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Preface

Algebraic specification, nondeterminism and term rewriting are three active
research areas aiming at concepts for the abstract description of software
systems: Algebraic specifications are well-suited for describing data structures
and sequential software systems in an abstract way. Term rewriting methods are
used in many prototyping systems and form the basis for executing specifi-
cations. Nondeterminism plays a major role in formal language theory; in
programming it serves for delaying design decisions in program development and
occurs in a “natural” way in formalisations of distributed processes.

Heinrich Hussmann presents an elegant extension of equational specification and
term rewriting to include nondeterminism. Based on a clean modeltheoretic
semantics he considers term rewriting systems without confluence restrictions as
a specification language and shows that fundamental properties such as the
existence of initial models or the soundness and completeness of narrowing, the
basic mechanism for executing equational specifications, can be extended to
nondeterministic computations.

The work of Heinrich Hussmann is an excellent contribution to Algebraic
Programming; it gives a framework that admits a direct approach to program
verification, is suitable for describing concurrent and distributed processes, and it
can be executed as fast as Prolog.

Munich, January 1993 Martin Wirsing
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Chapter 0

Introduction

This monograph presents a generalization of the theory of equational algebraic
specifications, where the equational axioms are replaced by directed rewrite rules.
A model-theoretic semantics for such specifications is given, which provides a
rather general framework for studying

. the integration of nondeterminism into algebraic specifications, and

. model-oriented semantics for general (non-confluent) term rewriting.

The study of this central topic leads to interesting side results in the fields of
. relationships between algebraic and logic programming, and
. relationships between term rewriting and graph rewriting.

The starting point for this work is the observation that the available formal
specification languages for software are very much influenced by the concepts of
traditional mathematical logic. In particular, the notion of equality (which is a
symmetric operation) plays a central role in algebraic specifications. This
emphasis on symmetry does not correspond well to the fact that software
belongs to a computational paradigm, which is always directed. Every execution
of an algorithm consists in a directed evaluation of its formal descripton
(therefore leading to such problems as the question of termination). This kind of
directed evaluation transforms syntactical objects into semantically equal ones.
Classical (deterministic) evaluation gives a close connection between a non-
symmetric relation between objects (the operational evaluation) and a symmetric
one (the semantical denotation). The theory of term rewriting is an ideal
framework for studying such connections.
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The central step during an evaluation using a term rewrite system needs two
decisions: which rewrite rule to apply and at which position (redex) of the actual
target term. This obviously is a situation of nondeterminism. (Nondeterminism
means here that the next step within the computation is not uniquely
determined.) The whole well-developed theory of canonical term rewrite systems
is concerned with conditions which ensure that this implicit nondeterminism
does not affect the computation of the actual result. In other words it uses the
directed relation operationally, but simultaneously keeps the symmetrical
relation between objects on the semantical level.

The basic idea of the approach presented here is to make positive use of the

powerful framework of term rewriting, as a tool to specify nondeterministic

computations. It is a rather special (and, admittedly, important) subcase where a

nondeterministic computation is determined to give one fixed result. However,

there are many situations in computing where nondeterminism is explicitly
present or even needed. The most typical occurrences of nondeterminism are:

o Distributed systems, using concurrency and communication. Here, the
actual result of a computation depends on various parameters (including
messages from other components), which are not completely predictable.
So it is necessary to classify a set of possible results of a particular
computation.

. Stepwise program development. In an abstract description of a program, it
is often useful to keep a whole range of implementations open using a
nondeterministic choice like “Choose an arbitrary element of the set M”.

These are also the reasons why much of the research even in the early days of

computer science was invested into the investigation of nondeterminism.

So the general goal for this text is to employ the formalism for nondeterministic
computations, which is given by (non-canonical) term rewriting, as a
specification language. In difference to classical term rewriting, the interpretation
of a rewriting step is no longer the (symmetric) semantic equivalence but a
directed notion. It is quite obvious that the appropriate directed notion on the
semantical level is set inclusion, since every state of a nondeterministic
computation in fact describes a set of possible results, and every step of
computation can make a choice, which further restricts the set of possible
results. The concept of a multi-algebra, that is an algebra where the operations
are interpreted by set-valued functions, gives the appropriate semantical
background for such an interpretation.
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These considerations give a clear technical working plan for this book:

(1) Give a detailed technical definition for the “set-valued” interpretation
sketched above.

(2) Investigate soundness and completeness of term rewriting with respect to
the semantics given in step (1).

(3) Demonstrate that equational algebraic specifications form a subcase of the
new approach.

(4) Investigate the integration of the new approach with advanced concepts of
algebraic specification and term rewriting, like conditional rules, partial
algebraic specifications, or theory-unification procedures.

(5) Compare the new approach with other frameworks, like logic
programming.

From the traditional theory of algebraic specifications, another point comes onto
the working plan, which is somehow related to (2):

(2a) Investigate the structure of model classes, in particular the existence of
initial models.

The text provides results for all the steps of the working plan. However, at
various stages, the syntax of specifications and also the rewriting calculus have
to be enriched and adapted in order to get sensible results.

Before going into the technical details, the next section gives a sketchy overview
of the main stream of argumentation, and puts together the main results
presented in this monograph.

0.1 Preview

The notion of equational algebraic specifications is generalized to
nondeterministic specifications. As usual, a specification consists of a signature
(defining sort and function symbols) and a set of axioms. Syntactically, the
main difference to classical specifications is that the axioms now contain the
directed symbol “—" instead of the symmetric symbol “=".
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Semantically, a class of multi-algebras is associated with a given specification.
Within a multi-algebra A, a function symbol

f:s1 —s2
is interpreted by a set-valued function

A 514 — pH(s28),
which delivers a finite and non-empty subset of s2A as its result. It is important
to note that for the interpretation of a term, the set-valued functions are put
together in an additive way. For instance (let IA[t] denote the interpretation of
term t in multi-algebra A):

AL f(g)]={eEfAE) e Egh}.
This gives an interpretation of terms by sets of elements from the carrier sets.
The interpretation is easily extended to terms with variables, using an
environment (3 which provides actual values for the variables.

The validity of a (directed) axiom is now given by set inclusion: An axiom
tl— 2
is valid in a multialgebra A, iff for all environments f§ we have

A A
I, [t1]1 21, [t2].
B [t1] B (t2]
This concludes (apart from technical details) the step (1) of the working plan.

For step (2), soundness and completeness of standard term rewriting have to be
investigated with respect to the new semantics. This leads to a negative result:
standard term rewriting is unsound in this sense. The reason for this is closely
related to procedure call conventions in programming languages. The term
rewriting approach uses a technique similar to “call-by-name”, whereas the
multi-algebras have a clear “call-by-value” semantics. (In the detailed exposition,
the more precise terms “run-time choice” and “call-time choice” will be used.)
This makes a difference for rewrite rules where a variable occurs several times in
the right hand side, like in:
double(x) — add(x x)

If the variable x is substituted by a nondeterministic term, then term rewriting
generates two independent copies of the term in the right hand side which can be
evaluated separately to different values. However, in the interpretation of the
axioms for a model, the interpretation of the variable x is a single value, which
is the same for all occurrences of x. So the term rewriting process deduces
consequences from the axioms which are not semantically valid in all models.
This is a first (negative) result:
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Standard term rewriting and multi-algebras rely on different semantic
concepts.

One way to overcome this difficulty is to introduce a second kind of axioms
which gives a syntactic way to state that a term must be interpreted deterministi-
cally. Such axioms (determinacy axioms) are written like

DET(t)
which means: “The interpretation of t in every model must be a one-element
set.”
The term rewriting calculus now can be adapted to this concept. It is now only
allowed to substitute a term for a variable of an axiom, if the substituted term
has been proven to be deterministic. This gives the calculus a much more “call-
by-value” flavour (and differs from standard term rewriting). We call this new
calculus “DET-rewriting” here, for short. It turns out that DET-rewriting is
sound, but unfortunately it can be shown now to be incomplete. This is a
second (negative) result:

The introduction of determinacy rules into specifications and calculus
achieves soundness, but does not suffice to ensure completeness of the
calculus.

The reason for the problem can be understood best when looking at an attempt
to constuct a term model for a specification (which is the usual technique to
prove completeness). A specification may contain the following axioms:

f(g) — a, g—b, f(a) = b, f(b) = b,

DET(a), DET(b).
A term model should basically interpret every term by the set of deterministic
terms it can be reduced to within the calculus. If the interpretation of the term
f(g) in such a term model is built up piecewise from the operations, the set { b }
is the natural result (since g can be reduced to b only). However, the axioms
require the interpretation of f(g) to contain a, too.

The problem with axioms like «f(g) — a> above is that they do not admit an
additive construction of a term model. So they are excluded by a syntactical
condition for axioms, which is called DET-additivity. DET-additivity is a rather
complex condition, which fortunately can be ensured by simple syntactical
criteria. A simple and useful criterion is that in the left hand side of an axiom
only the topmost symbol is allowed to be a nondeterministic operation.
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Under the precondition of DET-additivity, soundness and completeness results
hold. In general, only weak ground completeness can be shown, which means
that every logically valid inclusion «1 — t2> is deducible in the case, where t1
and t2 do not contain variables and t2 is a deterministic term. This is a (positive)
result:

Under the precondition of DET-additivity, DET-rewriting is sound and
weakly ground complete.

The book contains more detailed investigations how to achieve more general
completeness results, which are not reflected here. An interesting side effect of
the completeness proof is that the constructed term model turns out to be an
initial one.

Under the precondition of DET-additivity, initial models always exist.

Stepping to item (3) of the working plan from above, it can be easily shown
that classical equational specifications are a subcase of the new approach (by
simply declaring all terms as deterministic).

Equational specifications are a special case of nondeterministic
specifications.

Step (4) of the working plan contains several, mainly unrelated pieces, most of
which do not uncover unexpected effects. One topic which causes rather diffcult
technicalities is the integration of partial functions. The combination of
nondeterminism with partiality is slightly problematic, but an approach can be
found which generalizes the results in a satisfactory manner to partiality.

The main results can be carried over to the case of partial functions.

In order to investigate some questions related to the steps (4) and (5), an
interesting and important subclass of nondeterministic algebraic specifications is
identified, which are called constructor-based. This is inspired by a very popular
style of algebraic specfications. Basically, a subset of the function symbols is
designated as the so-called constructors, and the left hand sides of the rules are
restricted to terms of the shape

f(c1,....¢n)
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where f is a non-constructor function symbol, and the c; consist only of
constructor symbols and variables. In contrast to classical algebraic
specifications, we do not require here any conditions besides this syntactic one.
In particular, the “principle of definition” is not assumed (which for instance
would require a complete case analysis over all constructors for any non-
constructor symbol to be given). If constructors are assumed to be deterministic
(and always defined), then such specifications are automatically DET-additive.

Constructor-based specifications are characterized only syntactically. All
results hold for constructor-based specifications without any additional
precondition.

For this special class of specifications, also the extension to a unification
algorithm can be given successfully. There is a complete narrowing procedure
for such nondeterministic specifications. This completeness holds independently
of confluence or termination of the rule system, giving an interesting
generalization of results in the literature.

For constructor-based nondeterministic specifications, narrowing is
complete without any confluence or termination conditions.

This result builds the bridge to step (5) of the working plan, which examines the
connections to logic programming. The special case of constructor-based
nondeterministic specifications can be shown to be one-to-one related to logic
programming for definite clauses. This also generalizes results known from the
literature, which needed the restriction to canonical rewrite systems.

For constructor-based nondeterministic specifications, there is a one-to-
one correspondence between narrowing and logic programming.

Finally, a new point (6) appears on the working plan, which has not been
mentioned above. Since the DET-rewriting calculus differs from standard term
rewriting, it is questionable, whether existing implementations of term rewriting
can be used for the new approach. Fortunately, for the subcase of constructor-
based specifications a positive result can be found. If an implementation of term
rewriting is used which represents terms by directed acyclic graphs with “variable
sharing”, the implementation is sound and complete with respect to the DET-
rewriting calculus. A particularly interesting observation is that the “sharing” of
subterms used in such implementations takes care of the soundness with respect
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to multiple occurrences of variables. So an arbitrary redex selection strategy
again is admissible, as in standard term rewriting.

For constructor-based nondeterministic specifications, any implementa-
tion of term rewriting using shared term structures is sound and
complete with respect to the multi-algebra semantics.

Thus, for the special case of constructor-based specifications, the original aims
are reached completely, despite of the discouraging negative results during the
first steps of the study.

The book is structured as follows: The second section of this introductory
chapter (chapter zero) gives an overview of the historical background of this
work, a third section introduces some basic notions. The subsequent first chapter
already contains the elementary framework for nondeterministic algebraic
specifications (the notion of a model and the calculus of term rewriting). Within
this chapter, emphasis is put on a detailed motivation for the design decisions.
The definition of the calculus leads to complications which can be resolved in a
second version of the theory, presented in the second chapter. In the third
chapter, the particular question of a lattice structure of the model classes is dealt
with, a topic which may be skipped by the reader not interested in semantic
investigations. At this point the theory has gained some kind of completeness,
so the fourth chapter gives a detailed view of the relationships between the new
approach presented here and other approaches such as equational logic, term
rewriting, and logic programming. The fifth chapter concerns itself with more
practical consequences: In its first part it deals with implementation issues from
a rather abstract point of view; in its second part the application to a number of
simple examples is demonstrated, taken from various areas of computer science.
The sixth chapter again treats theoretical questions, and that is to integrate the
new approach with a treatment of partial functions, as proposed in [Broy,
Wirsing 82]. The concluding (seventh) chapter shows the application of
nondeterministic algebraic specifications to a non-trivial example: the language
of communicating sequential processes.
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0.2 Historical Background

The technique of algebraic specifications, established in the years 1975-80
([ADJ78], [Guttag 75]), is an attempt to use results of Universal Algebra
([Birkhoff35]) for the mathematical description of data structures (“abstract data
types”). The basic idea of this approach is to describe a data domain together
with its characteristic operations. An algebraic specification has a precise
mathematical semantics, given by its models (which are so-called heterogeneous
algebras, consisting of data sets and operations on them). The specification
restricts the class of models by a number of axioms in a logic language. So
there is a corresponding calculus which admits to derive further properties of a
specification. Of particular interest is the evaluation of expressions over the
specification which is an abstract form of operational semantics. These basic
ideas have been refined in various ways, for instance by concepts for modulari-
sation and the treatment of partial functions ([Wirsinget.al. 83]). Altogether, a

specification language arose which combined the expressive power of a
programming language with a formal treatment of data types.

Even earlier, about 1970-75, nondeterminism has been recognized as important
for the abstract description of programs ([Floyd 67], [Manna70], [Dijkstra76]).
Up to now it is an open question whether nondeterminism is useful for practical
programming. But as it was argued above, a demand of abstractness within
descriptions often leads to nondeterminism. Although abstractness was the aim
- of algebraic spefication, there have been only a few attempts to connect
nondeterminism and algebraic specifications. [Subrahmanyam81] and [Broy,
Wirsing81] should be mentioned here, which show essentially how to simulate
nondeterministic structures by (relatively complex) algebraic specifications of
the classical type.

Within the last years there have been attempts to integrate nondeterminism as a
basic concept into algebraic specifications ([Nipkow86], [Hesselink88]).

These approaches consider operations of algebras as relations, i. €. as set-valued.
The notion of a so-called multi-algebra ([Pickett67]) could be used there, as
well as first similar ideas in [Kapur 80]. Both papers [Nipkow86] and
[Hesselink88] treat nondeterministic algebras and basic relations between
algebras, but they exclude the question of a well-suited specification language. A
nondeterministic specification language is presented in [Kaplan 88], but this
approach is based on the classical notion of a model and the classical calculus,
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extended by “built-in” mechanisms for handling sets of data objects. The paper at
hands extends the existing work by giving a specification language for the
multi-algebra approach.

In a very recent paper [Meseguer 92], the basic idea of using term rewriting as a
general framework for computing, without taking care of an equational
interpretation, has been covered in detail. In its motivation, these results are very
closely related to the work presented here. However, in [Meseguer 92] the
semantics are adjusted in such a way that standard term rewriting is sound and
complete, leading to a “call-by-name” approach (which is unsound for multi-
algebra semantics). The semantics there are mainly oriented towards an initial
algebra approach, using category-theoretic tools. In contrast, here the semantics
are given by a loose class of multi-algebras in a classical set-theoretic
framework, which induces a “call-by-value”-like interpretation. This principle is
carried over to the calculus, leading to a calculus which differs from standard
term rewriting on the level of deduction systems. Interestingly, the frequently
used implementation by graph rewriting turns out to be adequate for our
approach, but not completely adequate for standard term rewriting (see section
5.2, example 5.18)!

Another even more recent approach is [Walicki 92/93], where a rather general
calculus is introduced for an algebraic treatment of nondeterminism. This work
is partially based on earlier versions of our approach. It defines a specification
language as well as a sound and complete calculus. However, the syntactical
framework used there is much richer than the simple term-rewriting-style of the
calculi presented here. It is shown in [Walicki 92/93] that our approach can be
seen as a true subcase within the more general framework. The main
distinguishing property of our subcase is that we are interested in a
programming oriented style of specification, which keeps close connections with
term rewriting and admits a direct application of prototyping tools.

0.3 Basic Notions

This section introduces some technical notations which will be used within this
book frequently. It may be convenient to skip this section on first reading.
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In order to deal with set-valued functions, it is often necessary to construct the
power set of a given set. The following notation will be used (M is an arbitrary
set):

# (M) = {N | NCM}
PT(M) = {NINCM A N=@}
£ finM) = {NINCM A N finite}

Another concept from set theory is the comparison of two arbitrary sets (finite
or infinite) with respect to cardinality:
IMI2IN| <def 3f:M—=N and fis surjective.

Similarly, sometimes the set of finite sequences over an arbitrary set M is
needed, which is denoted by N*. The empty sequence is written as €, a non-
empty sequence is given as a list of its elements, enclosed within angle brackets
(). The sequence concatenation operator is an infix operator ¢, which is defined
inductively by the following equations (where s, s’ € M*, e € M):

ges=s,

(ees)es’=w@*(se*s’).

All other notions are common either in the field of algebraic specification or
term rewriting. The used notation is similar to [Wirsingetal .83] and [Huet,
Oppen80], respectively.

Definition 0.1 (Signature)

A signature is a tuple Z = (S, F), where S is a set of sort symbols and
F is a set of function symbols. Every function symbol fEF has a fixed
finite sequence of sort symbols (its argument sorts) and a sort symbol
(its result sort).

The notation [f: s] x ... x sy — s]EF is used to denote a function
symbol fEF with argument sorts s, ..., sy and result sort s (si, SES).

0

The symbol X always means a given countably infinite set of variable symbols,
where again each x€X has a fixed sort. More precisely, X is a family of sets of
variable symbols:

X =(Xs)seS .
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Definition 0.2 (Term)

Let X be a signature, X a variable set as above. The set W(Z, X)g of the
3, X-terms of sort s is the smallest set which fulfils the following
conditions:

. Every xEXj is contained in W(Z, X)g

. If [f: s1 x ... x sp = s] € F and t; is contained in W(Z, X)s; (for
1 <1 = n), then f(t1,...,ty) is contained in W(Z, X)s.

