I f the term is of functional type, the 
normalized procedure is not shown but only a message 
that the result is some procedural object. 

Although both problems seem to be implementation 
dependent, they may be formulated purely mathema
tically, using denotational semantics. The denotatio-
nal value of a term of functional type is a functional 
(or procedure) which is an abstract object and the
refore cannot be shown on the screen. But to solve 
the second problem we do not need the procedure i t 
self but a term in normal form evaluating to i t . So, 
i t is our our task to define a functional p—e inverting 
the evaluation functional and returning normal forms 
only. The first problem asks for an environment bin
ding every free variable χ of the term to be normalized 
to some functional which we wil l call mse(x) (make self 
evaluating) for reasons (perhaps) becoming appearent 
when looking at the definition below. 

Let us briefly discuss a first guess how p—« and mse 
might be defined: Because p-̂ e should return terms, 
i t is clear that a model Μ in which p—*e exists must 
contain (representations of) λ-terms. Therefore let, 
for simplicity, M° be the set of all typed λ-terms 
and Mp~*° = (Μσ)Μ'. Define p - n e , - , € M*"*0 and 
msep G Μsimultaneously by 

p-*e ö (r) = mse 0 (r) - r 

ρ-Ηβ^ σ (α) = Xzfi .p-*ea(a(msep(zp))) 

mse p_x,(r)(&) = mse< T(r(p-^ep(6))) 

In the definition of p — ( a ) the bound variable zp 

must be 'fresh', i.e. whenever a is the value of a term r 
then zp must not occur free in r , where the evaluation 
of r takes place in an environment binding every free 
variable χ to mse(x). Under this assumption i t is not 
hard to show that p-ne does the job. 
But how can we find a fresh z? 
Being faced with this problem for the first time, we 
were working with the LISP dialect SCHEME which 
is a functional language but provides also some pro
cedural facilities. Therefore at the computer i t was 
no problem to produce such a z. We simply used the 
SCHEME procedure gensym creating a new symbol 
every time i t is called (such a procedure may be easily 
defined in any procedural language). 
I t is the aim of this work to solve the inversion pro
blem purely functionally, i.e. inside the theory of ty
ped λ-calculus, avoiding procedural elements. This 
w i l l allow us to prove some interesting syntactical and 
semantical properties of typed λ-calculus. The most 
remarkable one is the following strong completeness 
theorem: 

I f two closed typed λ-terms have the same 
value in some model allowing the represen
tation of primitive recursive functions, then 
they are already provably equal in the βη-
calculus. 

This generalizes Friedmans 'extended completeness 
theorem' [1]. Friedman requires the models to consist 
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of the full (set theoretical) function space at all func
tional types whereas in our theorem only for types of 
level 1 conditions on the model are imposed. 
To achieve our aim we wi l l introduce in the Sections 2 
and 3 a renaming and coding machinery for λ-terms 
in a large class of models. These models wi l l be called 
admissible. The point is that single terms are replaced 
by families of α-equivalent terms for which the the 
'fresh z' is very easy to compute. In Section 4 we 
define the inversion functional for admissible models 
and prove the completeness theorem. In Section 5 
we construct a specific model where this functional 
yields a normalization algorithm which is as efficient 
as the one based on gensym. In Section 6 we extend 
the results of Section 4 to λ-calculi wi th constants. 
Finally in Section 7 we discuss, as an example of such 
an extended λ-calculus, the —• V-fragment of (higher 
order) logic and arithmetic and show how to normalize 
proofs with our method. 

1 M o d e l s of t y p e d A-calculus 
Types are built up from ground types by — I t w i l l 
suffice to consider only one ground type o. λ-terms 
are constructed from typed variables xp by applica
tion (tp-°rp)p and abstraction (Xxp.sa)p^a. A ^ is 
the set of terms (of type p). We wi l l frequently omit 
types and parentneses i f they can be recovered from 
the context. Iterated applications are associated to 
the left and application binds more than abstraction. 
For example Xx.rst stands for Ax.((rs)t) . 

As for the notion of a model we follow Friedman [1] 
with some change in notation. A pre-structure Μ con
sists of a set Mp, mappings Apy. Μρ-*σ χ Mp —• Μσ 

and equivalence relations = p on Mp which are congru
ences for the APta} i.e. 

a <r a',6 =p b' =>> APtCab =σ APi9a'V 

Furthermore we require extensionality 

V6 G MpAPi<fab =σ APi<7a'b α =ρ^σ a' 

Hence all the = σ are completely determined by = 0 

because 

α =0^σ a' V6 G MpAp^ab =, A^a'b 

I f 6,6' G Mp then 6 = 6' wi l l always mean 6 =p b1. 
Furthermore we w i l l write ab for APyüab and wi l l again 
associate to the left. 
To define models we need environments which are 
type respecting mappings from the variables to M . 
Let ENV be the set of environments. For every en
vironment η} variable xp and α G Mp the environ
ment η[χρ a] is defined by η[χρ a](xp) = a and 
η[χρ Η* a](y) = η(ρ) i f y φ xp. 
A X-model is a pre-structure Μ together with map
pings I · 1'·: Ap χ ENV Mp s.t. (omitt ing types) 

1*1»? = = l*Mrfo> |λ*.$|τ?α = \8\η[χ ι - α]. 