The set W(Z, @) of the ground terms of sort s is denoted by W(Z)g. If
the sort index of a set of terms (g) is obvious from the context, it is
omitted frequently. O

For the sake of simplicity, all signatures Z have to be sensible as defined in
[Huet, Oppen 80], that is for every sort there has to exist at least one ground
term.

Definition 0.3 (Subterm, Occurrence)

The mapping Occ computes the set of occurrences (or tree addresses)
within a term. It is standard to describe such occurrences by finite

sequences of natural numbers:
Occ: W(Z, X) = p+(N")

Occ is defined recursively by:
Occ[x]={¢} if xEXg
Occ[f(t],... tn)] = {e} U{iu li€{1,...,n} A uEOcc[t{] }
if [f: 81 x ... x sy = s] EF, 4HEW(Z, X)s;.

t/u denotes the subterm of a given term t at the occurrence u € Occlt]:
t/e=t
f(t1,....tn) /isu=t;/u

t[ue—t’] denotes the term which results from replacing within t the
subterm t/u (u € Occ[t]) by the term t’:

tfe—t’] =t

f(ty,... tp)licu—t] = f(t1,... tilu=t’],...tn) O
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Vars[t] denotes the set of all variables occurring within a term t:
Vars[t] = {x € X 13 u&EOccft]: tu=x}

Definition 0.4 (Substitution)

A substitution o is a family of mappings ¢ = (0g)seS where
og: Xg = W(Z, X)s

such that only for a finite number of x€X, o is different from the
identity (o(x) = x). Again, the sort index (s) is omitted frequently.

A substitution can be easily extended to an endomorphism on W(Z, X):
O(f(tl 900 ,tn)) = f(Otl 300 ,th)

The domain of a substitution o is denoted by
Dom[o] ={ x€X | ox = x }.
The set of all variables occurring within the substitution terms is

denoted by Vars[o]:
Vars[o] = Vars[t]U...UVars(ty],
where {t1,...,tn} ={oxlox=x}.

A substitution p is called a renaming, iff p is injective and
VxeX: pxeX.

For two substitutions ¢ and T, a composed substitution ot is given by
the usual functional composition. The union cUt of two substitutions
o and T is only defined, if Dom(c)NDom(t) = @; it means to combine
o and T into a substitution with the domain Dom(c)UDom(x).

SUBST(Z, X) is the set of all substitutions o: X — W(Z, X),
SUBST(2) is the set of all ground substitutions o: X — W(Z). O

A substitution o, which replaces x€X by the term t1 and yEX by the term t2
(and nothing else), is denoted in an explicit notation by: o = [t1/x, t2/y]. v is the
identity substitution (i.e. VXEX: u(x) = x).

Given two terms t1 and t2, a substitution o is called a unifier of terms t1 and t2
iff o tl = o t2. If t1 and t2 are unifiable, there is always a most general unifier
(mgu) n. This means that for every unifier o for t1 and t2, there is a substitution
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A such that o = An. The most general unifier of two terms can be computed
efficiently (see for instance [Corbin, Bidoit 83]).

The following sketch of the theory of (equational) algebraic specifications has
the only purpose to introduce the notation, for details see [Wirsingetal.83].

A specification T = (Z, E) is a tuple, where X is a signature and E is a set of
equations between X, X-terms (of the same sort). The central notion for the
semantics of such a specification is the notion of a Z-algebra:

Definition 0.5 (Z-Algebra)

Let = = (S, F) be a signature. A 2-Algebra is a tuple A = (SA, FA),
which consists of:

. a family of non-empty carrier sets
SA = (sA)ses,sA =@ for sES

. a family of functions:
FA = (Ryer
such that for [f: s] x ... x sp—=> s] € F:
fA. slA X ... X snA - A,

The class of all Z-algebras is called Alg(Z). ¢

Within a Z-algebra A, now the interpretation of a term t can be defined. For the
interpretation of a non-ground term t, all variables from X occurring in t must
be bound to values in A. This is done by a valuation B:

B = (Bs)ses. Bs: Xs = sA.
The interpretation
A_ A A
Iy = (Ig ( )ses, Iy s W&, X)s = sh

can be defined easily as an extension of the algebra operations. An equation «tl =
t2> is called valid in A (A I=t1 = t2), iff for all valuations § holds:

A A
IB [t1]= I'3 [t2].

The Z-algebra A is called a model of the specification T = (Z,E), iff all
equations in E are valid in A. EqQMod(T) denotes the class of all models of the
equational specification T.
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The calculus of equational logic explains how new equations can be deduced
from the equations in E. It can be seen as a definition for the following relation
on terms:
tl =g 2 <>def 3 u€O0cc[tl], cESUBST(Z, X), = €E:
tl/u=0l A t2 =tl[u < or]
By =g* we denote the reflexive-transitive-symmetric closure of =E.

The most important result for equations and equational logic as a specification
framework is

Birkhoff’s theorem:
tl =g*t2 <« EqMod(T)I= (t1 =t2) GfT=C,E))

According to this theorem, it is ensured that the calculus can be used only to
derive equations which hold in all models of the specification (soundness).
Moreover, an equation which is valid in all models is deducible with the calculus
(completeness).






Chapter 1

Nondeterministic Algebraic
Specifications

This chapter will show precisely how to generalize the model classes and the
specification language for algebraic specifications to the case of nondeterminism.
Particular emphasis is laid on a motivation for the design decisions and on a
comparison to other approaches.

1.1 Nondeterministic Algebras

An algorithm is called nondeterministic, if there are computation states of the
algorithm, where the further computation steps are not determined, i. e. where a
free choice between different alternatives is admitted. If the final result of the
computation is fixed, indepently of the choices, the result is called determinate.
Here we will study the more general case of nondetermism where even the final
result is non-determinate. This means that the algorithm may deliver different
results when started under equal environment conditions. In a more abstract
view, the result of the algorithm is a set of possible results (called “breadth” in
[CIP 85)).
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Nondeterministic programs have been considered already in rather early papers
([McCarthy61], [Floyd 67], [Manna70], [Dijkstra76]). Here the main
motivations were:

. The programmer should be freed of unnecessary details at design time
([Dijkstra76]). The design should fix what is the function of the program;
if there are different ways how to realize this function in detail, the decision
between them can and should remain open. (A typical example for such a
single step with a non-determinate result is: “Choose an arbitrary number
between 0 and N”.)

. Nondeterminism often is an adequate form of description for a system
which depends on unknown parameters. A typical example is an operating
system, the behaviour of which depends on the number of users, on the
activity of ressources etc. If all these parameters were known, the
behaviour of the system would be deterministic. But it is realistic and
useful to treat the system without knowing all parameters, consequently to
deal with a nondeterministic algorithm ([Hennessy80]).

Both arguments use nondeterminism as a means of abstraction for the
description of complex systems. This results in a good motivation for
integrating nondeterminism into an abstract specification language for the
description of algorithms.

For models of algebraic specifications, nondeterminism means that the result of
the interpretation of a given function, applied to a given argument, is not fixed
uniquely. Below a number of alternative approaches are discussed which try to
model this situation mathematically.

1.1.1 A Discussion of Alternative Approaches
Let [f: s — s’] be a function symbol, s and s’ sorts of a given signature.

A first variant of nondeterminism is already present within classical algebraic
specifications:
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(a) Nondeterminism on model level

Let Al and A2 be two different models of a given specification where:
fAl. Al oAl
A2, A2, 9 A2,

Then fore € sAl N sA2 we may have:
fAle) =el, fA2(e) =e2 and el = e2.

This example presupposes a so-called loose semantics which has been proposed
e. g. by [Bauer, Wossner 81], [Wirsing et al. 83]: As the semantics of a
specification, a class of models is taken. The result of an operation is not fixed
uniquely, since it may differ in different models.

This form of nondeterminism is useful for the description of early phases of a
design where design decisions shall be kept open [McCarthy 61]. Within a
single model, however, all computations are deterministic.

But sometimes explicitly non-determinate (and therefore nondeterministic)
computations are to be described. Abstract specification of programs on
operating system level leads to such descriptions, as in the theory of
communicating processes. Here the approach described above is no longer
adequate, a notion of a model is needed, which admits nondeterministic
computations within a single model.

A first option to achieve this aim is the interpretation of a function symbol by a
set of functions:

(b) Nondeterminism on operation level

Let B be a model of a given specification:
B=(f1,12},
f1: sB — s'B,
f2: sB - ¢'B,
Then for e € sB we may have:
f1Be) =el, 2B(e) = e2 where el = 2.

This approach describes precisely the concept of (local) nondeterminism within a
functional computation. When a function is applied to given arguments, one out
of several prescriptions is chosen to compute the resulting value.
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The theory of algebraic specifications stresses the function application as the
most important operation on functions. It only considers the input-output
behaviour of a function. Therefore, an abstraction of the approach (b) also
provides an appropriate notion for a model, which uses set-valued functions.

(c) Nondeterminism on result level

Let C be a model of a given specification:
fC. sC - p(s’c).

Then for e € sC we may have:
tC(e) ={el,e2 } whereel = e2.

It is obvious, how for an algebra B corresponding to approach (b) an algebra C
corresponding to (c) can be found: Define

fCe)={ge)IgeB}

This is a true abstraction, i. e. algebras corresponding to (c) contain less
information about the structure than in approach (b). Consider the following
example:

Let B1 and B2 be algebras according to (b) where:

sBl=gBl_B2_¢B2_(0,L},
Bl = { not, id }, B2 = { true , false },
not, id, true, false: { O,L } - { O,L },

not(O) =L, not(L) =0,
id(0) =0, id(L)=L,
true(O) =L, true(L) =L,
false(O) = O, false(L) =O.

The following algebra C is an abstraction of B1 as well as of B2:

sC=s’C={O,L},
f€:{0,L} = p({O,L}),
Co)={0o,L}, CwLy={0o,L}.
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If we restrict our attention to the input-output behaviour of functions, the
function f has the same behaviour in B1 and B2, The function f, applied to an
element out of the set { O, L } delivers nondeterministically either O or L.

As long as functions are not considered as objects (like in “higher order”
specifications ), (c) is equivalent to (b). Since (c) fits well to the abstract style
found in algebraic specifications, (c) seems to be better suited for the definition
of nondeterministic models. It is interesting to note that exactly the
generalization of Z-algebras described as (c) has already been studied in the
Sixties under the name of a multi-algebra. As an early source, confer
[Pickett67], where for the origin of the notion “multi-algebra” P. Brunovsky
(1958) is referred. Below, only the multi-algebra approach will be followed,
which forms the basis for the work of [Nipkow86] and [Hesselink88], too.

But two other possibilities for introducing nondeterminism should be mentioned
before.

(d) Nondeterminism on the level of sorts

Let D be a model of the given specification:
D: p(sD) = p(s'D).

Then for e € sP we may have:
fD({ e})={el,e2 } whereel =e2.

This approach arises as a generalization of (c), by switching from set-valued
functions to functions operating on sets. Nevertheless, the specific properties of
nondeterministic operations are lost: Simple heterogeneous algebras are
considered here, with powersets as its carriers, even non-additive and non-
monotone operations are admitted. In [Kaplan 88] this approach is chosen for the
description of nondeterminism, but some additional restrictions (in particular the
U-distributivity af all functions) essentially lead back to the power of the
approach numbered (c) here.

A completely different approach, finally, is characterized by a simulation of
nondeterminism by deterministic operations:
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(e) Nondeterminism by deterministic predicates

Let E be a model of the given specification. Let E contain relations
instead of functions:

fECsExsE
The well-known relational product then defines a structure which is
comparable to approach (c).

On the model level, it is a matter of taste, whether a functional or relational
description is preferred. For instance in [Nipkow86] a relational description for
multi-algebras is used; however, an appropriate specification language is not
dealt with there. In [Subrahmanyam81], axioms containing nondeterministic
operations are translated into axioms for the corresponding predicates; however,
the direct relationship between terms and values (interpretation) is lost there. It
could be considered an advantage of relational specifications that Prolog-like
Horn clauses, if chosen as a specification language, may admit Prolog-like
resolution calculi. This idea is investigated in more depth below in chapter 4.

Relationally described nondeterministic specifications obviously are an
equivalent, interesting alternative. But for the purposes followed here, this
approach has too few similarities with the functional viewpoint of algebraic
specifications. In particular, we are interested here in a formal framework which
explicitly shows the principle of uni-directionality (for instance from input to
output) which is central to most programming paradigms. This is the reason
why we prefer here the set-valued approach listed above as (c).

Below we will define calculi which correspond directly to specifications of
approach (c), and which enable, by term rewriting, a syntactical simulation of
computations, too. In this case the uni-directional evaluation by term rewriting
corresponds to a choice out of a set of possibilities.

1.1.2 The Principle of Extensionality

The principle of extensionality is a basic paradigm for applicative and data-flow
oriented programming. It means: The identity of a function is determined by its
input-output behaviour. Functions with the same input-output-behaviour are
considered as equal. This way, we can abstract from the concrete realization, how
the function value is computed. A function becomes a “black box™ which is
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observed from the outside only. This point of view has advantages for the
modular construction of large systems (“information hiding™). This section will
trv to motivate the multi-algebra approach again, from the input-output point of
view.

In the case of nondeterminism, the interpretation of a function symbol

f:s—s’
in an algebra A can be seen as a computation unit with input and output
channels:

In order to keep with the modularity paradigm, we presuppose that nondeter-
ministic decisions are made locally .

In a given nondeterministic computation there is only one value on the input
channel. Nondeterministic decisions are made within the computation unit and
thus deliver just one value on the output channel.

Experiments with the “black box” fA consequently may lead only to
observations of the shape:

“If x is an input value, y1, ..., yp are possible output values.”

Approach (c) of the section above exactly mirrors this kind of input-output
behaviour.

Approach (b), transferred to our visualisation, would admit additional
observations about the way of computation which is chosen by the unit:

“If fA chooses computation description fj, then the input value x
delivers the output value y.”

Approach (d), in contrast, assumes a computation unit fA, which takes a set of
values as its input, and which delivers a set of output values, dependent on the
input set:
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“If the possible input values are xi, ..., Xp, the possible output values
are yi, .- Ym-

Note that the preference for approach (c) (instead of (b) or (d)) can be motivated
only by pragmatic arguments, what is seen as a “realistic” or “interesting”
notion for the input-output behaviour.

As a consequence of the choice of approach (c), it is clear now how to define the
composition of functions: Just take the input-output behaviour of f-g,i.e.:

Given an input value x, possible results of the entire system are exactly the

possible results of gA under input y, where y is a possible output of fA under x:
(FA-ghye)={e21e2EgAel) el EfAe) }

This means, the additive extension of fA to sets is used. This choice corresponds

to the classical relational product and to the usual definitions for multi-algebras.

If these design decisions are compared with those of [Meseguer 92], it is obvious
that Meseguer puts more emphasis on fixing the deduction calculus to classical
term rewriting. The semantic constructions are adjusted to fit this calculus,
whereas here the priority has been set the other way round: We fix the semantic
model first, and then adapt the calculus. In fact, the semantics in [Meseguer 92],
following an initial algebra approach, are defined in terms of deductions within
the rewriting calculus. Further below, the technical differences will be stated
more precisely.

1.1.3 The Notion of an Algebra

Using the arguments above, we fix the following generalization of the notion of
a heterogeneous Z-algebra:

Definition 1.1 (Total X-Multi-Algebra)

Let X = (S, F) be a signature. A (total) X-multi-algebra is a tuple A =
(SA, FA), which consists of

. a family of non-empty carrier sets
SA = (sB)cs,sA =P forsE S
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. a family of set-valued functions where the result is always non-
empty:
FA = (fAfep
such that for [f: s1 x ... x sh—~>s] € F:
A 51A x ... x spA = pH(sA).

The class of all Z-multi-algebras is denoted by MAIg(Z) . ¢

Below we also use the word “algebra” for a multi-algebra, where no confusion is
possible.

It is not completely obvious, why the functions are restricted to deliver only
non-empty result sets. For instance in [Hansoul 83], also empty result sets are
admitted in multi-algebras. The main argument for exclusion of the empty set is
that it somehow represents the non-existence of a result, which is equivalent to
undefinedness. It is well known from the theory of algebraic specifications that
an adequate integration of partial functions leads to a number of serious
problems. So the question of partiality is postponed to chapter 6, and functions
are restricted here to “total” ones, which always deliver at least one result.

Example 1.2
Let X = (S, F) be the following signature:

sort Nat

func zero: — Nat, succ: Nat — Nat,
add: Nat x Nat — Nat, or: Nat x Nat — Nat,
some: — Nat

The algebra A then is a Z-multi-algebra, where
NatA = N,
zero®: — p*(N), zeroA={0},
succA: N = p+(N), succAm)={n+l},
addA: N x N— p*(N), addA(nm)={n+m },
orfA:NxN — p*(N), orAmn,m)={n,m},
someA: = p*(N), some® =N

(where m, n€N).
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Another Z-multi-algebra is B, given by

NatB={Z,N},

zeroB = {Z}, succB(e) ={N},

addBZe)={e}, addB(Ne)={N},
orB(el,e2)={e1,e2 3, someB ={Z,N}

(where e, el,e2€{Z,N }) "

In the algebra A of this example, the operations orA and someA are called (truly)
nondeterministic, since they actually do deliver a choice between different
results. The other operations are single-valued functions and therefore called
deterministic.

The operation someA in the example above shows that multi-algebras in general
admit infinite result sets (indicating a choice out of infinitely many values,
which is sometimes called unbounded nondeterminism). Please note that the
choice of names in the example above shows a close correspondence to the
semantics assigned to them by the multi-algebra A. However, the formal
specification (which is only a signature up to now) does not resemble these
informal ideas at all. It is easy to give a multi-algebra for the same signature
where some is a deterministic operation and zero a nondeterministic one!

The set of ground terms can be made into a multi-algebra (since every Z-algebra
is a =-multi-algebra with singleton result sets, too). This is a very particular
algebra, where every operation is deterministic.

Example 1.3

For an arbitrary signature Z, a Z-multi-algebra WX (the term algebra) is

given by:
sWZ=W(E)sforsES
fWZ(t1, ... tn) ={ ft], ..., tn) } for fEF. 0

In order to define the interpretation of terms in a multi-algebra, the operations of
the algebra just have to be composed as the structure of the term indicates.
However, for giving a meaning also to terms containing variables, we need a
notion of an environment which binds variables. A term with variables can be
interpreted only if the environment defines fixed values for the variables. It is
consequent to admit here as values to be assigned to variables only single values
out of the carrier set (no set-valued environménts). The reason for this is that a
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computation within a given algebra contains only single values as intermediate
results. Within the informal description of section 1.2 above, set-valued
environments would correspond to observations under a fixed set of possible
input values. It is clear that such observations can be composed out of
observations with single-valued environments, by additive extension.

Definition 1.4 (Environment)

Let A = (SA, FA) be a =-multi-algebra.
An environment 3 of X in A is a family
B=(Bs)seS
of mappings
Bs: Xg — s,
ENV(X, A) denotes the set of all environments of X in A. 0

The definition of interpretation composes the operation provided by the algebra,
using an additive extension, when applying a function to a set of values:

Definition 1.5 (Interpretation)

Let A € MAIg(Z), B € ENV(X, A).