We write Μ \=η r = s i f in Μ the equation \τ\η = |S|T7 
holds. Μ \= r = s:<& ¥η:Μ \= r = s. Common 
λ-models are the ful l set-theoretic models Τ β where 
T% = Β is any set and T j p * = T £ T * [1], domain-
theoretic models D where D° is a domain and Dp~*a 

is the set of continuous functions from Dp to D° or 
the Kleene-Kreisel functionals. A nice constructive 
λ-model is the structure HEO of hereditarily effective 
operations where H E O p consist of natural numbers 
and APi<Ten = {e}n [4]. 

2 N o r m a l forms a n d α - e q u a l i t y 
/3-reduction, based on ^-conversion (Xx.r)s \-+ r\s/x], 
and /?-normalforms are defined as usual. We wi l l pre
fer long ß-normalforms which have the form 

\ζ{ι...λχζ*Υι σ ^ ° 8 γ sk 

with s\,..., sk in long /?-normalform (σ χ —• . . . —• 
ak —• ο is associated to the right) [3, §0]. Obviously 
each term in /?-normalform may fee transformed into 
long /?-normalform by suitable 77-expansions. The
refore each term r may be transformed into a uni
que long /?-normalform r* by /^-conversions and 77-
expansions. 
I t is common (and was done above) to identify α-equal 
terms i.e. terms interconvertible by bound renaming. 
However, for the algorithms we w i l l define, concrete 
λ-terms with specific bound variables are needed. For 
every finite 0-1 sequence Jb let akr be the result of 
replacing each bound variable ya in r wi th binding 
position / G {0 ,1}* by (* denotes concatenation). 
We can make this precise t>y defining inductively 

akx = x 

akrs = (a * * 0 r ) (a * * i s ) 

«k(Xyp-r) = Xxlak.o(r[xp
k/yP)) 

L e m m a 1 . 

(a) r =a s => akr = aks. 

(b) If r contains no free variables of the form xk+i 
then otkr = α r . 

Proof: Induction on the length of r . • 

By this lemma, for every term r G A p , the term family 
E M B r : {0 ,1}* — A>, defined by 

EMBrifc : = ak(r) 

may be viewed as a representation of r (by (b)) which 
abstracts from α-equality (by (a)), (b) also tells us 
how toA recover Aan α-variant of r from E M B r : Take 
EMBrJk where Jb is such that there is no index in the 
finite set {/ G {0, free in r } extending k. This 
set can be computed easily because a variable in r 
is free in r iff i t is not changed in EMBrfc when k 
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changes. Therefore we only need to determine all / 
s.t. x\ appears in EMBre and EMBrO at the same 
position (e is the empty sequence, 0 stands for the 
sequence containing only 0). In fact ib only depends 
on E M B r and is well defined not only for E M B r but 
for any term family F : {0,1}* —• A. Therefore we 
may define E X T R A C T ( F ) : = EMBFJfe. Let us sum
marize some properties of E M B : A —• A^ 0 , 1 ^* and 
E X T R A C T : A ^ 0 ' 1 * * —• A. 

L e m m a 2. 

(a) r = e a =• E M B ( r ) = EMB(«) . 

(b) E X T R A C T ( E M B r ) = e r . 

(c) EMB(EMBrib)ib = EMBrfc. 

Proof: (a) : is Lemma 1(a) and u <=" follows from 
(b) of this lemma, (b) follows from Lemma 1(b) and 
the definition of E X T R A C T , (c) is proved by induc
tion on r . • 

3 A d m i s s i b l e λ - m o d e l s and p r - m o d e l s 
Now we tackle the problem of inverting the evalua
tion functional | · |. Because the final solution wi l l 
be rather technical, i t might be helpful to sketch the 
algorithms in a particular model where things are 
simple. Suppose Μ is a λ-model s.t. M° contains 
syntactical material such as indices (0-1 sequences) 
and λ-terms and assume that all usual syntactic ope
rations exist in Μ. In particular EMB G M°~*° and 
EXTRACT G M(°^-° (We assume that Μρ~*σ con
sists of set theoretic functions). The inversion functio
nal wi l l be based on funct ional Φρ G Mp~*(0~*0) and 
» , G Λί<β->β>-*> defined by 

Φ 0 Γ = E M B r 

Φ β / = E X T R A C T / 

Φ^σαί = λχ£ .Φ ρ (α(Ψ ρ (ΕΜΒχ£)) ) ( * * 0) 

Ψ ρ ^ / α = (ί-ΑΡΡ/(Φ,β)) 

where f-APP is application for term families i.e. 
f -APP(EMBr)(EMBs) = EMB(rs) should hold. The 
crucial property of Φ is 

• If r is a closed term in long /?-normalform then 
Φ|Γ| = EMBr . 

Now we define p-*ep: Mp —• Ap by 

ρ-Ηβ,(α) = EXTRACT(4»,a) . 

This works because i f α G Mp is λ-definable then there 
is a term r in long /?-normalform s.t. |r| = α and 
consequently 

|p-*ep(a)| = IEXTR ACT( EM Β r ) | = |r| = a, 

i.e. ρ-πβρ(α) is a term with value a. Furthermore, for 
closed r G A p , 

norm(r) : = p-*,(|r|) 

is the long /?-normalform of r , because |r| = |r*| and 
therefore 

norm(r) 
= EXTRACT^,|r*|) 
= E X T R A C T ( E M B r * ) 

= « r* 

which means that norm(r) is (as an α-variant of r * ) 
the long /?-normalform ot r as well. A third conse
quence is a completeness result for /?77-reduction: Let 
r, 8 G A p be closed wi th |r| = Then norm(r) = 
p-iep(|r|) = p-«p(|s|) = norm(s) and therefore r and 
s are provably equal in the /?t7-calculus. 
To prove the stated property of Φ for closed terms, one 
has to show a more general statement involving also 
Φ and open terms. For any substitution θ define η$ G 
ENV by η9{νρ) - Φ , (ΕΜΒ(00* ) ) . Now i t is an easy 
but very instructive exercise to show (by induction on 
r distinguishing the cases ρ = ο and ρ φ ο) that the 
equation 

Φ{\ΑηΒ) = EMB(r0) 

holds for every term r in long /?-normalform. A detai
led proof of this equation in a more general framework 
wil l be carried out in Lemma 5 in the next section. 