The interpretation Ig is a family of mappings

A A A
Ip=(Ig)ses,  Tg o WE X)s— pF(sA)  for sES.
Igs is defined inductively as follows:

(1) Ift=xand xEXg:
A
I [11= {00}
2) Ift=f(ty,...,ty) where [f:s] x ... xsp = s]EF
(t EW(E, X)g; foralli€{1, ... ,n}):

A A .
IB,s[t]={eefA(el""’en)leiEIB,si [til,1sisn}

If t is a ground term (out of W(Z)g),we write also TA instead of Ig s 0
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Example 1.6

In the multi-algebra A from example 1.2 the following propositions
hold:

IA[zero]={0}

IA[ add(or(zero,succ(zero)),or(zero succ(zero))) J={0,1,2}

If B is an environment with $(x) = 0, f(y) = 1, then we have:
I3[ add(x or(x3) 1= {0, 1}.

In the multi-algebra B the following holds:
Blzero]={Z}
IB[ add(or(zero succ(zero)) or(zero succ(zero))) | ={Z ,N}

1.2 Inclusion Rules as a Specification
Language

The semantics of a classical algebraic specification is given by a class of
algebras which are characterized by a set of axioms. Basically, algebraic
specifications may use arbitrary first-order formulas as axioms ([Wirsing et. al.
83]), where the atomic formulas are equations.

Particular interest has been paid to specifications where the axioms are only
equations or conditional equations (positive conditionals) with universally
quantified variables. On the one hand, the model class always has a nice lattice
structure in this case; on the other hand, the equational calculus is particularly
simple and therefore well-suited for support by software tools. These tools
usually are based on term rewriting (rewriting engine, Knuth-Bendix-completion,
E-unification by narrowing).

1.2.1 Axioms and their Semantics

When switching to the nondeterministic case, we first have to find an
appropriate notion replacing the equations. The purpose of these atomic
formulas is to describe the nondeterministic choice out of several possibilities.
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Such a process of decision does not preserve the information contained in a term,
but may reduce the amount of information. Therefore, we use unsymmetric
(oriented) atomic formulas. Below, “inequations” play the role which equations
have in the classical case. An inequation between two terms t1 and t2 is denoted
tl — t2.
It is to be understood informally as:
“Every (nondeterministic) possibility for the evaluation of t2 is a
(nondeterministic) possibility for the evaluation of t1, too.”

With respect to the intended interpretation, we call the inequations from now on
inclusion rules. The notation for inclusion rules is the same as it is standard for
rewrite rules, because below a tight correspondence to term rewriting will be
developed.

Definition 1.7 (Inclusion Rule)

An (atomic) (X, X-)inclusion rule is a pair of terms of equal sort, which
is denoted as a formula

tl — 2
where t1,t12 € W(Z, E)5,s €S. 0

Variables occuring in inclusion rules are implicitely understood as universally
quantified (like in equational specifications).

The validity of an inclusion rule has to take care of the orientation. In contrast
to equational logic, which centers around the notion of equality, our objects are
decision processes, and this leads to set inclusion.

Definition 1.8 (Validity)

Let A be a Z-multi-algebra. An inclusion rule t1 — t2 is called valid
in A, written:

Al=tl -2
iff for all environments § € ENV(X, A):

A A
I [11) 21 [e2]. 0
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Note that this definition of validity relies on the definition of an environment: A
variable within an axiom always means a (determinate) object, and not a
nondeterministic expression.

Example 1.9

Within the multi-algebras A und B of example 1.2 the following
inclusion rules are valid:

add(zero x) — x, add(succ(x),y) — succ(add(x,y))
or(x,y) = X, or(x,y) =y
some — zero, some — succ(some) 0

Now we can define nondeterministic algebraic specifications in analogy to the
standard approach.

Definition 1.10 (Nondeterministic Algebraic Specification)

A (nondeterministic) (algebraic) specification is a tuple T = (Z, R),
which consists of a signature £ and a finite set R of =, X-inclusion
rules, which are called the axioms of the specification. ¢

Definition 1.11 (Model)

A nondeterministic Z-algebra A is called a mode! of the nondeterminis-
tic specification T = (£, R), iff for all inclusion rules ® ER: A |= ®.
Mod(T) denotes the class of all models of the specification T . 0

Example 1.12

This first example of a specification combines the signature from
example 1.1 with the inclusion rules from example 1.9. We use a
notation similar to many standard specification languages (for instance

OBJ, PLUSS):

spec NAT

sort Nat

func zero: — Nat, succ: Nat — Nat,

add: Nat x Nat — Nat, or: Nat x Nat — Nat
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axioms
add(zero x) — X, add(succ(x),y) — succ(add(x.y)),
or(x,y) — X, or(x,y) =y
some — zero, some —> succ(some)

end

The algebra A from example 1.2 now is a model of NAT. 0

1.2.2 The Calculus of Term Rewriting

As already indicated above, the axioms of a nondeterministic specification shall
be used for a calculus for the derivation of further properties, which hold within
the model class of a specification. The tight relationship to the formalism of
term rewriting will lead to a situation, where this calculus can be seen as an
operational interpretation of the specification as well.

The well-founded theory of term rewriting (see [Huet, Oppen 80]) offers an
“oriented” analogon to equational logic (see also [Meseguer 92]). The
orientation of the rules admits a much more efficient way to carry out deductions
in comparison to equational logic. This is the reason why term rewriting forms
the basis for most of the software tools available for equational specifications
now (e. g. OBJ, ASSPEGIQUE, AXIS, OBSCURE, RAP).

The classical theory of term rewriting also assumes a finite set R of inclusion
rules, but as an additional restriction for all axioms «<t1— t2> € R it is required
that the variable condition holds:

Vars[tl] D Vars[t2].

This requirement can be omitted in our approach, since it aims mainly at the
notion of confluence, a condition which is always violated by non-trivial
nondeterministic specifications (if considered as a system of rewrite rules). See
below for a formal definition of confluence.

The term rewriting relation —R (for a given axiom set R) is a binary relation
between terms of the same sort:
tl >R t2 <>(def
3 u € Occltl], 0 € SUBST(Z, X),d - ER:
tl/u=0l A t2=tl[u « or]
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The symbol —R* means the reflexive-transitive closure of =R.

This notion exactly describes the “oriented” generalization of the relation =g
known from equational logic.

The theory of term rewriting becomes useful for equational logic by means of
the property of confluence:

A term rewriting system R is called confluent iff
Vt1,t2,t3: (t1 »R*t2 A tl >R*t3)
= Jt4: (2 =>R*t4 A3 >R*t4).
In words, the result of every rewriting sequence has to be determined
independently of the actual choice of the rewriting steps.

The theorem below connects equational logic with term rewriting:

Confluence Theorem:

If R is confluent, then:
tl =R* 2 <« (3It3: tl »>R* 3 A2 »R*3)

It is obvious that in the case of nondeterminism the confluence condition will
not hold: Here we are interested explicitly in deriving several different results for
a given term.

Below we will try to circumvent the confluence theorem. We aim at a result
similar to Birkhoff’s theorem for general, non-confluent term rewriting. Ideally

we would try to prove:
tl =R*t2 <« ModR)I|= (tl =12)

The proposition above does not hold in general, but it holds under specific
preconditions which will be explained later. The driving idea of this and the next
chapter will be to isolate particular circumstances under which a usable variant
of this proposition does hold.

First we will give an alternative formulation of —R*, then the =>-part of the
proposition above (soundness) will be studied, followed by the <«<-part
(completeness). This development cycle will be repeated three times until a
sufficient solution is reached.
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The term rewriting relation —R* can be represented also by a calculus which
can be used to derive formulas of the shape tl — t2 from the given set of
inclusion rules. This form of description (which is used consequently for
instance in [Padawitz 88]) is easier to handle within proofs.

Definition 1.13 (Calculus of Term Rewriting)

Let T = (£, R) be a nondeterministic algebraic specification. Then a
formula t1 — t2 is called deducible in T, written as

TI-Rc tl = 2,
iff there is a formal derivation for tl — t2 using the following
deduction rules:

(REFL)
t—t ifte WZ,X)
(TRANS) tl = 2 ,t2 = 3
tl — 3 iftl, 12,3 € W(Z, X)
(CONG) ti =t

fty, ..o -1, G, tig 1y --s tn) — f(t1, .o, ti1, 67, tig1s ---s tn)

if [f:s]x...xsp—=>s]EF,
tj EW(Z,X)SJ Wherej (S {1, ...,n},ti’ EW(E, X)Sl

(AXIOM) -
ol — or if d—n €R, o € SUBST(Z, X)
e 0. X —= WE, X)) O

The notation |-RC (rewriting calculus) has been used in order to distinguish the
calculus from similar calculi which will be introduced below. In the following,
sometimes R |-RC is written which is meant as a synonym for T I-rc (T =
(2,R) a specification). If it is clear from the context which specification is
meant, the notation is further simplified by omitting T or R, respectively. (The
same notational convention will be applied for all other calculi introduced
below.)



34 NONDETERMINISTIC ALGEBRAIC SPECIFICATIONS
1.2.3 Soundness: A Negative Result

When a logical calculus is analysed, the most important (and therefore first)
question is whether it is sound with respect to the underlying semantics.
Soundness means that the calculus allows us only to derive statements which are
semantically valid.

It is this question which already leads into problems for the calculus above. But
the difficulties appearing here are well-known from the semantics of
nondeterministic programming languages. In [Bauer, Wossner 81], for instance,
the following example is mentioned.

Let a function declaration (in a classical algorithmic language) be given
funct double = (nat n)nat: n+n
which computes for a natural number the double of its numerical value.

It is now interesting to consider a call of this function with a nondeterministic
expression as its argument, €. g.

double(zero_or_one)
where zero_or_one means the nondeterministic choice between the values 0 and
1. Basically, two points of view can be thought of, which are known as “call-
time-choice” and “run-time-choice” ([Hennessy 80], [Benson79]).

“Call-time-choice” assumes that the function gets only deterministic objects, and
not nondeterministic expressions, as its arguments. The call above therefore is
equivalent to one of the both calls

double(0) or double(l),
thus the possible results are described by the set { 0,2 }.

“Run-time-choice”, however, treats the call as equivalent to

ZEro_or_one + Zero_or_one,
which is similar to the “copy rule” of ALGOL 60: The nondeterministic
expression is copied into the function body. Now the values out of { 0, 1,2 }
are admissible results. The value 1 is legal, since both “copies” of zero_or_one
may choose the result value independently one of the other.

The semantics introduced in the sections 1.1 and 1.2 correspond to call-time-
choice. Unfortunately, the term rewriting calculus corresponds to run-time-
choice (copy rule), as it can be seen from the following example:
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Example 1.14

spec DOUBLE

sort
func

Nat

Zero: — Nat, succ: Nat — Nat,
add: Nat x Nat — Nat, double: Nat — Nat,
zero_or_one: —> Nat

axioms

end

add(zero x) = x,

add(succ(x),y) — succ(add(x,y)),
double(x) — add(x x),
Zero_or_one —> zero,
Zero_or_one — succ(zero)

A model of DOUBLE is e. g. the algebra N below:

NatN = N,
zerolN = {0}, such(n) ={n+l },
addN(n,m) = { n+m }, doubleN(n) = { 2n },

zero_or_oneN ={0,1}

A derivation within the term rewriting calculus is:

¢y
@
©)
@
®)

©)
O

®

()

I-RC zero_or_one — zero (AXIOM)
I-RC zero_or_one — succ(zero) (AXIOM)
I-RC add(zero_or_one,zero_or_one) — add(zero,zero_or_one)
(CONG), (1)
I-rC add(zero,zero_or_one) — add(zero succ(zero))
(CONG), (2)

|-RC add(zero_or_one zero_or_one) — add(zero succ(zero))
(TRANS), (3),(4)
I-RC add(zero,succ(zero)) — succ(zero) (AXIOM)
I-RC add(zero_or_one zero_or_one) — succ(zero)
(TRANS), (5), (6)
I-RC double(zero_or_one) — add(zero_or_one,zero_or_one)
(AXIOM)
I-rC double(zero_or_one) — succ(zero) (TRANS), (7), (8)
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But in N the following inclusion does not hold:
double(zero_or_one) — succ(zero)
(since IN[double(zero_or_one)] ={0,2}). O

The example shows that (AXIOM) does not treat the inclusion rule

double(x) — add(x x)
in a sound way, because both “copies” of the term which is substituted for x
(zero_or_one in the example), can be evaluated independently.

It must be decided now whether the semantic concepts from above (in particular
the interpretation of a term) should be revised, or whether the calculus should be
modified. There are good reasons why the given semantical framework has been
chosen. The basic assumption that a variable always stands for a single value
comes from the intention to model a somehow “realistic” scenario for
nondeterministic computation, where only single data items are transmitted
between computational units. Therefore the deductions have to to be adapted to
the semantic framework.

It is an interesting observation that the soundness problem does not appear in
[Meseguer 92]. There the semantics are adjusted in such a way that the rewriting
calculus RC is sound and complete. This excludes models like N above, but it
contradicts to our basic paradigm that a function gets only single values as its
input, and therefore variables always stand for single values. To put it simply,
[Meseguer 92] uses a “run-time-choice” strategy, in difference to the “call-time-
choice” which is preferred here.

There are various possibilities to refine the calculus in such a way that it
becomes sound with respect to the multi-algebra semantics studied here.
Basically, two approaches are most promising:

(1) The rewriting calculus can be changed in such a way that it truly reflects a
“call-time-choice” strategy. For this purpose there must be some
syntactical possibility to recognize whether a term is determinate, that is
whether it is always interpreted by a singleton set.

(2) The application of an axiom can be adapted in such a way that it keeps the
information about which term is a physical copy of another one. This is a
step towards rewriting on graph-like structures.
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Both approaches will be worked out in more detail in later chapters (approach (1)
in chapter 2, approach (2) in chapter 5, section 5.2). Another example is very
helpful for deciding which way to go for the adaptation of the calculus now.

Example 1.15

The algebra NN below is another model of the specification DOUBLE
defined in the preceding example 1.14:

NatNN = N
zeroNN=¢(0,1}, succNN(n) = { n+1 },
addNN(nm) = { n+m }, doubleNN(n) = { 2n },

zero_or_oneNN ={0,1,2}

The model NN shows that even the most simple application of the
axiom for double is unsound. In NN we have:

= (NN I= double(zero) — zero ),
since

INN[double(zero)] ={0,2},  M™NN[zero]={0,1}.

So any calculus which allows us to deduce
double(zero) — zero
is not sound. O

This example shows that there is a rather general problem in treating inclusion
rules with multiple variable occurrences on the right hand side. In fact it even
shows that the expressivity of the specification language is still too low, since
intuitively we would expect the inclusion double(zero) — zero to hold in all

models of DOUBLE. But this expectation implicitly uses the assumption that
~ zero is a deterministic function, which is not the case in this counterexample.

Considering approach (2), it does not suffice to extend the term rewriting
calculus by a notion of rewriting on terms with sharing of subterms. We use the
notation
let x = zero in add(x,x)

to denote a term which contains two shared occurrences of the subterm zero. It is
not difficult to extend the interpretation to such terms with sharing in a way
which ensures that both copies of the shared term (zero) always are evaluated to
the same elementary value. So the interpretation of the let-term from above in
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NN is intended to be {0, 2}. The calculus can be extended in such a way that it
allows us to derive the inclusions

I- double(zero) — let x = zero in add(x x)

I- add(zero,zero) — zero.
However, the inclusion let x = zero in add(x,x) — add(zero,zero) again does not
hold in NN (the first term has the interpretation {0, 2}, the second one means
{0, 1, 2}.) So also a sound graph-rewriting calculus should not admit the
application of the add-rule to the term containing the shared subterm zero.
Unfortunately, standard graph rewriting, as it is defined for instance in
[Barendregt et al. 87], would perfectly admit the application of the add-rule. See
chapter 5 (section 5.2) for a re-examination of this idea in a more detailed
framework.

However, approach (2) can be dealt with nicely within the new framework of
[Walicki 92/93]. This work leads to a richer syntax, where deductions are made
in a context consisting of variable bindings. We use here the notation “x&t” to
express that x is bound to some value out of the interpretation of term t; and
implication to prefix an inclusion with such a binding context. From this
notation, it should be obvious how the semantics can be extended. Within such
a calculus, we can derive the formula
X € zero = double(x) — add(x,x),

which is the most refined statement about double(zero) which can be deduced
soundly. However, this approach uses the deduction of conditional statements
which is a significant step beyond standard (and even conditional) term-rewriting.

The next chapter addresses an extension of the specification language following
the approach number (1). On a first reading, it is recommended to skip directly
to this chapter 2 from here. The section 1.2.4, which follows immediately
below, just studies an interesting special case for which classical term rewriting
is sound and complete. Unfortunately, this special case excludes almost all
realistic software specifications, so it is interesting only from the theoretical
point of view.

1.2.4 Right-Linearity: A Special Case

It is quite obvious that all the difficulties discussed in the section above came
from axioms which contained multiple occurrences of a variable within their
right hand sides. The idea of this section is to exclude such multiple occurrences
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syntactically. It turns out that for this special case a general soundness and
completeness result holds.

A term which contains exactly one occurrence for every one of its variables is
called linear. The next definition carries this definition over to systems of
inclusion rules.

Definition 1.16 (Linearity)

A term t € W(Z, X) is called linear iff there are no multiple occurrences
of a variable within it, i. e.:
V xEX: ¥ ul, u2€0cc(t): (t/ul =x) A (t/u2 = x) = (ul = u2).

An inclusion rule < — b is called right-linear iff the term r is linear.
A set R of inclusion rules is called right-linear iff all axioms in in R
are right-linear. O

The following theorem shows that a restriction to right-linearity entails
soundness of classical term rewriting under nondeterministic interpretations.

Theorem 1.17 (Soundness)

Let T = (£, R) be a nondeterministic algebraic specification where R is
right-linear. Then for t1, t2 € W(Z, X) holds:
TIrc tl =2 = Mod(T) I= t1 — 2.

Proof:
The proof of soundness is done by induction on the (length of the)
derivation. When in this proof the deduction rule (AXIOM) is
considered, the condition of right-linearity is necessary for the
application of the following lemma:
Lemma 1.17.1
Let A € Mod(T), p € ENV(X, A), o € SUBST(Z, X).
Then for t € W(Z, X) holds: *)

Ig[ot] 2{e€c I;\[t] Iy EENV(X, A) A Vx € Vars[t]: yx € Ig[ox]}
If t is linear, within the proposition (*) set equality holds.

The proof of lemma 1.17.1 is given in appendix A. O
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In order to prove also the completeness of term rewriting, a term model is
constructed now, similar to classical equational logic. However, the construction
follows the idea of an ideal completion (confer [Moller 82]) instead of forming a
quotient of the set of terms.

Definition 1.18 (Term Algebra WZX/R)

For a given signature = and a set of axioms R, a Z-Algebra WZ/R is
constructed by:

sWER = w(g, B) fors€S
fWER(ty, ... ty) = { tEW(Z, X) IR I-RC f(t], ..., tn) = t }
for f € F.

sWZ/R holds, if for all sorts there is at least one variable. According
to (REFL) then fW2/R(ty, . tn) = @. 0

Theorem 1.19

Let T = (X, R) be a specification where | € X for all 4 - €R.
Then WZ/R is a model of T.

Proof: See appendix A. ¢
Example 1.20
Within the term model WZ/DOUBLE for example 1.14 we have:

IWZ/DOUBLE[double(zero_or_one)] =
{ double(zero_or_one) , add(zero_or_one zero_or_one) ,
add(zero_or_one, zero) , add(zero,zero_or_one),
add(zero,succ(zero)) , add(succ(zero),zero),
add(succ(zero),succ(zero)) , succ(add(zero,zero)),
succ(add(zero succ(zero))), succ(succ(add(zero zero))),
succ(succ(zero)), succ(zero), zero },

IWZ/DOUBLE[succ(zcro)] = { succ(zero) },
i.e:.  WZX/DOUBLE |= double(zero_or_one) — succ(zero) O
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A small example may illustrate why the precondition
1€X fiird —-np ER
is necessary to ensure that the term model in fact is a model of the specification.

Example 1.21

spec LD
sort s
func a:—s, b:—s
axioms
X—>a
end

The algebra WZ/LD is not a model of LD, as can easily be seen. Let §
be an environment assigning a term to the variable x. Then according

to definition 1.5:

Iy - x)={ B }.

If the environment B is specialized to assign the term b to the variable
X, this means:

WZ/R WZ/R
g~ x={B)R{a}=Ig " [a],
p B
so the single inclusion rule of LD does not hold in WZ/LD. ¢

Example 1.21 also illustrates that the condition “I€X” (which is sometimes
called left-definiteness) is a necessary prerequisite for completeness. Without it
completeness is lost.

Example 1.22
Consider again the specification LD from example 1.21.

The axiom x — a forces the interpretation of a and b to be equal
within all models of LD :
Let A beamodelof LD, ep € IA[b].
Using the environment (x) = ep, the axiom has to hold, thus:
{ep} 21Aa].
This means (because of IA[a]=@):
ep € IA[a).
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Therefore holds:
1A[a] 21AD).
Thus: Mod(LD) |=a — b, although this inclusion is not deducible. ¢

With the appropriate preconditions, however, there is a completeness result.
Please remember that this completeness does only make sense for right-linear
specifications, because this is the case for which the soundness of the term
rewriting calculus RC has been proven.

Theorem 1.23 (Completeness)

Let T = (£, R) be a nondeterministic algebraic specification where I€X
holds for all <1 — r» € R. Then for t1, t2 € W(Z, X) holds:
Mod(T) I= t1 — 2 = TIlrc tl = 2.

Proof:
Completeness follows from the existence of the term model WX/R.
(For the lemma 1.19.1, see appendix A.)

Mod(T) I= t1 = t2 = (Thm. 1.16)
WIRI= tl = 2 = (Defn. 1.8)
I:VZ/R[tl] 2 I:NZ/R[Q] = (Lemma 1.19.1)

{tIRI-Rctl =t} 2 {tIRIRc 2=t} =
(since |- 2 — t2)
RI-rctl = 2 0

Unfortunately, the restriction to right-linear specifications is too strong to be
acceptable for a practical specification technique. For instance, the standard
description for the multiplication of natural numbers already contains non-right-
linear inclusion rules. Example 1.14 above also shows that even quite “natural”
specifications violate the right-linearity condition. Chapter 2 therefore discusses
ways for the construction of a more general calculus which still remains very
similar to term rewriting.



Chapter 2

Specifications with a
Deterministic Basis

The conclusions from chapter 1 are:

(1) Classical term rewriting is unsound for nondeterministic specifications.

(2) If the axioms are restricted to right-linear inclusion rules, classical term
rewriting is sound and complete, however this restriction is not satisfactory
for practical applications.

Moreover, chapter 1 gave indications that the specification language of inclusion
rules itself is too simple to designate an appropriate model class. In particular, it
does not provide any way to express that some term is deterministic, this is that
it must always be interpreted by a single value.

In this chapter, the language is extended by a particular kind of formulae which
state explicitly for a term that it must have a one-element interpretation. This
restricted language admits a sound calculus, which is very close to classical term
rewriting. Under reasonable preconditions, also completeness can be shown.

The essential idea for the refinement is to designate a “basis” part of a
specification which is called deterministic, because it must always be interpreted
determinately.
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2.1 Deterministic Basis

As good starting point for the development of a sound calculus, example 2.1
recalls examples 1.14 und 1.15, which showed that term rewriting is not sound
in general.

Example 2.1

The algebra NN below was defined in example 1.15:

NathN = N
zeroNN = {0,1}, suchN(n) ={n+l},
add™N(nm) = { n+m }, doubleNN(n) = { 2n },

zero_or_oneNN ={0,1,2}

The model NN fulfils the axioms from example 1.14:
add(zero x) — x,
add(succ(x),y) — succ(add(x.y)),
double(x) — add(x x),
Zero_or_one — zero,
zero_or_one — succ(zero),
but not the inclusions listed below (which are nevertheless deducible by
term rewriting):
double(zero_or_one) — add(zero_or_one,zero_or_one),
double(zero) — add(zero,zero). 0

Obviously, the “mistake” comes from the application of the non-right-linear
rule. However, with an intuitive idea of the specification in mind, one would
expect that at least the inclusion

™ double(zero) — add(zero,zero)

does hold in all models. This intutitive interpretation always assumes the well-
known symbol “zero” to be interpreted as the singleton set { O }. Here the model
semantics contradicts intuition.

The other inclusion

(*%) double(zero_or_one) — add(zero_or_one,zero_or_one)

is not an intuitive consequence of the axioms (since “zero_or_one” is obviously
a nondeterministic function symbol). Here the deduction semantics given by
term rewriting is counterintuitive.
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To capture this idea, the fact must be formalized that zero is a deterministic
operation for all models. This leads to an exclusion of the “non-standard” model
NN (where zero is interpreted by a choice between two values). The calculus
then must be adapted in such a way that it admits the deduction of (*), but not
of (**).

2.1.1 Soundness and Deterministic Basis

The specification language has to be enriched by a means to state whether the
result of a function application is determinate or not. So the specification gains
a deterministic basis part, enriched by possibly nondeterministic extensions.
This concept coincides with the basic design decision for our theory which
studies nondeterministic functions working on a set of (deterministic) objects.
The deterministic basis corresponds to a specification of our basic objects.
Therefore, also the term rewriting calculus has to be adapted to respect the
decision that variables range only over single values. So only deterministic
terms can be substituted for a variable.

A first approach in the direction of a deterministic base could be to designate a
subset of the operation symbols as the “basic operations”. This idea is sufficient
for many applications (and will be studied below in more detail), however it is a
special case of a simpler approach. The idea is generally to fix a subset D of the
terms which are “deterministic terms”. If all terms in D are interpreted as
singleton sets, we have a compatibility property with the inclusion rules:

If t€D and Tl=t — t’, then t'ED .

The terms contained in D can be marked by writing down an axiom

DET(t) (read: “t is deterministic™).
Then the compatibility property can be made into a deduction rule for such
formulas. The set D then is described indirectly by

D={tEW(Z,X)I T |- DET(t)}.

There is a close analogy between this idea and the extension of algebraic
specifications to partial functions as it is explained in ([Broy,Wirsing82])
using a definedness predicate. Interested readers can find more detailed material
on this topic in chapter 6.
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2.1.2 Determinacy Predicate

The following definition just formalizes the concepts which were explained
above informally.

Definition 2.2 (DET-Axiom, Validity)

A (2, X-) DET-axiom is a term, which is denoted as a formula using
the so-called determinacy predicate or DET-predicate :

DET(t)
where tEW(Z, X).

A DET-axiom <DET(t)> is valid in a 2-Algebra A (A |= DET(t)) iff
for all valuations BEENV (X, A) the interpretation is determinate:

A —_—
gl 1=1.

The notions “algebraic specification” and “model” from now on are
meant to admit DET-axioms within the axiom set, too. O

Example 2.3

Let the specification DOUBLE from example 1.14 be extended to a new
specification DOUBLE’ which contains the following additional
axioms:

DET(zero), DET(succ(x))

The algebra N from example 1.14 is a model of DOUBLE’, too.

NN from example 1.15 is not a model of DOUBLE’, since
ITNN[zero] I1=1{0,1}1=2.

Moreover, in N the following formulae hold (which are not axioms):
N |= DET(add(x,y)) N I= DET(double(x)) 0

The term rewriting calculus now is extended by deduction rules for DET-axioms.
The deduction rule (AXIOM) is modified, in order to ensure soundness: Variables
now can be instantiated only with such terms which are proven to be
deterministic.
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The calculus defined below is the most frequently used calculus in this text.
Therefore deductions within this calculus are written without a special index, in
difference to deductions within all other calculi (like I-RC).

Definition 2.4 (Term Rewriting with DET)

Let T = (£, R) be a nondeterministic algebraic specification (with DET-
axioms). A formula «1 — t2> or <DET(t)>, respectively, is deducible
in T, written symbolically:

TI-tl = t2 or T |- DET(t), respectively,
iff there is a deduction for the formula using the following deduction

rules:
(REFL) if tEW(, X)
t—>t
(TRANS) tl = 2,12 — t3
if t1, t2, t3EW(E, X)
tl = 3
(CONG) ti =t

f(t1, .oos tio1s tis tit s oo tn) — f(t1, ooy ti-1, s i 1o --os tn)

if [f:81x...xsp—=>8]EF,
tjEW(E, X)sj where JE(1, ..., n}, ' EW(Z, X)g;

(AXIOM-1)  DET(0x1), ..., DET(0xp)

ol — or

if 4 = n» €R, 0 € SUBST(Z, X),
{x1, ..., Xn} = Vars(l) U Vars(r)

(AXIOM-2)  DET(0x1), ..., DET(0xp)

DET(ot)

if <DET(t)> € R, c € SUBST(Z, X),
{x1, ..., Xn} = Vars(t)
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(DET-X)

(DET-D)

(DET-R)

Example 2.5

SPECIFICATIONS WITH A DETERMINISTIC BASIS

ifxeX

DET(x)

DET(t1), t1 — t2
iftl, 2 € W, X)

DET(12)

DET(tl), t1 — t2
iftl, 2 € W, X)

t2 — tl

Examples for deductions in the specification DOUBLE’ of example 2.3:

DOUBLE'’ |- double(zero) — zero :

(1) |- DET(zero) (AXIOM-2)

(2) I- double(zero) — add(zero zero) (AXIOM-1), (1)
(3) I- add(zero,zero) — zero (AXIOM-1), (1)
(4) I- double(zero) — zero (TRANS), (2), (3)

DOUBLE’ |- double(zero_or_one) — succ(succ(zero)) :

(1) |- DET(zero)

(AXIOM-2)

(2) |- DET(succ(zero)) (AXIOM-2), (1)
(3) |- add(succ(zero) succ(zero)) — succ(add(zero succ(zero)))

(AXIOM-1), (1),(2)

(4) |- add(zero succ(zero)) — succ(zero) (AXIOM-1), (2)
(5) I- succ(add(zero succ(zero))) — succ(succ(zero))

(CONG), 4)

(6) |- add(succ(zero),succ(zero)) — succ(succ(zero)) (TRANS), (3), (5)
(7) |- double(succ(zero)) — add(succ(zero),succ(zero))

(AXIOM-1), (2)

(8) |- double(succ(zero)) — succ(succ(zero)) (TRANS), (7), (6)
(9) |- zero_or_one — succ(zero) (AXIOM-1)

(10) I- double(zero_or_one) — double(succ(zero))  (CONG), (9)

(11) |- double(zero_or_one) — succ(succ(zero)) (TRANS), (10), (8)
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The “wrong” deduction from example 1.14 is not allowed here:
-( DOUBLE'’ |- double(zero_or_one) — succ(zero) ) 0

Theorem 2.6 (Soundness)

Let T = (2, R) be a nondeterministic algebraic specification on a
deterministic basis. Then for t, t1,t2 € W(Z, X):

TI-tl =2 = Mod(T) I=t1 — 2

T |- DET(t) = Mod(T) I= DET(t)

Proof: By induction on the derivation, see appendix A. 0

The calculus above is slightly more restricted than it was necessary for
soundness: The premises of deduction rule (AXIOM-1) are needed only for
variables which have multiple occurrences in the right hand side of the axiom.
This is a simple consequence of theorem 1.19. Therefore, the following
deduction rule is sound, too:

(AXIOM-1-RLIN) DET(0x1), ..., DET(0xp)

ol — or

if d - €R, 0 € SUBST(Z, X),
{x1,...,xp} = { xEVars[r] | Ful, u2€0cc[r]: ul=u2 A rful=x A ru2=x }

The results given below can be obtained also using the calculus of definition
2.4, which is simpler in its structure. This is one reason why the calculus of
definition 2.4 is preferred within this manuscript. The other reason is that there
is no significant gain in completeness if the more complex rule (AXIOM-1-
RLIN) is used. The next section studies completeness issues in more detail.

2.1.3 Completeness: A Negative Result

It is the obvious next question whether the calulus introduced above in
Definition 2.4 is complete in some sense. Unfortunately, there exist
counterexamples which demonstrate the incompleteness of the calculus.
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For a restricted specification language (right-linear rules), in chapter 1 a
completeness proof was given (theorem 1.23). However, the proof technique
used there cannot be applied in the same way to specifications on a deterministic
basis. If the deduction rule (AXIOM-1) is used to prove the validity of the
axioms within a term model, then the carrier set of the term model contains
provably deterministic terms. On the other hand, if we want to derive from
Mod(T) |= t1—t2 a proof of the formula t1—t2 within the calculus, then the
interpretation of the term t1 (within the term model) must contain the term t2
itself. This means, this idea leads at most to a proof for the following property:
*) V tl, 2eW(Z, X):

Mod(T) I=tl =2 A TI-DET(t2) = TI-tl — t2.
This property (*) is called weak completeness below.

Weak completeness still is an interesting result if looked at from the
programmer’s viewpoint. It states that for every pair of terms, denoting a
nondeterministic expression and a value, the calculus provides a satisfactory
method to check whether the value is a possible outcome of the nondeterministic
expression within all models. Unfortunately, the following counterexample
shows that even weak completeness does not hold in general.

Example 2.7

Consider the following nondeterministic specification INC:

spec INC

sort s

func a: —s, b: — s,
f:s—s, g —s,
h:sxs—>s, kis—s

axioms
DET(a), DET(b),
f(g) — a, f(a) — b, f(b) = b,
g—b, h(x,a) — a, h(x,b) = b,
k(x) = h(x.f(x))

end

We show now that
INC I= k(g) — a,
i.e. that this inclusion holds in every model of the specification INC.
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Let A be a model of INC. Then the interpretations of the terms a and b
must be singleton sets; therefore we use the convention IA[a] ={a},
1Al ={b}.
The axiom

f(g) —>a
means that

IAf(g)] = {esfA(e) le'Egh } D{a}.
Therefore there is an element eoegA such that aEfA(e()). Using this
element e, the
following chain of inclusions holds:

Alk(g)]

2 kA(e()) (since e()EgA, and because of Defn. 1.5)
D hienfAe)  (axiom k(x) > h(x,f(x)p)

2 hA(eg,2) (because of aEfA(eq))

2 {a} (axiom <h(x,2) = a).

Using deductions within the calculus of Definition 2.4, this inclusion
cannot be proven. The only way to reduce a term starting with a “k” is
by applying the axiom <k(x) — h(x,f(x))>. This axiom can be applied
only, if a provably deterministic term is substituted for the variable x
(for soundness reasons). The only provably deterministic terms are a
and b, therefore we can deduce:

INC I- k(a) = h(a,f(a)), INC I- k(b) — h(b.f(b)).
Only the second one of these inclusions can be connected with the term
k(g) by the axiom «g — b>. Using (TRANS), we have:

INC I- k(g) — h(b.f(b)).
Unfortunately, the only way to reduce the right hand side of this
inclusion further is by deducing:

INC |- k(g) = b (axiom <h(x,b) = b>).
There is no way to reach the term a by such a deduction:

~(INC I- k(g) — a). ¢

The example 2.7 does not only show that the calculus is incomplete; it even
shows that weak completeness does not hold. This follows simply from the fact
that the inclusion used to demonstrate the incompleteness had a deterministic
term on its right hand side. This example works as a counterexample also for
another popular way of weakening the notion of completeness: the so-called
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ground completeness, where attention is restricted to inclusions between ground
terms. (The terms k(g) and a used in the example are ground.)

Another interesting observation is that a relaxation of the calculus as indicated
above, using the rule (AXIOM-1-RLIN), does not avoid the completeness
problem. In this modified calculus it is also forbidden to instantiate the variable
x in «k(x) = h(x,f(x))> to the term g.

At this point, again a decision must be made where to attack the deficiencies
which were exposed by the example. There are two options: to change the
calculus again or to restrict the syntactic form of the axioms (but not as severely
as to right-linearity).

A closer inspection of the example above gives some hints how to decide. The
problem in the example comes from the fact that the semantic argumentation
mainly relies on the axiom

f(g) = a,
which cannot be used in the deduction (since the term f(g) cannot be generated).
Generally, this axiom has a somewhat spurious meaning. The following
argumentation (which sloppily mixes syntax and semantics) tries to isolate the
problem: The axiom says something about the meaning of f applied to g, but it
does not explain the consequences for both single functions f and g. The only
property of g directly stated in the axioms is

g—b,
but this value of b for g apparently does not lead to a value of a for f(g) (since
f(b) seems only to have the value b). Even if g had additionally the value of a,
nothing would change here. So the axioms implicitly contain the assumption
that there is another “third” basic object, let us call it c. This element c is
distinct from a and b, ¢ is a value of g and f applied to c delivers the value of a.
This complex argumentation obviously does not fit into the simple framework
of a rewriting-like calculus.

The framework of [Walicki 92/93] showed recently, how the semantic arguments
can be transferred into a calculus. The main idea there is to introduce a “binding
context” for variables. So the sentence “There is an element e()EgA such that
aEfA(eo)” from the proof above is formalized as a deduction rule (binding
introduction) which can derive the formula

xEg=f(x) = a.
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The variable x in this formula still denotes a single value; the E-sign and the
implication are to be interpreted with their usual mathematical semantics. Based
on this formula, the other axioms can be applied leading to

X € g=k(x) — a.
A final deduction (binding elimination) now can remove the binding, since the
bound variable occurs only once within the term:

k(g) — a.
In [Walicki 92/93], soundness and completeness of this more complex calculus
is shown. This paper also contains a detailed comparison with our work. For the
purposes of the text at hands, however, we will concentrate on rewriting-oriented
and tool-supported calculi like the one from definition 2.4. In order to achieve
completeness for this kind of calculi, we have to exclude the anomalies shown
by example 2.7.

In the next sections we will restrict the axioms syntactically in such a way that
the calculus directly can handle it. This does not necessarily mean to exclude
axioms like «f(g) — a>, where a nondeterministic function is applied to another
one within the left hand side. But the restriction will ensure that such an axiom
is consistent with some other deduction which shows how the computation can
be led applying only functions to deterministic terms.