Now we w i l l precisely describe the requirements on a 
λ-model making these constructions possible. In fact 
we w i l l describe a more general situation which wi l l 
strengthen our completeness result and allows for the 
definition of an efficient normalization procedure. 
Call a λ-model admissible i f there are types f (type 
of term families) and L (type of indices), coding fun
ctions f . ]° :A — Αί°, Γ·|':{0,1}* — Ml and objects 
append G M * " * ' " * * , mvar p G M 4 " 4 0 , app G M°^°^°, 
abst p G M^°^° (for every type p), emb G M°~* f , 
fun G M f ~^ 4 "*°) and extract G M^°^° s.t. the fol
lowing holds (omitt ing types) 

(append) append fir] [7] = \k * f| 

(mvar) mvarp|"Jfc] = \x 

(app) appfrlfel = fr«| 

(abst) abet pr*lM = Γλ**·Γ1 

( [ . ] ) [ r ] = |Y| => E M B r = EMBs 

(emb) E M B r = EMBs => embfr] = emb|Y| 

(fun) fun(emb|"r])fjbl = [EMBrfc] 

(extract) VJb: afibl = Γ Ε Μ Β Γ Μ 

=> extract(a) = [ E X T R A C T ( E M B r ) ] 
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A l l infinite λ-models mentioned in Section 1 are easily 
seen to be admissible by letting ι = ο and f = ο —• ο. 
Because the definition given above is not very com
prehensible, we wi l l define a more natural, smaller but 
stil l very large class of λ-models, showing that admis
sibility is in fact a very weak requirement. 
Call a λ-model Μ a pr-model i f all binary primitive 
recursive functions are represented in i t . This shall 
mean that there is an injection ν:ω —» M° and for 
every binary primitive recursive function Α: ω 2 —• u; 
an object Λ € M°"*°"*0 s.t. Λ(ι/η)(ι/τη) = u(hnm) for 
all n , m € u;. In fact in a pr-model all primitive recur
sive functions are represented because every primitive 
recursive function is explicitely definable from binary 
ones. However we wi l l only need that in pr-models 
all unary and binary primitive recursive functions are 
represented. 

L e m m a 3. Every pr-model is admissible. 

Proof: Let r i , Γ 2 , . . . resp. Jbi, £ 2 , . . . be effective re-
piti t ion free numberings of A resp. {0 ,1}* . 'Effective' 
shall mean that there are primitive recursive functions 
APPEND, MVARp, APP, ABST, EXEMB and 
ALPHA s.t. 

*APPEND(n,m) = kn*km, 

rMVAR,(n) = XP
kn 

rAPP(n,m) = r n r m 

^ABSTp(n,m) = ^xkn
rm 

ΓΕΧΕΜΒ(η) = E X T R A C T ( E M B r n ) 

rALPHA(n,m) = E M B r n f c m 

In the previous section we 
defined E X T I U C T f E M B r ) = EMBrJb where k can 
be computed from EM Β re and EMBrO. Hence we 
may assume furthermore that there exists a primitive 
recursive function I N D E X T s.t. i f EMBre = r n and 
EMBrO = r m then 

EXTRACT(EMBr) = E M B r J b I N D E X T ( n i m ) 

Now we turn Μ into an admissible model by letting 
t = 0, f = o, [ r n ] ° = i/n, \kny = i/n, append = 
APPEND, mvar p = M V A R , , app = APP, abst p = 
ABSTp, emb = EXEMB, fun = A L P H A and define 
extract € M^°^° by 

extract(a) = a(INDEXT(afcl)(a[OD) 

extract exists in Μ because i t is explicitely defined 
from elements of Μ and Μ is a λ-model. We have 
to verify the laws for admissibility, (append), (mvar), 

app), (abet), ([·]) and (emb) clearly hold, 
fun): 

fun(embrr„l)rfcml 
= ALPHA(EXEMBz/n)(i/m) 
= i/(ALPHA(EXEMBn)m) 
= |"r ALPH A( EXEMBn )ml 
= TEMBrEXEMBntml 
= [ E M B ( E X T R A C T ( E M B r n ) ) Jkm"l 
= rEMBr n Jb m ] 

by Lemma 2 (a) and (b) . 
(extract): Let EMBre = r n and EMBrO = r m and 
assume a\k] = [EMBrJb] for all Jb G {0 ,1}* . Then in 

farticular a(Y| = [EMBre] = [ r n ] = i/n and likewise 
a0] = um. Hence 

extract (a) 
= a( INDEXT(a[e]) (a[o]) ) 

= a(INDEXT(i/n)(i/m)) 
= a(i/(INDEXTnm)) 
= ö[fclNDEXT(n,m)] 
= [EMB rtiNDEXT(n ,m)] 
= [ E X T R A C T ( E M B r ) ] 

using the assumption again. • 

To improve the readability of the calculations in the 
next section we introduce some auxiliary objects. Let 
Μ be an admissible model and define f-extract 6 
M f ^ ° , f-app G M f - * f - * f and fam € M^°^{ by 

f-extract / = extract (fun/) 

f-app/<7 = emb(app(f-extract/)(f-extract<7)) 

fam(a) = emb(extract(a)) 

L e m m a 4. In every admissible X-model Μ the follo
wing equations hold: 

(a) f-extract(emb[r]) = [ E X T R A C T ( E M B r ) ] 

(b) emb(f-extract(emb[r])) = emb[r] 

(c) f-app(emb[r])(emb[s]) = emb[rs] 

(d) VJb : a[Jb] = [EMBrJb] => fam(a) = emb[r] 

Proof: 
(a) : f-extract(emb[r]) = extract(fun(emb[r])). By 
(fun), fun(emb[r])| Jb] = [EMBrJb] for all Jb and hence, 
by (extract), 

extract(fun(emb[r])) = [ E X T R A C T ( E M B r ) ] 

(b) : E M B ( E X T R A C T ( E M B r ) ) = EMBr , by Lemma 
2. Hence, by (emb), emb[EXTRACTfEMBrVl = 
emb[r ] . Therefore, by (a), emb(f-extract(emb[r|)) = 
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emb[r|. 
(c) : By (a), (app) and (emb), we have 

f-app(emb f r ] )(emb f s]) 
= emb(app(f-extract(emb f r ] ))(f-extract (emb |Y|))) 
= emb[(EXTRACT(EMBr)) (EXTRACT(EMBs ) ) l 
= emb \rs] 

(d) : I f a\k] = [EMBrfc] for all k then, by (extract), 
extract(a) = [ E X T R A C T ( E M B r ) ] . Hence 

fam(a) = emb(extract(a)) — embfr] 

by (emb). • 

4 I n v e r s i o n , normal izat ion and com
pleteness 

Let Μ be an admissible λ-model. By recursion on ρ 
we define terms Φρ G A ^ f and Φ ρ G A f ~ * p : 

Φ ο = emb, 
Φ σ = f-extract, 
Φρ^σ = λα^σ.fam(λp^abstp(fun(Φ< τ(αV'b]))(pO))) 

where t/>[p] stands for ¥ p (emb(mvar p p)) and pO is short 
for appendpfO]. 

Φρ^„ = λ/ .λα>. * σ (Γ - Α ρρ/(Φ ρ α) ) . 
Here of course e m b , . . . , f-app denote constants, i.e. 
variables with the valuations e m b , . . . , f-app G Μ re
spectively. As with e m b , . . . , f-app the values \ΦΡ\ G 
M p ~ * f resp. |ΦΡ| G M*"** are denoted by Φ ρ resp. 
Φ ρ again. Furthermore for f,g G M f we wi l l write 
fg for f-app/(j and /1/2...Λ1 wi l l be associated to 
the left. Clearly for ρ = />i —•...—•/>„ —• ο and 
αϊ G Mpl,...,an G M p * 

Φρ/αχ . . .a„ = f - e x t r a c t ( / ^ P l a i ) ^ , w a n ) ) 

For any substitution θ define η$ G ENV by η$(νρ) = 
« ( e m b | V l ) . 

L e m m a 5 ( M a i n L e m m a ) . For every X-term r G 
A p in long β-normalform and every substitution θ 

Φ,(|Γ|ι„) = βιηΙ>(ΓΓ01) 

Moreover if ρ = ο then \τ\ηφ = \rff]. 

Proof: Induction on r . Recall that fg stands for 
f-app/0. 
1. ρ = ο, r = χΡι-+—>Ρ*-°8{1 . . 

\xsi ...8η\η$ 
= *(embria?l)|ei|»?...|«n|»7 
= Γ-βχ^Ι((βπιΒΓχί1)(Φ|βι|ν).. . ( Φ | « η Μ ) 
= f -extract((emb[xÖ ] ) (embf5iöl) . . . (emb|"s„0l)) 
= f-extract (emb \(xs\ ... sn)0]) 
= [EXTR A C T ( EM Β r 0)1 

But EXTRACT(EMBr0) = α r0, by Lemma 2(c) 
and since substitution is determined only up to in
equivalence, we may write EXTRACT(EMBrf l ) = τθ. 
2. ρ σ, r = λ χ ρ . * σ (w.l.o.g. 0 χ ρ = xp and x p not 
free in Oy for any y φ xp free in β σ ) : 
Φρ-» σ(|λ2 .*|ΐ)*) = fam(a), where α G Μ*" 1 , 0 is s.t. 
(using the same abbreviations as in the definition of 

ap = abst,p(fun^<,(|s|ty[£ Φ\ρ]]))(ρΟ)) 

for all ρ G Af*. We have to show fam(a) = 
embf(A2 .e)0] . By virtue of lemma 4 (d) i t wil l suffice 
to show a\k] = |ΈΜΒ((λχ.*)0)*1 for all Jfc G {0,1}*: 

a\k] 
= &8ίρμ](ΐηη(Φσ(\*\ηθ[χ -> if>[\k}))))( Γ*1 * PD) 
= βΙ^^ΛΚΛιιι ίΦ^ίμΐιι^^]) )^ * 0]) 
= abstp[Jbl(fun(embrs(Ö[a: ^ χ£])1)|** * Ol) 
= 3b8tp\k]\EMB(s(e[x^xk]))(k*0)] 
= Γλχ£.ΕΜΒ($0[χ*/χ])(* * 0)1 
= ΓΕΜΒ(λχ.(50))*1 

Because Xx.(sO) = (λχ.$)0 we are done. • 

For every 6 G fA"| let 6"" G A be any term s.t. |~6~] = 6. 
By (emb), we then have [ r ] ~ = a r for every r G A. 
Now define partial functions p-*e p: Mp —• Ap by 

p—«p(a) ~ ( f -ex t rad^ p (a ) )~ 

Call a G A/ p λ-definable i f there is a closed term r G 
A ' s.t. |r| = a. 