From a methodical point of view, it is important to state that specifications like
INC above are not simply “bad”. Such a specification must be seen as a rather
abstract and sketchy formulation which just does not fix all details how the
functions work together. The restrictions defined in the next section describe a
smaller class of specifications which is suitable for a term rewriting style of
deduction. This can be seen as a step from abstract specification towards
programming.

2.2 Additive Specifications

This section shows how the specification language can be adapted more closely
to the needs of a deterministic basis, such that a completeness result for the
calculus from above holds.



54 SPECIFICATIONS WITH A DETERMINISTIC BASIS

It is a good starting point for this section to think about the way how a general

term model for a specification with a deterministic basis can be constructed.

From the idea underlying the notion of a deterministic basis, it is obvious that

the carrier sets of such a term model must be formed by provably deterministic

terms. The natural interpretation for a given nondeterministic term then is the
set of all deterministic terms it can be reduced to. In order to ensure the well-
definedness of such a model, two properties must be fulfilled:

J For every nondeterministic term there must be a deterministic term it can
be reduced to. This ensures that the interpretation of every term is a
nonempty set. This property is called DET-completeness below.

. The effect which was present in the example 2.7 from above must be
avoided. This property is called DET-additivity below.

2.2.1 DET-Completeness and DET-Additivity

The first and rather simple condition for the construction of a term model is
DET-completeness. Formally, it means:
Vt:3t: Tl-t—=1t A TI- DET().

DET-completeness is very similar to the so-called sufficient completeness
known from the classical theory of algebraic specifications [Guttag 75]. This
similarity helps to make precise the ranges of the quantifiers which have been
omitted in the formula above. It is reasonable to restrict the range for t and t’ to
ground terms. Otherwise, for every term containing variables (like add(x,y)) there
must be a deterministic term it can be reduced to! This would definitely be a too
strong restriction for practical specifications. At this point, it becomes obvious
that the term model will be constructed also from ground deterministic terms
only, and therefore will only help to ensure ground completeness.

Please note that due to the similarity of the notions, the existing methods for
testing sufficient completeness can be carried over for testing DET-
completeness, too (see also sections 2.4 and 4.4.1).

Definition 2.8 (DET-Completeness)

A specification T = (£, R) over a deterministic basis is called DET-
complete iff
YiEWE): 'eEW(E): TI-t—=t" A TI- DET(®). O
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The second, more complex notion to be defined is DET-additivity. It is
understood best by looking again at the problematic axiom from example 2.7:
f(g) = a.

This is an inclusion which is deducible (since it is an axiom), but which is not
consistent with the inclusions holding in a term model. Within a term model D
constructed from deterministic terms, the interpretation of f(g) is defined
additively:

Prf(g)1={ePe) IvePrg]}.

Using the axioms of specification INC, and the convention that a term is
interpreted by the deterministic terms it can be reduced to, the interpretation of g
must be:

Prgl={b}.
Again, using the axioms of INC, it is not possible to reduce the term f(b) to a.
So the deterministic term a will not be contained within fD(b), and also not in
D[ f(g) ).

This means that the axiom <f(g) — a states a non-additive property, which
cannot be derived by first looking at the interpretation of the arguments and then
at the operation applied to them. The property which is necessary for an additive
axiom system is, for this example:

JtI-DET({t) Al-g—t A l-f(t) — a.
Obviously, INC does not fulfil this property. A generalization to terms with
arbitrary many arguments gives the formal definition of DET-additivity.

Definition 2.9 (DET-Additivity)

A specification T = (Z,R) over a deterministic basis is called DET-
additive iff
V[f:s1 x...xsp—=>s]EF:
VHEWR)sy, ..., tnEW(D)sy, tEW(E)s:
T I- f(ty,...,tny) =t A T |- DET(t) =
Ft’EWE)sy, --os th EW(E)sy:
TI-f(t1’,...tg") =t A
Tty —=t1’A ... ATty = ty’ A
T |- DET(t1’) A ... A TI- DET(ty") 0
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DET-additivity means that the term rewriting relation is an additive extension of
rewriting on deterministic terms. In other words, the specification must be
equivalent to a set R ’ of inclusion axioms

f(ty’,...tp’) = t
where t1’,..., ty’, t’ are deterministic terms.

Example 2.10

The specification INC from example 2.7 is DET-complete, but not
DET-additive. It can be made DET-additive by adding the axiom

f(b) — a.
There are many other ways to achieve DET-completeness, among them
an extension of the signature by a new constant c: — s, with the new
axioms:

DET(c), g—c, f(c) — a. )

In a more abstract view, the DET-additivity of a specification means that non-
determinism is specified in a local manner, that is as a number of alternatives for
the behaviour of a single function. The specification INC, however, contains a
kind of “global” nondeterminism which does not belong to either the function f
or g (but to the collaboration of both). This sort of effect is called “non context-
free nondeterminism” in [Kaplan 88]. Similar to our approach, [Kaplan 88]
excludes the unwanted form of nondeterminism by a restriction to so-called
regular specifications. The main advantage of DET-additivity, as it is defined
here, over regularity is that DET-additivity immediately ensures a kind of
completeness for the rewriting calculus. In regular specifications, a particular
kind of confluence is needed again for completeness of term rewriting. For the
DET-additivity of a specification there is a rather simple criterion which can be
used in many practical examples:

Theorem 2.11

If a specification T = (£, R) fulfils the conditions Al and A2 below,
then T is DET-additive:

(Al)  For all axioms < — nER, the term | does not consist of a
single variable, i.e. 1 = f(t,...,tp).
Moreover, for all i€{1,..., n}: T |- DET(t;).
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(A2)  For all deterministic terms t (i.e. T I- DET(t)), where t does
not consist of a single variable (i.e. t = f(t1,...,tg)), the

subterms must be deterministic again, i.e. for all i€{1, ..., n}:
T |- DET(t).
Proof: See appendix A. O

The specification DOUBLE’ from example 2.3 can be proven to be DET-
additive using theorem 2.11. Chapters 5 and 7 contain larger examples which
show the practical application of the criterion.

2.2.2 Term Models and Completeness

Now the construction of the term model can be given in detail, which was the
main motivation for introducing the notions of DET-completeness and DET-
additivity. The following notion is a preliminary for the model construction:

Definition 2.12 (Induced Equivalence of Terms)

A nondeterministic algebraic specification T = (2, R) induces a relation
~ on W(Z) as follows

tl=t2 <def Tltl—=12 A TI-t2—>1tl
(where t1, 2 € W(Z)).

The deduction rules of the calculus (Definition 2.4) ensure that = is an
equivalence relation as well as a congruence with respect to the term-
constructing operations. [t] denotes the equivalence class of the term t
with respect to =, ¢

The construction of a term model now uses equivalence classes with respect to =
as its carriers.

Definition 2.13 (Term Model DX/R)

Let T = (Z, R) be a DET-complete specification. The algebra DZ/R is
defined by:
sDZR = {[t]1tEW(Z) A TI-DET(t)} where sES
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2R W(Z)g o x ... x W(E)g = — 9 H(W(D)g)
OZR((4],... [ta]) =

(IO 1EW(E) A T-DET(®t) ATI-f(t],....tn) >t }
where [f: s] x ... x sy = s] EF.

The DET-completeness ensures that sz/R([tl 1,....[tnD)=@ and
sDZ/R g5 (since X is presupposed to be sensible). The well-definedness
of DE/R follows from the fact that = is a congruence. 0

This algebra corresponds well to the intuitive understanding of a nondeterminis-
tic specification. The algebra DZ/DOUBLE’ according to example 2.3, for
instance, is isomorphic to the model N from example 1.14. However, the
algebra DX/INC according to example 2.7 is not a model of INC. In order to
ensure that the term algebra really belongs to the model class, the property of
DET-additivity is needed.

Theorem 2.14

Given a DET-complete und DET-additive specification T = (2, R), the
algebra DZ/R according to definition 2.13 is 2 model of T.

Proof: See appendix A. ¢

The main reason for the construction of the term model was to prove a
completeness result. This result is formulated within the corollary below. The
term model is needed also for another sort of results, which refer to initiality.
For such results, see chapter 3.

The kind of completeness which follows from the term model construction is

restricted in two ways:

. It refers only to inclusions between ground terms, since the term model
uses ground terms for its carrier sets. (This is due to the fact that we did
not want to impose a too strong version of the DET-completeness property
on the specifications.)

. It refers only to inclusions which have a deterministic term as their right
hand side. This was called weak completeness above, and is a consequence
of the fact that the model uses only deterministic terms for its carrier sets.
(This is the price which has to be paid for the soundness of the calculus.)
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Corollary 2.15 (Weak Ground Completeness)

Let T = (£, R) be a DET-complete and DET-additive specification,
AEMod(T). Then for t1, 2EW(Z):
Mod(T) = t1 = t2 A TI-DET(t2) = TI-tl =12

Proof:
Mod(T) I=tl =2
= DZIR I=tl — t2 (Theorem 2.14)
= (V. TIDETH) A TI-2—=t = Tl-tl = t’)

(Lemma 2.14.1, see appendix A)
= TIl-tl =2 (because of T |- DET(t2), using (REFL)) ¢

The following counterexample illustrates the fact that only ground weak
completeness has been achieved. It shows that in general ground completeness
does not hold even for DET-complete and DET-additive specifications.

Example 2.16

spec GIC
sort s
func a: —s, b: — s,

g —s, f:s—s, h:sxs—s
axioms

DET(a), DET(b),

g — a, f(x) = h(xx), h(xx)—=>x
end

For an arbitrary AEMod(IC), semantic arguments show that

Al=fg) > g:

cEgA
= eEIg[x] where f(x)=e  (Definition 1.5)
= cel‘s[h(x,x)] (because of h(x x) = x)
= eEIg[f(x)] (because of f(x) = h(xx))
= eE{kEfA(l) I lelg[x]} (Definition 1.5)

Univ,-Bibliothek
Passasa



60 » SPECIFICATIONS WITH A DETERMINISTIC BASIS

= ectBie) (pTx)=(e)
= ec{kerA) | 1el‘g‘[g]} (because of e€gA)
- eel’g[f(g)] (Definition 1.5).

But this inclusion is not deducible, since DET(g) is not deducible in
IC. Even if the calculus is extended by the deduction rule (AXIOM-1-
RLIN), the inclusion f(g) — g cannot be deduced from the axioms of
GIC. O

The next section aims at a situation where a true (non-weak) ground
completeness result can be shown. This leads to a final refinement of the
concepts, concerning the calculus as well as the model classes.

2.3 Junk-Free Models

This section concludes the investigation of completeness results by showing
how the restriction to “weak” completeness can be removed. It is shown that
this can be achieved by similar techniques as they are used for the treatment of
term-generated models in the classical case.

2.3.1 “Junk” in Nondeterministic Models

The notion of “junk” is well known from the theory of equational specifications.
There it is used to denote elelents within the carrier set of a model which are not
an image of the interpretation of some term. Such elements cannot be
constructed by the provided operations, and they cannot be controlled by
deductions using terms over the given signature. However, propositions
containing free variables always have a semantics where the variables also range
over junk elements. It is widely accepted that a practically usable specification
language has to concentrate on models which do not contain junk. In particular,
for junk-free models it is sound to use an induction principle on the structure of
terms, which is one of the most important proof techniques in the field of



SPECIFICATIONS WITH A DETERMINISTIC BASIS 61

program and data structure verification. The semantical investigations in this
manuscript also aim at junk-free models.

It is an interesting observation that nondeterminism introduces a second source
of junk besides the classical problem concerning the range of free variables. In
nondeterministic specifications, there exists also a dimension which is called the
breadth of a nondeterministic expression. The breadth is the range of possible
outcomes for a nondeterministic computation. Some observations clearly
indicate a similarity between “non-standard elements” in the classical junk
priciple and “non-standard outcomes of a nondeterministic expression”. As an
illustration, the example 2.16 is revisited.

Example 2.17

In example 2.16, the following specification has been defined:

spec GIC
sort s
func a:—s, b: — s,

g —s, f:s—s, h:sxs—s
axioms

DET(a), DET(b),

g—a, f(x) = h(xx), h(xx)—=x
end

The term model DXZ/GIC uses the following interpretation:
D2R(g)=([a]}, DPZRaj={[a]},
DR f(g) ] = { PZR@) } ={ [a]}.

Therefore in DX/GIC the following inclusions are valid:
DZ/R I=f(g) — g, DZIRI=a—g.

A different model M of GIC is given by
sM={a b}, aM={a}, tM={b}, gM={a,b},
Me)={e}, hMEele2)={el} fore,el,e2E{a,b}.

The model M uses the following interpretation:
Mpg]={a,b}, DZRra)={a},
M(fg))= {ab}.
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Therefore in M the inclusion (g) — g> is valid (M I= f(g) — g),
but <a — g> is not valid (- (M I=a — g)). ¢

From this example, some observations can be made:

(@) Within the model DZ/R, a number of inclusions (even ground inclusions)
hold, which cannot be deduced by the calculus of Definition 2.4. As an
example, consider the inclusion «(g) — g> which does hold in DZ/GIC,
but which is not deducible.

(b) Within the model DZ/R, a number of inclusions (even ground inclusions)
hold, which do not hold in all models. As an example, consider the
inclusion <a — g> which does hold in DZ/GIC, but not in M.

(¢) The phenomena described above appear only for inclusions the right hand
side of which is not provably deterministic. (For other inclusions,
Corollary 2.15 can be applied.)

This situation is quite similar to the situation in classical equational logic where
a ground term model can be constructed also (the so-called initial model). The
analogy is obvious:

(a’) Within the initial model, some equations hold, which cannot be deduced by
equational reasoning. These equations are called “inductive consequences”.

(b’) Within the initial model, some equations hold, which do not hold in all
models. This also refers to the “inductive consequences”, which do hold
only for the so-called term-generated (junk-free) models.

(¢’) The phenomena described above appear only for equations which contain
free variables (non-ground equations).

Within nondeterministic specifications, both difficulties arise. The sort of
difficulty described by (a) to (c) exists even for ground inclusions. This is due to
unexpected elements in the breadth of a nondeterministic expression (like b in
IM[g]). Obviously, the difficulty concerning non-ground inclusions (as in (a’) to
(c’)) is present within nondeterministic specifications, independently of that.
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In the following, the techniques known from the classical theory for the

treatment of junk are carried over to treat the problem of junk in the

nondeterministic breadth of a term (see (a) to (c) from above). For this purpose,

(1) The calculus is extended to a kind of “inductive” calculus which describes
exactly those inclusions which are valid in the term model DZ/R;

(2) The model class is restricted to junk-free models in such a way that the
extended calculus is sound and model M from the example above is
excluded.

2.3.2 Breadth Induction

Within the theory of equational specifications, there is a calculus for the
deduction of so-called “inductive” consequences which are valid only for junk-free
models. The basic idea of the calculus is to describe exactly the equalities within
the initial model. Due to Godel’s results, such a calculus is either incomplete or
it is different from a true formal system (since the theory of Peano arithmetics
can be described by initial models). A rather well-known technique for such a
calculus is the use of a semi-formal system. This means that deduction rules are
used which have an infinite number of premises. For practical proofs, the
infinite premise is covered by a kind of induction proofs (for instance on the
term structure). Below an extension of the calculus from definition 2.4 is given
which also contains semi-formal rules.

Definition 2.18 (Breadth Induction Calculus)

The calculus given by definition 2.4 is extended by the following semi-
formal rules:

(IND-R) VtEW(Z): I-DET(t) A - 22—t = [|-tl -t

FIND tl — t2

iftl, 2 € W(Z)
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(IND-D)
V t1,2eEW(EZ): I-t = t1 A I-DET(t]1) A |-t = t2 A |- DET(t2)
= |-tl— t2

I-IND DET(t)
if tEW(Z)

The calculus is called “inductive”, and its derivations are denoted using the
symbol I-]ND, since in many cases the premises of the rules can be proven only
using an induction principle. This is the case as soon as the number of
deterministic terms a given term can be reduced to is infinite (so-called
unbounded nondeterminism). Please note that for specifications containing only
bounded nondeterminism, the “inductive” calculus remains a formal system.

The following theorem shows that breadth induction for ground inclusions
exactly deduces the inclusions valid in the term model DZ/R.

Theorem 2.19 (Correspondence with the Term Model)

Let T = (Z, R) be a DET-complete and DET-additive specification.
Then for ground terms t, t1, t2 € W(Z):

TI-IND tl — t2 < DERI= tl =2

T I-IND DET(t) < DZ/R |= DET(t) .

Proof:
DZR I= t1—t2
« IDZ/R[11] D PRt (since DZ/R model of T)
o VEEW(E): I-DET(®) A 2t = |- tl—>t (lemma 2.14.1)
< -IND t1—>t2 (rule (IND-R))
DS/R |= DET(t)
< IIDZ/Rt 1= (since DE/R model of T)

< [ {[t]] |-t—=t A -DET({t’)}I=1 (lemma 2.14.1)
< Vi1, ReEWE):

I-t—=tl A I-DET(tl]) A |-t—=t2 A |- DET(t2) = I-t1—t2
< |-IND DET(t) (rule (IND-D)) O
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The example below shows a case where induction is used for proving the
premise of a semi-formal rule:

Example 2.20

spec INAT
sort Nat
func zero: — Nat, succ: Nat — Nat,
double: Nat — Nat, some: — Nat
axioms
DET(zero), DET(succ(x)),

double(zero) — zero,
double(succ(x)) — succ(succ(double(x)))
some — zero,
some — succ(some)
end

We want to prove: MGen(T) |= some — double(some). For this
purpose, it can be proven (using structural induction) that for an
arbitrary ground term teW(Z) fulfilling |- DET(t) :

|- some — t
t = zero:
(1) I- some — zero (AXIOM-1)
t = succ(tl):
(1) I- some — tl (Induction hypothesis)
(2) I- succ(some) — succ(tl) (CONG)
(3) |- some — succ(some) (AXIOM-1)
(4) |- some — succ(tl) (TRANS), (3), (2)
Therefore:

YV teW(Z): |- double(some) —t A |- DET(t) = |- some —t
and, using (IND-R):
I-IND some — double(some). 0

The calculus achieved so far is sound only for the standard term model, but it is
not sound for arbitrary models, as can be seen from example 2.17. Breadth
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induction allows us to deduce the formula GIC I-ND DET(g), which does not

hold in the model M. The next section excludes M as a model containing
(breadth-)junk.

2.3.4 DET-Generated Models

In this section, a characterization for a class of models is given which obey a no-
junk principle for the breadth of a nondeterministic term. This characterization
mainly says that every possible deterministic outcome of a nondeterministic
term must be due to a deduction within the specification. This leads to a
formulation which may look a bit strange from the logical point of view,
because it somehow mixes semantic and syntactic arguments. In section 3, a
purely semantical characterization of junk-free models for nondeterministic
specifications will be given.

Definition 2.21 (Term-Generation, DET-Generation)

A Z-multi-algebra A is called term-generated, iff for alls € S:
Ve€sA IteWE): IA[]={e}

Gen(Z) denotes the class of the term-generated Z-multi-algebras. The
class of all term-generated models of a specification T is called Gen(T).