T h e o r e m 1 . Let Μ be an admissible X-model. 

1. I n v e r s i o n : If α £ Mp is X-definable then 
p—«p(o) is a closed term of type ρ s.t. |p-«p(a)| = 
a. 

2. N o r m a l i z a t i o n a n d s u b s t i t u t i o n : For every 
term r G Ap and every substitution θ 

p-*v(l rlw) =<* r * ° 

3. Completeness : If Μ (= r = s then r and s are 
provably equal in the βη-calculus. 

Proof: 1 . : Let α = |r| wi th r G A p closed and in long 
/?-normalform. By Lemma 5 and Lemma 4(a) 

f -extract^pa) 
= f-extract (Φρ I r I) 
= f-extract (emb [r|) 
= f E X T R A C T ( E M B r ) ! 

Hence p-nep(a) = f E X T R A C T ( E M B r ) l ~ = e r . 
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2. : 

f -extract^ p |r | 7 j0) 
= f-extract(<&p |r*\η$) 
= f-extract(embrr*i]) 
= fEXTRACT(EMB(r*0) ) ] 

Hence p-ep(|r|r/,) = fEXTRACT(EMBr*0) ] = « r ' 0 . 
3. : I f Μ \= r = s then |r|iftd = |*|ffci and therefore, by 
2., Γ * = α 5 * . • 

Let us reformulate this theorem in terms of the more 
natural pr-models (see Section 3). Recall that wi th 
every pr-model Μ we associated an injection ι/:ω —• 
M° and that |Vj = ι/n whenever r = r„ in the (fixed) 
effective, repetition free numbering Γχ, Γ 2 , . . . of A. We 
call [ r ] the canonical code of r in Af. 

I n v e r s i o n a n d n o r m a l i z a t i o n t h e o r e m 
In a pr-model Μ there exists for every ρ an object 
invp G Mp~*° s.t., for every λ-definable a G M p , inv p a 
is the canonical code of a closed term r G A p in long 
ß-normalform s.t. |r| = a. Hence, for every term s 
of type />, invp|s| is the canonical code of the long 
ß-normalform of s. 

Proof: By Lemma 3, Af is admissible. Hence, 
by the previous theorem, we may define i n v p 

by inv p a = f-extract(4^pa). We could define 
even simpler inv^a = Φρα because in pr-models 
f-extract(embjV]) = embfr] and therefore, for clo
sed r G A p , t-extract^ p|r|) = f-extract (embfr]) = 
embfr] = Φ Ρ|Γ|. • 

Completeness T h e o r e m 
I f r and s are X-terms of type ρ s.t. there exists a pr-
model Μ in which Μ f= r = s holds, then r and s are 
provably equal in the βη-calculus. 
Proof: By Lemma 5 and Theorem 1.3. • 

Note that the conditions on a λ-model for being a 
pr-model refer only to the types ο and ο —• ο —• ο. 
For higher types nothing is required. Thus this com-
pletenss result is considerably stronger than that ob
tained by Friedman [1 , Theorem 3] because there the 
models are required to be ful l type structures T # over 
an infinite set B. Statman proves another comple
teness theorem [3, Theorem 2]: For every closed λ -
term r there is a finite set E, such that for all clo
sed s, TE \= r = s r —βη s. Let us briefly in
dicate how this may be generalized by our method: 
Call a λ-model admissible below a natural number n , 
i f i t has the same properties as an admissible model 
but everything is restricted to indices of length < η 
and terms of length < n built up from η variables. 
I f any syntactical operation exeeds this finite set of 
indices and terms, then an error element should be 
retourned. Clearly this determines an increasing se
quence of finite sets of terms A n having A as their 

union s.t. for every model Μ admissible below π and 
every closed r in long normal form, Ρ - « Μ ( Ι Η ) = R 

i f r G A n and ρ-*Λ/(Μ) = e r r o r otherwise. Now 
let Μ be admissible below η and let r be closed s.t. 
r* € A n . Then for every closed s s.t. Μ \= r = s we 
have p-«A/(k|) = r* φ error and hence s* G A n and 
r* = s*. Because clearly for every η there is a finite set 
Ε s.t. TE is admissible below η we have generalized 
Statmans theorem. 
The completeness theorem may be formulated equiva
lent^ as follows: In every pr-model Μ and every type 
Ρ = Pi pn ο 

Vr, s G Ap(r φβη s =• 3η G ENV, α : \τ\ηα φ |e|qa) 

holds where η and α: = α χ , . . . , a n G Mpl χ . . . χ Mpn 

may depend on r and s. But in fact η and α may 
be chosen independently from r and 8 because we can 
take η = Tfaj and α,· = ¥ p . (emb(zQ Q)). Therefore 

the stronger formula 

3η G ENVBSVr, s G A ' ( r φβη s => \ν\ηα φ |φα) 

is true in every pr-model. 