Let T = (£, R) be a nondeterministic specification. A model A €
Mod(T) is called DET-generated, iff for all s € S:
VIEWE)s: VecSIA[L:
I eEWE@)s Tl-t—=t A TI-DET({) A Al ={e}.
The class of all DET-generated models of T is called DMod(T). O

Example 2.22

By definition, the model DZ/R for any DET-complete and DET-additive
specification is DET-generated.

The model M from example 2.17 is not DET-generated, since bEIM[g],
but this cannot be motivated by a deduction: = (GICI-g —b). )
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The following theorem shows that the DET-generated models are exactly those
models for which the extended calculus is sound and correct.

Theorem 2.23

Let T = (Z,R) be a DET-complete and DET-additive specification.
Then for t, t1,t2 € W(Z):
DIRI= tl =2 - DMod(T) I= t1 — t2,
DZ/R I= DET(t) = DMod(T) I= DET(t).

Proof:
The “<«="-direction follows from DXZ/R € DModT).
The first line of the “=>"-direction can be seen as follows. Let A €

DMod(T).

e € IA[12]
=3¢:-2—=t A I-DET(t’) A IA[t]={e} (AEDMod(T))
=t € [DZ/R[y) (Lemma 2.14.1)
=t € IDZ/R[¢]) (DZ/R € Mod(T))
=I|-tl >t A l-DET(®) A IA[t]={e} (Lemma 2.14.1)
= e EIA[t]] (Theorem 2.6)

Therefore, A l=t1 — t2. Analoguous arguments apply for DET(t). ¢

As already indicated, ground soundness and completeness now follows as a
simple combination of the two last theorems.

Corollary 2.24 (Ground Soundness and Completeness)
Let T = (£, R) be a DET-complete and DET-additive specification.
Then for ground terms t, t1, t2 € W(Z, X):
TIND t1 — t2 < DMod(T) |= t1 — 2,

T I-ND DET(t) <> DMod(T) I= DET(t).

Proof: Combination of theorems 2.19 and 2.23. ¢

2.3.5 Term-Generated Models

Before proceeding further, let us summarize what has been achieved so far:
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. Weak Ground Soundness and Completeness (Corollary 2.15) for the
calculus from defintion 2.4 and the class of all models;

. General Ground Soundness and Completeness (Corollary 2.24) for the
calculus from definition 2.18 and the class of DET-generated models.

These results deal with the first source of junk (breadth-junk) in nondeterministic
algebras. However, the standard model DZ/R is term-generated, too, and so is
junk-free also with respect to the scond source. As an illustration, consider the
following example:

Example 2.25

spec NTG
sort s
func a: —s, b: — s, fis—s
axioms
DET(a), DET(b),
f(a) — a, f(b) —a
end

A model J for this specification is given by:
sl = {a,b,c},
fay={a},f®)={a},f={c}
This model J is DET-generated but not term-generated.
The inclusion

f(x) = a
does hold in DZ/NTG and in all term-generated models, but not within
the model J (which contains the junk element c). O

This example demonstrates clearly what the model class is which coincides best
with the standard model DZ/R. It is the class of term-generated and DET-
generated models.

Definition 2.26
Let T = (Z, R) be a nondeterministic specification. The class of all
DET-generated and term-generated models of T is called DGen(T). O

One important observation is that the ground completeness results from above
easily are carried over to the model class DGen(T).
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Corollary 2.27 (Ground Completeness)
Let T = (Z, R) be a DET-complete and DET-additive specification.

Then for ground terms t, t1, t2 € W(Z, X):
DGen(T) I= t1 — 2 = T I-IND tl — t2,
DGen(T) I= DET(t) = T I-ND DET(t) .

Proof: Consequence of the fact that DZ/R € DGen(T) and theorem 2.19. ¢

Another slightly more general result shows that within the model DZ/R exactly
those non-ground inclusions hold which hold in the class DGen(T). But please
note that we did not give a calculus for generally deducing the non-ground
inclusions which hold in DZ/R. Such deductions may involve structural
induction.

Theorem 2.28
Let T = (Z, R) be a DET-complete and DET-additive specification.

Then for t, t1,t2 € W(Z, X):
DERI= tl = 12 < DGen(T) I= t1 — t2,
DZ/R |I= DET(t) < DGen(T) I= DET(t).

Proof:
The “<="-direction follows from DZ/R &€ DGen(T).

For the “=>"-direction, let § be a valuation in A € DGen(T). Since A is
term-generated and T is DET-complete, there is a substitution o €
SUBST(S) where: B(x)=IA[ox] and |- DET(ox) for x € X.

Then I‘E‘[t]:IA[m] for t € W(Z, X), hence:

= Ig[t2] =eEIA[ot2] = e €IA[ot]] (as in theorem 2.23)
=ec€E Ig[tl].

Therefore, A |=tl — t2. Analoguous arguments apply for DET(t). ¢
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In some sense, with the class DGen(T) now a satisfactory semantics for
nondeterministic specifications has been reached. The models of this class
coincide in their important properties with the “standard” model dZ/R. We have a
simple weakly ground-complete calculus as well as a more complex ground-
complete calculus available.

Therefore we turn now to the question, how the developed framework can be
compared and integrated with other existing formalisms. This leads to several
blocks of material which may be of varying interest for various readers. Only for
readers which are interested in semantic considerations and generalizations of the
field of algebraic specifications it is recommended just to follow the thread of the
text. For readers interested in deduction- and programming-oriented aspects it
may be a good idea to move on directly to chapter 4.

The following short section 2.4 gives a sketch how modularization techniques,
as they have been developed in the field of algebraic specificaions, can be
integrated with the nondeterministic framework.

Chapter 3 then presents a number of results on the model-theoretic semantics of
nondeterministic specifications. These results are connected with the material
from above mainly by two aspects:

. It is shown that the term model DZ/R is an initial model within the class
DGen(T). This can be seen as an additional argument showing that the
“right” design decisions have been made.

o A more semantical characterization for the class DGen(T) is given, which
avoids the “mixture” between syntactic and semantic notions used in
definition 2.21.

Chapter 4 covers more general aspects by comparing nondeterministic
specifications with common concepts like equational logic and logic
programming.



SPECIFICATIONS WITH A DETERMINISTIC BASIS 71

2.4 Hierarchical Specifications

If a specification language is applied practically for the description of a larger
system, means for structuring the whole text become very important. It is an
advantage of algebraic specifications that there are criteria available which
distinguish “good” modularizations. A “good” modular structure means here a
structure where parts can be easily exchanged or refined without affecting other
parts of the system. [Wirsing et al. 83] gives a detailed study of so-called
hierarchical algebraic specifications. Below a short sketch is given, how the
most important definitions and results concerning hierarchies can be transferred
to the nondeterministic case.

Definition 2.29 (Hierarchical Specification)

A nondeterministic algebraic specification T = (2, R) is called
hierarchical, iff a subspecification TO of T (i.e. TO = (20, R0), Z0CZ,
ROCR) is designated, which is called the primitive part of T.

A model A € DGen(T) is called hierarchical, iff the Z0-reduct of A is in
DGen(TO).

The specification T is called

. hierarchy-preserving, iff every model of A is hierarchical,

. hierarchy-faithful, iff every model AOEDGen(T0) can be extended
to a model AEDGen(T) such that the Z0-reduct of A is AQ.

. hierarchy-persistent, iff T is both hierarchy-preserving and
hierarchy-faithful. 0

As a syntactical representation of hierarchical specifications, we use a notation
which is similar to [CIP85]. If the body of a specification contains a statement
of the form

basedon Py, ..., Py,
the union of P, ..., Py is meant to be the primitive part TO of T.

The hierarchy-persistency of a specification in practice means that the primitive
part and the non-primitive part can be developed independently, therefore it
constitutes an important modularity condition. However, in order to check these
conditions, we need more syntactical formulations. The following definition
transfers the modularity conditions to the level of deductions.
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Definition 2.30 (Hierarchy Conditions)

A hierarchical specification T = (Z, R) over a deterministic basis
containing the primitive part TO = (20, R0), 20 = (S0, FO0) is called
sufficiently complete, iff:
VtieEWQE)g:

TI-DETt) A s€S0 = I EWE0): Tl-t—=1t .
T is called hierarchy-consistent (sometimes also called hiererchy-
conservative), iff:
Vit t' e W(E0):

Tl-t—t A TI-DET(t’) = TOI-t—t A TO |- DET(t’).{

The following theorem shows (in analogy to a similar result in [Wirsing et al.

83] that these deductive properties ensure the semantic condition of hierarchy-
persistency.

Theorem 2.31

Proof:

Let T =(Z, R) be a hierarchical specification over a deterministic
basis containing the primitive part TO = (20, R0), 20 = (S0, F0).

If T is sufficiently complete and hierarchy-consistent, then T is
hierarchy-preserving.

As a first step, we show that T is hierarchy-preserving. Let
A€EDGen(T). It is obvious that the Z0-reduct of A also fulfils the
axioms, so we have to show that the reduct is term- and DET-generated.
For any element e€s0A of a primitive carrier set (SOES0), there is a
term tEW(Z) such that IA[t] = { e } (term generation of A). Because of
the DET-generation of A, there is also a '€W(Z) such that T I-
DET(’), TI-t — t’, and IA[t’] = { e }. The sufficient completeness of
T gives a term t”’ €W (Z0) such that T I- t'—t’’; obviously also T I-
DET(t’’) and IA[t”] = { e }. So term-generation of the reduct holds.
Using (TRANS), we also have T I-t — t’” and T |- DET(t’’), so by
hierarchy-consistency of T also TO |- t — t’’ and TO |- DET(t’’), i.e.
DET-generation holds, too. ¢

It is an interesting observation that this result needs a slightly stronger

precondition than the corresponding proposition 4 of [Wirsing et al. 83].
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Sufficient completeness alone ensures only the term-generation of the reduct, for
DET-generation also the hierarchy-consistency is needed. In the classical case,
only term-generation is considered, therefore sufficient completeness alone
suffices for the corresponding theorem.

Theorem 2.32

Proof:

Let T =(Z, R) be a DET-additive and DET-complete hierarchical
specification over a deterministic basis containing the primitive part TO
= (20, R0), Z0 = (S0, FO0).

If T is sufficiently complete and hierarchy-consistent, then T is
hierarchy-faithful.

Let AOEDGen(T0). We construct the model A extending AO
analoguously to the construction DX/R. The carrier sets of the model A
consist of a mixture between terms and values in the carriers of AO,
replacing every primitive term by its value in AO. Formally, for a term
tEW(S) with T |- DET(t), we call this mixed term tA0, defined by:

tAO =y f e, where IA[t] = { e } (e is unique, since T |- DET(t));

tA0 =g £(t1,... tm)A iff t = f(t1 A0, 1, AD)EW(20).

The hierarchy-consistency ensures that T |- DET(t) < TO |- DET(t) for
tEW(Z0), so T is “additive” with respect also to the deterministic Z0-
terms, and we can use the construction used for DZ/R, giving a model
A such that (for teW(Z)):

A = { [tAO] IPEW(E) A TI-t =t A TI- DET(t)) }.
Consider now a term tOEW (20). In this case, for every t0’EW(Z) with
T |- DET(t0’), sufficient completeness of T gives us a t0”’EW(Z0) such
that T |- DET(t0"’) and t0’ = t0’*. Therefore IA[t0] = { [t0’A0] |
t0’EW(Z0) A TI-t0 = t0’ A TI- DET(10’) } = { [tO’AO] | t0’EW(Z0)
A TOI-t0 — t0’ A TO I- DET(t0’) } (because of hierarchy-consistency).
According to the definiton of tO’AO, this means that IA[tO] - IAO[tO].
The reverse inclusion IA[tO] 2 IAO[tO] is a consequence of the DET-
generation of AO. O

In section 4.4, a class of specifications will be defined, for which sufficient
completeness and hierarchy-consistency can be checked by rather simple
syntactical criteria.
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The last result of this section illustrates to which extent the preconditions of
theorem 2.32 already determine the admitted models of a given specification. In
fact, there is only one model (up to isomorphism), as long as the non-primitive
part does not introduce any new sorts (“functional enrichment”).

Theorem 2.33

Proof:

Assume the preconditions of theorem 2.32, where T does not introduce
new sorts, i.e. S = SO.

Let AOEDGen(T0) be given, and let A’ be an arbitrary model such that
the Z0-reduct of A’ is AO.

Then A’ is isomorphic to the model A constructed in the proof of
theorem 2.32.

Since S = S0, the reduct-condition means that the carrier sets of A’ and
AO are identical. We show first that also in the carrier sets of A
(according to theorem 2.32) only values from AO appear.
For an arbitrary term tEW(Z), we have

A = {[tAO]IPEW(E) A TI-t =t A TI- DET() }.
Since S = SO, the term t is of primitive sort, and so is t’. Therefore,
sufficient completeness gives for any t’ a term t0’EW(Z0) such that t’
=~ t0’. Since tO’AOEIAO[tO’], IA[t] contains only values from the
carriers of AO.
It remains to show that the identity mapping is a homomorphism with
respect to the operations in Z\X0. This follows from the chain of
equivalences

eEfA(cl ,..€n) (e, ejin the carriers of AQ)
e eEIAf(t],... ty)]
(with appropriate tj € W(Z0)such that IA[ti] = {ei}, due to term-
generation).
Due to DET-generation, we can assume T |- DET(tj), and due to
sufficient completeness (and S = SO) also t;EW(Z0). Equivalences
continued:
< A0EWE): TI-f(t],....tn) = t' A TI- DET(t’) A Al]={e}
Again we can assume t'€W(Z0),so e = rAO, Equivalences continued:
= erA’(el yee o)
(definition of the extension A’ as in theorem 2.32.) ¢



Chapter 3

Structure of the
Model Classes

This chapter is dedicated to a study of results concerning the relationship
between various models of a nondeterministic specification. In particular, the
notion of a £-homomorphism for multi-algebras is dealt with in the following
sections.

The significance of this whole theoretical approach using homomorphisms and
extremal models (initial and terminal ones) is estimated very differently by
various researchers. It is obvious that any serious generalization of the classical
notions of algebraic specifications has to address this topic, and this is the
motivation for this chapter. However, readers may skip this whole chapter, if
they are not interested in the material presented here.

In this chapter, the notion of a homomorphism for multi-algebras is defined.
The presence of nondeterminism leads to the introduction of two different
notions of homomorphism, which are used both in the theory of extremal
models.

In a first pass, the general theory of multi-algebras is revisited from the
structural point of view. A counterexample shows that in the general model
class from above, an initial model does not always exist. A terminal model,
however, can be constructed for every specification.

In a second pass, extremal models for specifications over a deterministic basis
are investigated. It is shown that the term model DZ/R, which was defined in the
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last chapter, is initial in some sense. A semantical characterization for the model
class DGen(T) from the last chapter is given, and it is shown that the term
model is initial within this model class in another, stronger sense.

3.1 Homomorphisms and Extremal
Algebras

In order to compare two multi-algebras, the central notion is that of a
homomorphism. A homomorphism can be established between two multi-
algebras A and B, if B can be seen as an abstraction of A. An algebra B is here
called an abstraction of A, if the structure of B can be completely described by
the structure of A, where elements of the carriers of A are identified, possibly.

Definition 3.1 (Z-Homomorphism)

Let £ = (S, F) be a signature, A, B € MAIg(X). A (tight) 2-
homomorphism @ from A to B is a family of mappings

@ = (Ps)sES: ps: sA = p*(sB),
which fulfils the following condition:

For all [f: s] x ... x sp = s] € Fand all e1€slA, ...,en€snA :
{e Egse) e EfAl,....en) }
={e EBer’.....en)) le1’ Egg(e1).....en’ € Pspen) }

@ is called a loose Z-homomorphism, if the following, less restrictive,
condition holds:
{eEgpse)leE fA(el, ..xén) }
C{e € Ber,....en) ler’ E@sy(e), ..., en’ € @sylen) }

@ is called element-valued, iff foralls€S: Ve € sA:; lpe)=1. ¢

The notion of a homomorphism, as it is defined above, is a bit more general
than the definitions found in the literature. Homomorphisms for multi-algebras
have been defined already in [Pickert 50] and later in [Pickett67], [Hansoul83],
[Nipkow86] and [Hesselink88]. These papers always consider only element-
valued homomorphisms instead of the set-valued definition from above. The
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definition above contains the element-valued homomorphism as a special case.
The main reason why the generalization has been chosen is that it subsumes the
interpretation of a term as a special case of a homomorphism. This question will
be studied in more detail below.

All the definitions in literature contain a distinction between loose and tight
homomorphisms. Unfortunately, the names vary from paper to paper. Loose
homomorphisms enable sensible results, as it is shown below. A dual
generalization (using “2” instead of “C") does not make any sense, since such a
“homomorphism” can be always established between two arbitrary X-multi-
algebras. (Simply choose g@g(e) = sB.)

Below a few examples for simple homomorphisms are given.
Example 3.2

Let AEMAIg(Z), WX the algebra of ground terms according to example
1.3. Then the interpretation mapping A

A: WS — A, 1:\: WE)s — pH(D)
is a tight Z-homomorphism:

{e€IAItE W1y, ..., th)}
={e €EIA[]ILE {f(t],....tn) } }
=TA[f(t],... tn)] (Example 1.3)
={e EfA(e],...en) | e EIA[]} (Definition 1.5) 0

Example 3.3

Let AEMAIg(Z). The mapping id = (idg)seS
idg: sA A idg(e)={e} fir eSsA
is a tight Z-homomorphism:

{e’ €id(e) e E fAey.....en)}
= fA(el,. .€n)
={e’ EfAe1’,...en") l & Eid(e))} 0
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Theorem 3.4

Proof:

Let A, B, C € MAIg(Z) and ¢1: A — B, 92: B = C tight =-
homomorphisms.

Then @2:91: A = C is a tight Z-homomorphism, again.

An analoguous result holds for loose Z-homomorphisms.

{k € (@291)(e) le € fAle].... £n)}
={kep)Il€pile)reE fA(el,. en)} (Definition @2-¢1)
={k E () 11 € B(Y,... Iy) A I; € p1(ep)}
(91 is a homomorphism)
= {k € fC(K1,... kn) Ik € 2(1i) A li € 91(ei)}
(92 is a homomorphism)
= {k € fC(k1,... kn) | ki € (p2:91)(ei)}  (Definition ¢2-¢1)
Analoguously for loose homomorphisms. 0

Within the model class of a given specification, the most extreme models are of
particular interest. These are the maximally refined and the maximally abstract

model which are admitted by the specification.

Definition 3.5 (Initial and Terminal Algebra)

Let K be a class of Z-algebras. An algebra IEK is called (tightly) initial
in K, iff for every algebra AEK there exists exactly one X-
homomorphism from I to A. TEK is called terminal, iff for every AEK
there exists at least one (tight) element-valued Z-homomorphism from
AtoT.

A is called loosely initial, iff the definition of initiality is fulfilled,
where tight homomorphisms are replaced by loose ones. 0

The definition of terminality above uses only element-valued homomorphisms;

therefore it is consistent with the notions in the literature. For most of the

initiality results, which are given below, it turns out that also only element-

valued homomorphisms are involved.

Exactly like in the deterministic case, a rather trivial terminal algebra can be
constructed easily:
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Definition 3.6

For a given signature X = (S, F), let an algebra ZX be defined by
sZZ = {s} for s&S
22(s1,...on) ={s} for[f:syx...xsp—=s]EF {

Theorem 3.7
Z% is terminal in Mod(T) for a given specification T = (Z, R).

Proof:
By induction on the term structure of t for an arbitrary valuation § in
ZX the following fact can be shown:

Y EWE)s: Igz[t] ={s}.

Therefore, for an axiom < — r» € R, where 1 and r are of the same sort:

0= {5} =1,
This means that ZZEMod(T).

For AEMod(T) the mapping
P:A—=ZS,  gse)={s} fireSsA
is a tight Z-homomorphism:
{eEgsle)leE fA(el,...,en)} ={s}
{e’ €22(e1,...en) l&i’ € gs;(ei)} 0

The fact that there is a unique (up to isomorphism) terminal algebra is due to the
definition of terminality which refers to element-valued homomorphisms only.
If the notion of a terminal algebra was formulated with abitrary (set-valued)
homomorphisms, an infinite number of non-isomorphic terminal models would
be admitted. For a similar reason, “loosely terminal” models are not studied here.

The algebra WX of ground terms (from example 1.3) can be shown to be initial
within all multi-algebras of a given signature, as in the classical case. This is
only possible since the notion of non-element-valued homomorphisms has been
introduced here.
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Theorem 3.8
WZ is tightly initial in MAIlg(Z).

Proof:
The existence of a homomorphism ¢: WX — A can be shown
analoguously to example 1.22, its uniqueness can be shown by
induction on the term structure, like in [ADJ 78]. ¢

3.2 Initial Models

The result above was about initiality in the general class of all algebras of a
given signature. This section now addresses the question of initiality within the
class of all models of a nondeterministic specification. In a first approach, the
general notion of a nondeterministic specification is presupposed, as it was used
in chapter 1. Please note that this means in some sense a step backwards
compared with the material of chapter 2! In order to keep this exposition as short
as possible, we restrict ourselves here to the simplest case of ground
specifications, where the axioms do not contain free variables. Despite of this
restriction, it can be shown that also in general initial algebras do not exist.

For this result, the notion of a term-generated model, as it was defined in
definition 2.21, is needed again. A model A of a specification is called term-
generated, if for every object e in the algebra there is a ground term t which
describes the object: IA[t] ={e}.

Theorem 3.9

Let T = (Z, R) be a ground nondeterministic specification.
If a multi-algebra CEMod(T) is loosely initial in Mod(T), then C is
term-generated (i.e. CEGen(Z)).

Proof:
For a ground specification T, it is easy to construct a ground term
model W which fulfils for every ground term teW(Z):
Vg ={t EWE)ITIRct =1}
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(The details of this construction are as in theorem 1.19, but for ground
terms only.)
Since C is loosely initial, there is a homomorphism ¢ from C to the
ground term model W.
The interpretation 1C of ground terms gives a homomorphism from the
algebra W to the algebra C. This is due to the fact that the rewriting
calculus is sound for ground specifications (theorem 1.17), which
means that

{e €IC[t] I T I-RC f(t] ... tn)—t} CICLHCLY ... tn)].
Now Ic-w: C—C is a homomorphism from C to C (theorem 3.4)
According to example 3.3, another homomorphism from C to C is
given by the identity (id). Initiality means that the homomorphism
from C to C is unique, therefore for a given e€sC holds

ACy)(e) = {e},ie. {e' EIC[ It EY(x)} C {e}.
This means IC[t]={e} for all tEy(e). Since P(e) = B, there is a
tEW(Z) such that IC[t] = {e}. 0

The following example is used for the demonstration that in Mod(T) loosely
initial algebras do not always exist.

Example 3.10

spec NI
sort s
func a: —s, b: — s,
g — s, fs—s
axioms
g—a, f(a) = b,
f(b) — a, f(g) >a
end

Two non-isomorphic models A and B for NI are defined by:

sA=sB={a,b},

aA=aB={a}, bA=bB={b},
gh={a}, gB={a,b},
fA)={a,b}, B@)={b},

fAb)={a}, Bop)={a}. 0
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The specification NI is similar to INC from example 2.7 (which was used as a
counterexample for general incompleteness of rewriting). It has been chosen in
such a way that in all models the inclusion

f(g) = a
has to hold. But it is in no way clear whether this is a restriction which applies
to the functions f or g. In the first case, a more precise axiom is

f(a) »a
the latter case can be described also by

g—=b.
The models A and B realise these both choices. These choices cannot be both
represented within a (term-generated) initial model.

Theorem 3.11

Let T = (Z, R) be a nondeterministic specification.
In general, in Mod(T) loosely initial multi-algebras do not exist.

Proof:
Consider the class Mod(NI) of all models of NI, as it was defined in
example 3.10, together with the two models A and B. Without loss of
generality, let a = b for the elements of the carrier sets of A and B.
Let C be a loosely initial algebra in this class. Initiality means that
there are homomorphisms

oaA:C— A and ¢B: C — B.

From the homomorphism condition for @A, applied to the functions a
and b, the following propositions follow:
)] pAe)={a} forall eEaC, oR(e)={a} forall ecaC
(@  ga)={b} foralleebC,  gp(e)={b} forallecbC
From the homomorphism condition for A and function g follows:
@3  {ecgale)lecgCrCgh={a}
Let ebEbC. Assume that ebEgC; then from (3) and (2) follows { b }
C { a }, which contradicts to a = b. Therefore:
) V ecbC: egtgC
Let eaEaC- From the homomorphism condition for B and function f
follows:
6 {e€op(©)|eiCen)} C { e'EB(er) le1€9pEa) }
Using (1), this means:

©) {e'cpp(e) lefCe) C {b}
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Assume now that caEtC(ea); from (6) and (1) follows { a } C { b},
which contradicts to a = b. Therefore:

) V ecaC: e¢fCe)

In model C, the inclusion «f(g) — a> has to hold. Therefore:

8) 3 eaEaC, eoGgC: eaetc(eo)

Since model C is term-generated (theorem 3.9), there must be a ground
term tQ the interpretation of which is eq: IC[t()] = { eg }. The axioms
of NI ensure that every ground term can be reduced either to a or b.
Applied to tQ, this means that { eg } 2 aC or ¢ ep 2 €. Slightly
rephrased, this is:

(©)] e()EaC v e()EbC

From (7) and (8) follows that eoiac. From (4) and (8) follows that
e0@bC. This is a contradiction to (9).

To summarize, an appropriate algebra C does not exist. ¢

This concludes the discussion of initial models for the general case. The theorem
above may be seen as an additional argument why the extension to specifications
on a deterministic basis, as it has been introduced in chapter 2, is useful. So let
us now turn to the case of specifications with a deterministic basis.

3.3 Initial Models with Deterministic
Basis

The aim of this section is to show that the term model DZ/R for DET-complete
and DET-additive specifications, as it has been defined in definition 2.13, is an
initial model. This model is term-generated. Therefore, the following lemma is
useful which states the consequences of these conditions onto homomorphisms
from the initial model to an arbitrary model. As far as DET-complete
specifications and term-generated models are concerned, the set-valued notion of
homomorphism coincides with the classical notion of homomorphism. As long
as initial models in Mod(T) are term-generated, as it is suggested by theorem
3.9, this shows the consistency between the notion of homomorphism as it is
used here and the literature on homomorphisms and initiality.
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Lemma 3.12

Let T be a DET-complete specification, AEGen(T), BEMod(T). Then
every loose homomorphism @: A — B is element-valued (i.e. it
assigns only singleton sets).

Proof:
Let eSsA. Since A is term-generated, there is a tEW(Z) such that IA[t]
= {e}. Since T is DET-complete, there is a t’ such that |- DET(t’) and |-
t—t’, so IA[t’] = {e}. The definition of a homomorphism gives @(e) C
IB[t’]. Because of I- DET(t’) we have lp(e)l < 1. ¢

Now the expected initiality result for D/R can be shown.
Theorem 3.13

Given a DET-complete and DET-additive specification T = (2, R),
DZ/R is loosely initial in Mod(T).

Proof:
Let AEMod(T). Define the mapping
¢: DZ/R — A
as the extension of the interpretation IA to the carriers of DE/R :
o((t]) =IA[Y] where tesD2/R
The well-definedness of ¢ is a consequence of theorem 2.6 and
definition 2.12.
For the remaining parts of the proof see appendix A. O

DZ/R is loosely initial in Mod(X), but not tightly initial. This is demonstrated
by the following example.

Example 3.14

spec NPI
sort s
func a:—s, b: — s, g — s, fis—s
axioms
DET(a), DET(b), g—a, f(x) = x

end
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A model A of NPI is given by
sA={a,b}, ah={a}, bA={b}, gh={a,b},
fA(e)={e} fore,el,e2E€{a,b}.

Within DZ/NPI, the loosely initial model, we have:
gDE/NPI ={[a] }.

Therefore, the condition of a loose homomorphism

{e€q(t) I t1€gPENPly = {2y C{a,b}=gA
holds, but not the condition of a tight homomorphism (which involves
set equality instead of subset relation). 0

Obviously, the model class has to be restricted, in order to show a tight
initiality result. Example 3.14 shows also that the restriction to term-generated
models is not sufficient for this purpose. A good candidate for an appropriate
model class is the class DGen(T) of term-generated and DET-generated models,
as it has been introduced in the last chapter (definition 2.26). (As a reminder:
The models in DGen(T) are those where the interpretation of a nondeterministic
term contains only elements which can be reached by a deterministic term, and
where this inclusion can be derived on the level of terms within the calculus.)

Before showing an initiality result, we address the general question of how to
characterize this model class DGen(T). It turns out that the notion of
homomorphism can be used to give a more “semantic” characterization, which
does not involve any reference to deduction.

The basic idea is the observation that the models in DGen(T) are “maximally
deterministic” in the sense that they do not contain any “superfluous” non-
determinism which is not explicitly mentioned in the specification. In order to
speak about degrees of determinacy, the notion of a “descendant” (analoguously
to [McCarthy 61]) is used.

Definition 3.15 (Descendant)
Let T = (£, R) be a specification, AEGen(T). Another model

A’EGen(T) is called a descendant of A, iff:
Y EEWE): 1Al DIA).
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A’ is called a proper descendant of A, iff A’ is a descendant of A and if
the additional condition holds:
JEWE): IA[] = IA Y. 0

If an algebra has proper descendants, it must not be called maximally
deterministic. Unfortunately, this does not suffice to characterize maximally
deterministic algebras. There are more complex cases of “superfluous”
nondeterminism, as the following example shows.

Example 3.16

There is a proper descendant of the algebra A from example 3.14 above:
sA’ = {a,b},
ah'={a}, bA'={b}, gA'={a},
fA’(e)={e} wheree,el,e2 € {a,b }.

There is a loose homomorphism @: A’ — A, defined by
p@={a}, @b ={b}.

The new algebra A’ does not have any proper descendants.

A more complex case is the following one:

spec NMD
sort s
func a:—s, b: — s, c.—s, fis—s
axioms
DET(a), DET(b), DET(c),
f(a) — a, f(b) — c, f(c)—c
end
with the model B:
sB= {a,c},
aB={a}, bB={a}, B={c},

Bx)={a,c}, Be)={c}.

B does not have any proper descendants. But if B is “refined” (extending
its carrier set), a “less deterministic” model can be constructed, which is
called B”:
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sB’ ={al,a2,c},

aB'={al}, B ={a2}, B ={c},

B'al={al}, B'@)={c}, B)={c}.
Again there is a loose homomorphism v: B’ — B:

Y@l ={a}, w@2={a}, Pec)={c}. 0

The term model DZ/NMD gives a deterministic interpretation for the operation
f, therefore a maximally deterministic model should interpret f also as
deterministic. The example gives a hint, how this property can be formulated in
terms of models: An algebra A is maximally deterministic iff it does not have a
more deterministic refinement:

Definition 3.17 (Maximally Deterministic)

Let A, A’ be term-generated Z-algebras.
A’ is called a refinement of A, iff there is a loose Z-homomorphism @:
A’ — A,
A’ is called more deterministic than A, iff:

VEWE): ITA[ 1= 1TA'[H] 1.
A is called maximally deterministic, iff A is more deterministic than
every refinement of A. ¢

The next lemma shows that the semantic characterization of maximal
determinacy coincides with the model class DGen(T). Moreover, it shows a
useful property about homomorphisms, which leads to the immediate
consequence that a loosely initial model in DGen(T) is also a tightly initial one.

Lemma 3.18

Let T = (£, R) be a DET-complete and DET-additive specification,
A€EGen(T). Then the following three propositions are equivalent:

(1) A is maximally deterministic.

(2) VBEGen(T):
@: B—A is a loose Z-homomorphism =
@ is a tight =-homomorphism.

3) A €EDGen(T).
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Proof: See appendix A. O

Please note that lemma 3.18 assumes the specification to be DET-additive. The
results cannot be generalized easily to non-additive specifications.

A consequence of lemma 3.18 (3) is the fact that DZ/R is maximally deter-
ministic. From this fact an initiality result follows:

Theorem 3.19

Let T = (Z, R) be a DET-complete and DET-additive specification.
Then DZ/R is tightly initial in DGen(T).

Proof:
Consequence of theorem 3.13 and lemma 3.18 (2), since
DZ/REDGen(T). O

We conclude this chapter with a graphical sketch of the lattice structure
connecting the models of a specification T = (, R).

D2/R —= loose homomorphism
N\, =— tight homomorphism
A N
HH pcenn
/

zs Mod(T)



Chapter 4

Nondeterministic
Specifications as a
General Framework

At this point, the presented theory has reached a stage, where it is interesting to
investigate the relationship to classical concepts like the theory of term
rewriting and equational logic as well as logic programming. It will turn out
that equational logic and (confluent) term rewriting can be seen as special cases
of the new theory. It also will be shown that a special variant of the theory has
very close connections to algebraic and logic programming.

The general observation is that nondeterministic specifications form a rather
general framework which is well-suited for integrating and comparing various
approaches from denotational and operational semantics. Even beyond the
examples mentioned above, in [Meseguer 92] a whole catalogue of concepts
from computer science can be found, which can be subsumed by a variant of
rewriting, if the confluence restrictions are left out.

4.1 Equational Logic

Equational logic can be easily integrated into our new framework. The basic idea
is that a given equation is simulated by two rewrite rules, which differ only in
exchanged left and right hand sides. This way, the symmetry deduction rule can
be simulated within term rewriting.
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In the framework of specifications over a deterministic basis, this effect can be

achieved in an even simpler way.

Definition 4.1

For a given equational specification
T=(,E), 2=(S, P,
a nondeterministic specification NDEQ(T)
NDEQ(T) = (£, R)
can be constructed using:
‘ R={d—=pld=p€E} U { DET{(x],....xp)» | fEF }
(where x1,..., xp are pairwise disjoint variables). ¢

The DET-axioms are chosen in such a way that all operations are deterministic.

The simulation of the symmetry deduction rule is now achieved by the deduction
rule (DET-R).

Theorem 4.2 (Simulation of Equational Reasoning)

Proof:

Within the nondeterministic specification NDEQ(T) = (Z, R) associated
to an equational specification T, the following holds:

) Y teW(Z, X): R I- DET(t)

?2) Vil,ReWE,X): tl =g t2 < RI-tl — 2.

(1) can be easily shown by structural induction on the number of
function symbols in t. Either there is no function symbol in t (then we
can use (DET-X)), or we can apply (AXIOM-2) using one of the DET-
axioms contained in R.

(2) is shown by induction on the length of the derivation for t1 =F t2
within the classical equational calculus. The cases of reflexivity,
transitivity and congruence (with respect to term building operations)
can be directly covered using (REFL), (TRANS), (CONG). The
remaining cases are:
Application of an equation:

Here t1 = ol, t2 = or, < = nE€E. Due to (1), we have

VY x€X: R |- DET(ox).

Therefore, (AXIOM-1) can be applied to show R I- t1— t2.
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Symmetry:
Here t2 =g t1. By induction hypothesis, R |- t2 — t1.
Due to (1), we have R |- DET(t2), so (DET-R) gives:
RI-t2 — tl. O

In other words, the calculus of definition 2.4 in this case exactly agrees with the
equational calculus. Morever, theorem 4.2 (1) ensures that the interpretation of
every term in any model of NDEQ(T) is a singleton set. Therefore, all models of
NDEQ(T) correspond exactly to classical Z-algebras.

4.2 Term Rewriting

In difference to the above results on equational logic, classical term rewriting
cannot be subsumed by the rewriting relation as it has been axiomatized in
definition 2.4. It was one of the main results of section 1 that classical term
rewriting is unsound for the semantic framework of heterogeneuous multi-
algebras. This is also the main point where the approach studied here differs
from the work of Meseguer ([Meseguer 92]).

However, one would expect confluent axiom systems to show some particular
semantical properties. Please note that the notion of confluence here refers to the
rewriting relation between terms as it is established by the calculus of deinition
2.4. Moreover, we restrict our attention to so-called ground confluence. A set of
inclusion rules is called ground confluent, iff the rewriting relation generated by
the calculus of definition 2.4 is confluent on ground terms.

- Theorem 4.3

If R is ground confluent, then in AEDGen(Z, R) all operations are
deterministic.

Proof:
Letel, e2€IA[t], tEW(Z). Since A is DET-generated (see definition
2.21), there are t1, t2EW(Z) such that
I- DET(t1), I- DET(t2), |- t = t1, |- t = t2,
Aftl]={el },T1A[2] = {e2 }.
Ground confluence ensures that there is a t’ such that
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-tl = t’,[-t2 — t’,
Using (DET-R), we have |- ' — t2, using (TRANS) |- t1 — t2.
Therefore, using theorem 2.6: { el } 2 {e2},i.e.el =¢e2. Hence

1A 1=1. 0

Ground confluence forces all terms to be deterministic. Using the breadth-
induction calculus from definition 2.18, we can even deduce for every ground
term t the formula DET(t). A difference to equational deduction is that there
determinacy is ensured for all models and even for non-ground terms. In the case
of non-confluent (nondeterministic) rewriting, the more refined notion of the
model class DGen(T) is used, and only for these models and for ground terms the
determinacy is enforced. These observations correspond closely to the various
levels of abstraction described by [Meseguer 92] (for a summary see Fig. 5 in
[Meseguer 92]).

Another nice property of ground confluence is that it automatically ensures
DET-additivity.

Theorem 4.4

If R is ground confluent and DET-complete, then R is DET-additive,
too.

Proof:
Let |- f(t1,...,tn) — t, |- DET(t). Because of DET-completeness, there
are t1’, ..., tn’ where |- DET(t;), I- ti = ti’. With (CONG) and
(TRANS): |-f(t1,...,tn) = f(t1’,...,tg") . According to ground
confluence, there is a t’ such that I-f(t1’,... ty’) = t’, |- t = t’. Using
(DET-R), it follows that |- t* — t, therefore (using (TRANS)) |-
f(t1’,....tn)) = t. O

In many cases, also DET-completeness can be guaranteed automatically. For this
purpose, it is necessary that every term has a normal form with respect to — and
that the —>-terminal terms can be enumerated. Then a ground confluent set R of
term rewrite rules over the signature X is transformed into the nondeterministic
specification
T=(Z,RU {<DET(t)> I t is —-terminal } ).