5 A n efficient normalization algorithm 
So far we were studying the theoretical consequences 
of our inversion method. Now we w i l l discuss the 
question i f our results also are of practical interest. 
In particular we wi l l examine the normalization pro
cedure defined in the previous section. This proce
dure is based on Φ and Ψ and hence on EMB and 
E X T R A C T which are rather expensive operations. 
Now i f we work in the naive model described in Section 
3, emb = EMB and extract = f-extract = EXTRACT 
and hence we have not gained very much on the com
putational side. In pr-models the algorithms are even 
worse. Therefore, i f we want an efficient normaliza
tion procedure, we must look for a more sophisticated 
model where emb and extract are as simple as possi
ble. A t this point the generality of admissible models 
pays out: We can find an admissible λ-model where 
emb = extract = identity. Before we define such a 
model, let us look how Φ and Φ may then be compu
ted. 
Assume Μ to be an admissible λ-model s.t. f = o, 
M° = Λ* 0· 1**, Μρ-σ = (Mp)M\ Αρ>σ = function 
application, \r\° = E M B r and emb = f-extract = 
identity. Then Φ0 = Φ σ = identity and by Lemma 
5 for r = Xx.s G Αρ"~*σ in long /?-normalform, any 
substitution θ and any Jb G {0, l } * 

Φρ - ,Οφ*)* 
= emb(\re])k 
= ΕΜΒ(Χχ.8(θ[χ Η- * ] ) ) * 
= λ*£.ΕΜΒ(*(0[χ ι - Xk]))(k * 0) 
= Xxl.*p(\8\q$[s„gk])(k*Q) 
= Χχ>.Φρ(\8\ηθ[χ H+ *p(emb\xk])])(k * 0) 

= λ * £ . Φ ρ ( | * | ^ ( » ρ ( Ε Μ Β * * ) ) ) ( * * 0 ) 
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i.e, for all a G Μρ~*σ of the form α = |r|^ 

Φ ^ α * = λ * 2 . Φ , ( β ( » , ( Ε Μ Β * * ) ) ) ( * * 0). 

Furthermore for t € Αρ~*σ and r G A p , defining 
f-APP/0* = / ( * * O ) * ( * * l ) , 

«^^(EMB0|r|i» 
= »,(f-app(EMB<)|r|i») 
= Φ , (f-app(emb \t] )(emb |>0~|)) 
= *,(embf*(r0)"|) 
= « , ( E M B ( i ( r i ) ) ) 
= » , ( f - A P P ( E M B i ) ( E M B ( r i ) ) ) 
= Φ ^ - Α Ρ Ρ ( Ε Μ Β * ) ( Φ ρ | φ * ) ) 

i.e. for / G EMB(A'~**) and t of the form 6 = |r|q* 
we have 

V * * / * = »(Γ-ΑΡΡ/(Φ,*)) . 
These very easy recursion equations for Φ and Φ sug
gest to define Φ Ρ G Mp^° and Φ ρ G M p " *° by 

Φ β / = Ψ β / = / 

Φ ρ ^ σ α * = λ χ £ . Φ ρ ( α ( Ψ ρ ( Ε Μ Β χ * ) ) ) ( * * 0) 

* ^ , / 6 = * , ( f - A P P / ( 5 , 6 ) ) 

for α / / / E M ° , a G Μρ^σ and 6 G Μ ρ . 
Now i t can be shown that for r G A p in long β-
normalform again the equation Φ ρ ( | Γ | ^ ) = EMB(r0) 
holds, where ηΛχρ) = Φ ρ ( Ε Μ Β χ ρ ) , wi th a proof much 
simpler than the proof for Φ in Lemma 5. 
Thus for r G A p containing no variables x* free we get 
an efficient normalization algorithm by defining 

norm(r) = *P{\r\qxd)e. 

The hard part in the computation of norm(r) is to 
compute |r|r/id which is done by the compiler of a func
tional programming language. Therefore, this norma
lization procedure w i l l be as efficient as the compiler 
is. 
Note that the definitions of Φ and Φ are external, i.e. 
Φ and Φ are not defined as the values in Μ of certain 
Α-terms. The definition takes place in a different λ -
model Μ over ground types ο and__t with M° = A, 
M * = {0,1}* and MP^° = (Μ°)Ή' (Hence Mp = 

I t remains to define an admissible λ-model Μ with 
the properties postulated at the beginning of this sec
tion: M° = Α<°·1>·> Μρ^σ = {MP)M\ APt<T = fun
ction application, ι = f = o, M ° = EMBr, [Jfc] = 
EMBx£. For the definition ot the remaining func
tions we use the auxiliary function ~' :M° —• {0,1}* 
defined by F' = Jk i f Fe = x°k) otherwise Fl -

anything. Now define appendFG = \Fl * G ' ] ' , 
m v a r p F = E M B ( x ^ ) , app = f-APP, abs t p FG = 
E M B ( A x ^ . E X T R A C T ( G ) ) , embF = F , funFG = 
E M B ( F G ' ) , extractaJfc = a[Jfe"|Jfc. 
Let's verify the laws 
for admissibility: (append), (mvar), (app), (abst), ( [ . ] ) 
and (emb) clearly hold. 
(fun): fun(embfrl)fifel = EMB (emb( E M B r ) pfc]*) = 
tEMBrJbl. 
(extract): I f f a i l = [EMBrJfcl then extracted = 
a\k]k = [EMB Hb] Jfc = EMB(EMBrJfc)Jfc = EMBrJfc 
by Lemma 2 (c). Because by assumption this 
is true for all Jfc, we get extracta = E M B r = 
E M B ( E X T R A C T ( E M B r ) ) = [ E X T R A C T ( E M B r ) ] . 

β Integrating constants 
In this section we w i l l extend our method from pure 
terms to terms containing constants. Suppose we 
are given a set C of typed constants equipped with 
an operational semantics o p c given by C-conversions 
cr\... r n 8 for several c G C . These, together with 
/^-conversion and rj-expansion, induce a reduction re
lation —*c o r * the set Ac of λ-terms possibly containing 
constants from C. Call r G Ac in C-normal form i f i t 
is in normal form wi th respect to -+c> i.e., r is in long 
^-normal form and doesn't contain C-convertible sub-
terms, ορς is weakly normalizing iff every term Ac is 
reducible oy —•c, ^-reduction and τ^-expansion to a 
term in C-normalform. 

A C-model is a λ-model Μ together wi th an inter
pretation CM G Μp for every constant c G C of type 
p. This extends to an interpretation |r|r; G C for all 
r G Ac and all η G ENV in the obvious way. A C-
model Μ is called admissible for o p c iff i t is admissible 
(where of course [ r ] has to be defined for all r G Ac) 
and for all substitution θ the following holds: 

(CI ) I f r s by a C-conversion then |r|^ = \sfae. 

(C2) For all terms of type ο of the form csi... (c a 
constant) in C-normal form 

\c8i...8n\ = Φ(€πΛ[ο|)|5ι|7/*...|5η|τ7*. 

Now we may extend the results of Section 4: 

L e m m a 6 (Extended M a i n L e m m a ) . Let Μ be 
a C-model admissible for opc. Then for every r G A£ 
in C-normal form and every substitution θ 

Φ,(|Γ|ι ? ί ) = βιηΚΓΓ(?1) 

Moreover if ρ = ο then \rfa$ = \rff\. 

Proof: Copy the proof of Lemma 5. There is only one 
additional case, namely when ρ = ο and r has the form 
cs\ . . .<sn. But then (C2) applies. • 
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T h e o r e m 2. Let o p c be weakly normalizing and let 
Μ be a C-model admissible for o p c . 

1. I n v e r s i o n : If α G Mp is λ-definable from C then 
ρ-«ρ(α) is a closed term in A£ s.t. |ρ-Ηβρ(α)| = α. 

2. N o r m a l i z a t i o n a n d confluence: The reduc
tion relation —•c is confluent. In particular every 
term r Ε A£ reduces to a unique C-norma Iform 
r* which my be computed by 

P^e,(|r|?7id) = r* 

3. Completeness: If Μ ^ r = 8 then r and 8 are 
provably equal in the ßrfi-calculus. 

Proof: Clearly, by ( C I ) , \r\q$ = |«|ffe i f r —>c s. 
Hence, if r — s wi th an β in C-normal form, then 
\Γ\η$ = |S|TJ0. NOW we may prove the theorem in the 
same manner as Theorem 1, using Lemma 6 instead 
of Lemma 5. • 

7 Normalization of proofs 
By the Curry-Howard correspondence every proof in 
the —» V-fragment of Gentzens natural deduction cal
culus may be represented as a typed λ-term. The 
type of a term (derivation) άφ is the formula φ being 
derived, variables correspond to assumptions and λ -
abstraction resp. application correspond to the intro
duction resp. elimination rules for —• and V. This cor
respondence is the basis for the use of proofs as pro
grams, where execution of programs is performed by 
normalizing proofs [2]. 
We now show how the normalization procedure de
rived in the previous sections may be used for the 
normalization of proofs. A t first glance there seems 
to be a difficulty because we only considered terms 
typed by ο and ρ —• σ and not by arbitrary —* V-
formulas. But note that the normal form of a typed 
term is completely determined by the underlying type 
free term (obtained by erasing all types). Therefore we 
only need to define for every —• V-formula φ a type 
τ(φ) (built up from ο and —•) such that i f d is a de
rivation then r(d) is a wellformed typed term, where 
r(d) is obtained from d by replacing all formulas φ 
by τ{φ). The definition of τ is obvious: τ(π) = ο for 
atomic formulas π, τ(φ —> φ) τ{ψ) —• τ(φ) and 
r(Vxp<p) = τ(ρ) —• τ(φ), where for types ρ over gro
und types other than ο, r(p) is defined by replacing all 
ground types by o. Hence a derivation d of a formula φ 
may be normalized by computing p-He r(v>)(k(d)|^id). 
A t least from this we obtain the type free term under
lying the normal form of d. A t the end of this section 
i t is indicated how we can recover therefrom the com
plete normalized derivation. 
One important point is sti l l missing: In the V-
elimination rule, which may be written as the term 
construction rule ( c f ^ r ) ^ / * ! the derived formula is 
obtained by a substitution. Therefore i f r and s are of 
functional type then <p[r/x] may contain non-normal 

object terms which we may want to normalize. These 
substitutions and normalizations may be performed 
by our method i f we represent formulas as λ-terms 
of a new ground type formula. Predicate symbols for 
predicates over objects of type p\,...,pn are then con
stants of type p\ pn —• formula, implication 
is a constant of type formula —• formula —* formula 
and quantification over objects of type ρ is represen
ted by a constant V p of type (p —• formula) —• formula. 
Vxp<p then stands for Vp\xp.<p. Now the normal form 
of <p[r/x] may be computed by normalizing (λχ .^)Γ . 
Since we have no conversion rules for the logical 
constants —• and V p , we have, by (C2) of the pre
vious section, to interpret them by mse0—0_>0(—•) and 
mse( T( p)^ ( < >)_ 0(Vp) respectively, where for r Ε Ap we 
define mse p (r) = * p ( e m b f r ] ) (make self evaluating, 
see introduction). 
So far we have only considered pure logic. To nor
malize proofs in (higher order} arithmetic we have to 
deal wi th further constants: A t the object level con
stants 0 for zero, flt, flf for the boolean objects, S for 
the successor and R p for recursion operators of type 

rec(p) \— ρ —+ (nat —•/>-+/?)—• nat —• p. 

At the proof level constants I y * ^ ) for induction over 
the natural numbers 

ind(V*vK*)) : = V>(0) — Vx(v?(z) — <p(Sx)) -+ Vx<p(x), 

constants IyJ^J*,) for boolean induction (case analysis) 

and a t ruth constant Τ of type atom(t)t), where atom is 
a constant of type boole —• formula, i.e., a predicate 
symbol (in fact i t suffices to have atom as the only 
predicate symbol). 
Note that we can define proofs of the 'stability axioms' 
- i - i ^ —• φ for every arithmetical formula φ by induc
tion on φ (~*<p := φ —• atom(jtf)). For prime formu
las a t o m i t l stability is proved by boolean induction. 
Hence, i t 3 and V are defined as usual, we get full 
classical arithmetic. 
In order to use arithmetical proofs as programs, the 
purely logical /^-conversion has to be supplemented 
by conversion rules for the recursion and induction 
constants. W i t h a recursion constant Wp we associate 
the usual conversions 

R prsO r 

Rprs(St) st(Rprst) 

Similary for induction over the natual numbers I y * ^ ) 
(omitting formulas) 

Inat</eO d 

Inat</e(S<) Η- etil^det) 
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and for case analysis I y J ^ ) 

I b o o l e d e t t t i - > d 

I b o o l e d e j t f h-> e 

Note that r(ind(Vxy>(x))) = r(rec(/>)) provided 
τ(φ(χ)) = r(/>). Hence for the purpose of normaliza
t ion, recursion and induction over the natural numbers 
may be identified. 
By the results of the previous section we have to inter
pret the arithmetical constants in an admissible mo
del Af in such a way that ( C I ) and (C2) are satis
fied. Hence we define O M = mse0(Q) ( = [0]) etc., 
SM = mse0_>0(S) and for a recursion constant R p , 
regarded as a constant of type r(rec(p)), we define 
(ommitt ing types) 

R M ab\0] = a, 

RMab\Si] =b\t}(RMab\t]), 

R M ate = mseRa6c otherwise. 

Case analysis is interpreted similary. Of course we 
must have chosen a model Μ in which RA/ exists (For 
the model defined in Section 5 this is certainly the 
case). The properties (CI ) and (C2) are rather ob
vious. (CI) immediately follows from Lemma 6(a) 
(which doesn't use (CI ) ! ) . To prove (C2), Lemma 
6(a) is needed too. But Lemma 6 in turn needs (C2). 
Therefore one has to prove (C2) and Lemma 6 simoul-
taneously by induction on the length of the term. 

Now, because of the well known fact that the ope
rative semantics defined by the conversions above is 
(even strongly) normalizing, we can apply Theorem 
2.2 which gives us a normalization algorithm. 

Remark: Our arithmetical system includes the calcu
lus of primitive recursive funct ional in all finite types 
(Gödels Τ, R-A-calculus [1]). Because the ful l type 
structure over the naturals T w clearly is admissible, we 
can conclude from Theorem 2.3 that for closed pr imi
tive recursive terms (of finite type) T w r = s holds 
if and only if r and s nave the same normal form. Since 
normal forms may be computed, this means that equa
lity between pr im. rec. terms in Ύω is decidable. This 
sharply contrasts Friedmans result that, for pr im. rec. 
terms r, s, the relation Ύω (= r = s is complete IIJ [1, 
Theorem 6]. The point is that the arithmetical con
stants are interpreted differently: In [1] they operate 
on the natural numbers as usual whereas we coded all 
(possibly open) terms into u>. Therefore Ύω \= r = s 
in our sense is much stronger than in the usual sense. 

Presently we experiment with an implementation of 
proofs along these lines. There are two technical 
points in this implementation which are worth noti
cing: 1. In an implication elimination (cf^~*^ex)^ we 
don't require the formulas φ and χ to be identical. I t 
suffices if they have α-identical normal forms. This 

means that a big deal of ( in most cases) uninteresting 
equational reasoning is shifted from the proof into the 
evaluation mechaism of the programming language. 
2. We don't save complete proofs but only three cha
racteristic components: a list of the free object and 
assumption variables together w i t h their types, the 
derived formula and the underlying type-free λ-term 
of the proof. I f the proof is in normalform then the 
completely typed proof expression may be recovered 
from these data. This yields a very compact represen
tation of proofs making i t possible to handle even very 
large proofs. In [2] this has been done for proofs using 
the ful l strength of Peano arithmetic. 

8 Summary and conclusions 
I t has been shown how to invert the evaluation func
tional for typed λ-calculus in a large class of models. 
The main consequences where an efficient normaliza
tion procedure for typed λ-terms and a completeness 
theorem for the /Jij-calculus. Furthermore we used the 
normalization procedure to normalize natural deduc
tion proofs of higher order arithmetic. 
We think that the normalization method presented 
here is an excellent example for the use of the abstract 
concept of funct ional of higher type in constructing 
and analyzing concrete algorithms: The normalization 
algorithm takes and returns concrete objects (terms) 
but i t uses the evaluation procedure which returns fun
c t i o n a l in all higher types. 
Our technique may be extended to infinite terms and 
terms containing ful l recursion, i.e., fixed point ope
rators. We also plan to extend i t to second order A -
calculus. 
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