According to theorem 4.3, the DET-axioms hold within DGen(Z ,R). This means
that they can be added without changing the semantics. The DET-axioms ensure
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the DET-completeness and theorem 4.4 gives the DET-additivity. In this case,
the semantics given by DGen corresponds exactly to equational logic. The
advantage of the confluent rewriting system is that there are less DET-axioms
needed, and that the automatic search of deductions is considerably easier, due to
the fact that the rule (DET-R) is avoided. As in the classical case, deduction here
can be restricted to uni-directional application of the axioms.

Another aspect of non-confluent term rewriting can be quite interesting in some
applications, where the confluence of a term rewriting system is yet unknown.
The ideas from above give a semantics for term rewriting, independently of the
confluence of the axiom system. If ground confluence (for the rewriting relation
from definition 2.4) holds, this semantics automatically coincides with the usual
semantics.

4.3 Conditional Axioms

A generalization of algebraic specifications to conditional axioms is interesting,
mostly for the reason that here the central results still hold and the
correspondence to term rewriting and equational logic is kept. The results for
equational logic can be carried over to conditional-equational axioms (see for
instance [Broy, Wirsing 82)); conditional term rewriting systems ([Kaplan 84],
[Bergstra, Klop 86]) give an operational semantics for such specifications with
conditional axioms. Below follows a sketch of the way how conditional axioms
can be integrated into the framework presented here.

It is quite obvious how the syntax and semantics of conditional inclusion rules
is to be defined. This differs from the situation in conditional term rewriting,
where at least three variants of conditional axioms are distinguished. The three
variants correspond to the following schemes of axioms:

(@ tlerp* 2 = l-Rr
(b) tl lR t2 = ] —RT
(c) tl “’R* t2 = 1l—-=Rr

Variant (a) admits conditions of the form “t1 is equivalent to t2”, which can be
proven by arbitrary applications of the axioms (including “backward”
applications). In variant (b), the condition can be only fulfilled if both terms (t1
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and t2) have a common successor within the term rewriting relation (—>R*).
Variant (c) ist the simplest one: Conditions can be fulfilled there only if an
(oriented) rewriting relation between the two terms can be proven.

For non-confluent rewriting, variant (b) is not very interesting, since the relation
tl |R t2 carries useful information only in the case of confluent rewriting (then
it is equivalent to t] "’R* t2).

For similar reasons, variant (a) can be excluded. The relation tl “’R* t2 is
useful for non-confluent specifications (it was called = above). But, if only
conditions of this kind were admitted, the language would be more restrictive
than necessary. In general, the most interesting type of conditions is (c), where
the application of a certain axiom is dependent of the question whether a term t1
can be brought into the shape of t2 (by nondeterministic rewriting). Note that
axioms of the type (b) can be simulated within this approach by
tl - 1t2 & t2—>1tl = |—r.

Definition 4.5 (Conditional Inclusion Rule)

A conditional (2, X-) inclusion rule is a pair, consisting of a finite

sequence of X, X-inclusion rules (the condition) and an atomic X, X-

inclusion rule (conclusion). In formula notation this is written:
t1j—=>t]’ & ... &thy—=>ty = 1—-r

where for i€{1,...,n}: tj, ;' EW(Z, X)g;, si€S, |, IEW(Z, X)s, sES. ¢

Definition 4.6 (Validity for Conditional Rules)

Let A be a Z-multi-algebra. A conditional inclusion rule is called valid
in A, symbolically
Al=t1—t]’ & ... &th—=ty’ = 1l—r,
iff the following proposition holds:
Every valuation BEENV(X,A) which fulfils the following
condition:

Vie{l,...n}: IA

g1 2 Ig[ti’],

also fulfils
Ig[l] ) Ig‘[r]. 0
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The notion of a model is obvious. The next definition defines a suitable calculus
for nondeterministic specifications with conditional axioms.

Definition 4.7 (Term Rewriting Calculus with DET and
Conditional Rules)

Let T = (2, R) be a nondeterministic specification containing DET-
axioms and conditional inclusion rules. Then a formula «1—t2> or
DET(t)>, respectively, is called deducible in T, written

TIl-coOND tl = t2 or TIl-coND DET(t), respectively,
iff there is a derivation for this formula using the following deduction
rules:

(REFL), (TRANS), (CONG), (AXIOM-2),
(DET-X), (DET-D), (DET-R) (as in definition 2 .4)

(AXIOM-1-COND)

DET(ox1), ..., DET(oxp), ot] — oty ’, ..., Oty = Oty’

ol — or
if ¢j—t]” & ... & th—=ty’ = 1= n € R, cESUBST(Z, X),
{X15--Xm} =Vars(lUVars(r)UVars(t})U...UVars(tp)U
Vars(t1")U...UVars(ty’)
(AXIOM-1) is now a special case of (AXIOM-1-COND). 0
The following theorem shows the soundness of this calculus.

- Theorem 4.8 (Soundness)

Using the preconditions of definition 4.7, for t, t1, t2 EW(Z, X) the
following implications hold:

TIl-cOND tl — 2 = Mod(T) I=tl—t2

T I-cOND DET(t) = Mod(T) I= DET(t)

Proof: By induction on the length of the derivation, see appendix A. ¢

The example below illustrates a new problem which arises now for the
completeness of the calculus.
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Example 4.9

spec CIC

sort s

func a:—s, b: — s,
f.—>s, gi—>s

axioms
DET(a), DET(b),
f—-a, f—=b, g—a,
f-g=a—b

end

In DGen(CIC), independently of the condition, the following inclusion
is valid (see the breadth-induction rule (IND-R)):
DGen(CIC) I= f— g
Therefore (using the conditional axiom):
DGen(CIC) I=a—b.
But, according to definition 4.7:
~(CIC I-cOND f — g) and -( CICI-COND 2 — b) 0

The example shows that the calculus for conditional axioms is incomplete, even

if, like in the unconditional case, only derivations for formulas of the shape

l-cONDt—t where |-cOND DET(t’)

are considered. Conditional deductions of such formulas can lead recursively to

the deduction of other formulas which do not have the special shape. There are

two ways to obtain a completeness result:

)

@

The calculus can be augmented by the breadth-induction rules IND-R) and
(IND-D). In this case, a rather complex calculus is the result. The
deduction rule (AXIOM-1-COND) contains a premise which may lead to an
inductive proof which in turn makes use of conditional deductions. In the
unconditional case (definition 2.18), this kind of mutual recursion could be
excluded.

The conditional axioms can be restricted syntactically. A simple case is

achieved, if the preconditions of all conditional axioms have the shape
t—t" where |-cOND DET(t’) .

Then the arguments of the unconditional case can be carried over to the

conditional case.



NONDETERMINISTIC SPECIFICATIONS AS A GENERAL FRAMEWORK 97

The second variant is technically easier and it is sufficient for an interesting
range of applications. Therefore it is studied in more detail.

Definition 4.10 (Simple Conditional Rules)

A conditional X, X-inclusion rule
<1ty & ... & th—=>ty’ = l-=r>ER
is called simple, iff:
Vie{l,...,n}: Tl-cOND DET(;). $

The notions of DET-completeness and DET-additivity are extended in analogy to
definition 2.8 / 2.9 (using the new calculus, I-COND)-

For DET-complete and DET-additive specifications containing only simple
rules, again an initial model can be constructed.

Theorem 4.11

Let T = (£, R) be a DET-complete and DET-additive specification
which contains only simple conditional rules. Analoguously to
definition 2.12, a model DZ/R is constructed, where for tEW(X) the
interpretation is given by:

D2R{i) = { []1 Tl-coND DET(t) A TI-CONDt >t }.
DZ/R is initial in MGen(T), and for tl, t2EW(Z) the proposition
holds:

DIRI=tl =12 « MGen(T)I=tl = 12.

Proof: See appendix A. ¢

~ Conditional rewriting leads to a number of interesting theoretical problems even
in the classical case. A detailed explanation of the underlying theory for the
classical case has been given for instance in [Wechler 91].

A final example demonstrates the practical use of conditional axioms:
Example 4.12

A standard example from logic programming is the splitting of a
sequence of data objects. The given sequence is splitted into two parts
the concatenation of which results in the given sequence again.
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Obviously, there is a (nondeterministic) choice, where to split the
sequence. A corresponding specification is:

spec SPLIT
sort  Elem, Seq, Pair
func { Operations for the sort Elem are omitted here }
empty: — Seq
append: Seq x Elem — Seq
conc: Seq x Seq — Seq
pair: Seq x Seq — Pair  { Pairs of sequences }
split: Seq — Pair
axioms
DET(empty), DET(append(sx)), DET(pair(s1,s2)),
conc(s,empty) —> s,
conc(append(s1,x),s2) — append(conc(s!,s2),x),
conc(sl,s2) = s = split(s) — pair(sl,s2)
end

SPLIT is DET-complete and DET-additive, the conditional axiom in
SPLIT is simple.

Below follows a deduction for
split(append(append(empty b) a))
— pair(append(empty ,a) append(empty,b)),
where a,b € Elem such that I-DET(a), I-DET(b):

(1) I-cOND DET(empty) (AXIOM-2)
(2) -COND DET(append(empty 2)) (AXIOM-2), (1)
(3) I-cOND DET (append(empty b)) (AXIOM-2), (1)

(4) -coND DET (append(append(empty b) 2)) (AXIOM-2), (3)
(5) -COND conc(empty ,append(empty,b)) — append(empty b)
(AXIOM-1), (3)
(6) l-cOND append(conc(empty append(empty b)),a)
— append(append(empty b),a) (CONG), (5)
(7) I-COND conc(append(empty ,a),append(empty b))
— append(conc(empty append(empty ,b)),a)
(AXIOM-1), (1),(3)
(8) -COND conc(append(empty ,a) append(empty,b))
— append(append(empty b),a) (TRANS), (6), (7)



NONDETERMINISTIC SPECIFICATIONS AS A GENERAL FRAMEWORK 99

(9) I-COND split(append(append(empty b).a))
—> pair(append(empty ,a),append(empty b))
(AXIOM-1-COND), (4), (2), (3), (8) 0

For the sake of simplicity, from now on the scope of this text is restricted again
to unconditional specifications only. However, all results can be transferred to
conditional axioms in a similar way as it was sketched above.

4.4 Algebraic Programming

Under the notion of “Algebraic Programming”, we summarize a growing
collection of programming systems which try to integrate paradigms from term
rewriting, functional programming and logic programming. Typical examples of
such systems are SLOG ([Fribourg 85a]), BABEL ([Moreno, Rodriguez 88], or
ALF ([Hanus 90]). A common feature of these systems is the use of narrowing
as a mechanism for adapting the concept of a logical variable for functional
programs. In order to achieve an effective algorithm, these languages restrict the
syntactical form of the rewrite rules by a so-called constructor discipline.

In this section, we do not build up a direct relationship to one of the above-
mentioned languages. Instead, it is shown how a restriction to constructor
discipline can be combined with non-confluent rewriting. These so-called
constructor-based specifications are of particular interest for this study, since
they admit powerful mechanical checking of properties like DET-completeness
and DET-additivity. In the framework of constructor-based specifications, an
adaptation of the narrowing algorithm is studied, which forms the basis for
algebraic programming techniques. The narrowing mechanism is also used in a
later section for comparing nonconfluent rewriting with logic programming.

4.4.1 Constructor-Based Specifications

The so-called constructor-based specifications are of interest, because a large part
of specifications used in practice fits into this class. A first remark in this
direction was given in [Guttag 75], case studies with larger specifications also
demonstrate this fact. Examples of such cases studies are [Geser 86],
[Hussmann/ Rank 89], there are many others documented in the literature. The
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approach taken here allows us to omit a number of restrictions which are
sometimes presupposed in the literature on algebraic programming: left-
linearity, non-overlapping property, confluence. Termination of all rewriting
sequences, however, is very useful (but not always necessary) for a successful
algorithmic treatment. Even for specifications which are not DET-complete
(constructor-complete, respectively), a sensible semantics can be given in this
framework.

The starting point of the definition is the observation that there is a close
relationship between DET-completeness and the notion of sufficient
completeness at is was coined in [Guttag 75]. An even closer relationship exists
between DET-completeness and the notion of constructor-completeness, as it
was defined in [Huet, Hullot 82]:

Let C C F be a subset of the function symbols of X = (S, F). Function
symbols in C are called constructors. An equational specification T =
(2, E) is called constructor-complete, iff:

Y EWE): ILEWEC): t=g* t’
where 2 =def (S, C).

The notion of constructor-completeness can be easily adapted for nondeterminis-
tic specifications. For this purpose, the DET-axioms must be restricted in such a
way that they designate a set of (deterministic) constructor operations. In the
following, we assume that within £ = (S, F) a subset CCF of constructors is
designated. As a notation, constructors are marked by the keyword cons (instead
of func) .

Note that nondeterministic constructors are excluded here. They are not necessary
in general, since in multi-algebras some kind of “constructor” for nondeterminis-
tic sets of values always is available (by the set-building operations).

Within a constructor-based specification, it is not necessary to give explicit
DET-axioms, if all constructors are understood implicitly as deterministic. For
the inclusion rules, a particular syntactical shape is assumed (like in [Huet,
Hullot 82]) which guarantees that the term algebra of constructor terms is free.

The syntactical restriction described in the next definition has been shown to be
an acceptable compromise between an abstract description of a system and some
kind of efficiency. Rather complex specifications can be written down within
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this restricted language. On the other hand, there exist experimental compilers
(for the case of a confluent rule set), which generate relatively efficient code from
such specifications, for instance [Geser, Hussmann, Miick 88], [Hanus 90].

Definition 4.13 (Constructor-Based Specification)

A specification T = (£, R), £ = (S, F), where CCF is the set of
constructor operations, is called constructor-based, iff:

(1) All axioms in R are of the form
f(tl youe ,tn) -t
where f&C, tEWEc,X) for 1 <sisn.

(2) R does not contain DET-axioms. All models of T implicitly must
fulfil the following axioms:
DET(c(x1,...Xn))
for all constructors c€C (where x1, ..., Xp are pairwise disjoint
variables). 0

Example 4.14

The specification DOUBLE’ (example 2.3) can be written as a
constructor-based specification:

spec C_DOUBLE

sort  Nat

cons zero: — Nat, succ: Nat — Nat

func add: Nat x Nat — Nat, double: Nat — Nat,
zero_or_one: — Nat

axioms
add(zero x) — x, add(succ(x),y) — succ(add(x.,y)),
double(x) — add(x x),
Zero_or_one — zero, zero_or_one — succ(zero)

end 0

In a constructor-based specification, we have:
te W(Ec,X) <« TI-DET(®).
Therefore, a term can be tested for determinacy by a simple syntactical test.
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From condition (1) it follows that the set of constructors is free, i.e.:

I-DET(tl) A |-tl = t2 = tl =t2.
As a consequence of this fact, the deduction rules (DET-D) and (DET-R) are no
longer needed for derivations.

The property of DET-additivity is automatically given for constructor-based
specifications:

Corollary 4.15

Every constructor-based specification is DET-additive (with respect to
the implicit DET-axioms).

Proof: Consequence of theorem 2.11 and definition 4.13. ¢

The test for DET-completeness is particularly simple for constructor-based
specifications. Well-known methods for testing constructor-completeness can be
adapted for this purpose.

Definition 4.16 (C-completeness)

A constructor-based specification T = (Z, R) (£ = (S, F)) with
constructors CCF is called C-complete, iff:

VIfisyx..xsy—s]€RC:

V HEWEC)sy, - tnEWEQC)s,:

3 A(t1’,....tn") = b €ER, 0 € SUBST(C, X):
o(f(t1’,...ta")) = f(t1,....tn),

i.e. iff for any function symbol all potential arguments (seen as tuples
of constructor terms) are covered by the argument pattern of some
axiom. ¢

Algorithms for a test of C-completeness have been described for instance in
[Huet, Hullot 82], [Padawitz 83], [Kounalis 85].

In order to derive DET-completeness from C-completeness, an additional
property is needed, which ensures that for any term at least one rewriting
sequence terminates. The following specification, for instance:
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spec NT
sort s
cons a:—>s§,Cis—>S§
func f:—s
axioms
f—c(f)

end
is constructor-based and C-complete, but it is not DET-complete.
Definition 4.17 (Termination)

Let — be a reflexive and transitive relation on 2-terms which forms a
semi-congruence with respect to to the term-building operations
(ie.t—=t'= f(...,t,...)—= (.., t,..)).

A term t is called —>-terminal, iff there is no proper —-descendant of f,
ie.
VIEWE): t—=t = t' =t.

The relation — is called weakly terminating, iff for every term t there
is at least one terminal —-descendant of t, i.e.
VEWE): ILEW(Z): t =t A t’ —-terminal.

The relation — is called (strongly) terminating, iff for all tEW(Z):
There is no infinite sequence of terms (t;)j=N where

t—t0, tj — ti+] and tj = t with iEN .
Strong termination implies weak termination. 0

For testing the strong termination of a term rewriting relation there exist a
number of powerful criteria (see [Huet, Oppen 80], [Dershowitz 87] for an
overview). Criteria for weak termination can be derived from these methods (by
considering subsets of the rewrite rules). In general, no algorithm can exist,
which decides the termination of an arbitrary term rewriting relation (even in the
restricted case of constructor-based specifications).
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Theorem 4.18

Proof:

If a constructor-based specification T is C-complete and if the term
rewriting relation — generated by T (with the calculus according to
definition 2.4) is weakly terminating, then T is DET-complete.

Because of the weak termination property for every ground term t there
is a —-terminal term t’ such that T |-t — t’,

For this term holds: t'EW(ZC). If otherwise there was a function
symbol from F\C contained in t’, then there would exist also a subterm
of t’ which has the form

f(t1,....tn)
with t;EW(Z() for i€{1,...,n}. Because of the C-completeness then an
axiom could be applied to t’, in contradiction to the —-terminality of
the term t’. O

For hierarchical constructor-based specifications, as they were defined in section
24, even the modularity properties can be easily checked by a syntactical

condition: Every constructor should be specified within the specification where
its target sort is introduced.

Theorem 4.19

Proof:

Let T = (Z, R) be a hierarchical specification with constructor basis C.
Let TO = (20, RO), 20 = (SO, FO) be the primitive part of T with
constructor basis CO C FO.
If

YV [c:s] x...xsp—> s]EC: s&€S0 = ceC0,
then T is sufficiently complete and hierarchy-consistent.

Let t€W(Z()s, sS€S0. By induction on the term structure of t, the
condition on the declaration of constructors yields tEW(Z0).

Lett, tEW(Z0), T I- t — t’. Because of definition 4.13 (1) no axiom
out of R\RO can be applied to t. By induction on the derivation we have
TOlt—t. ¢
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It is quite obvious, how the calculus for rewriting with DET (definition 2.4) can
be specialized to the case of constructor based specifications: The precondition of
determinacy can be tested just by the syntactical criterion whether a term is built
from the constructor symbols and variable symbols only.

Definition 4.20 (Constructor-Based Term Rewriting)

Given a specification T = (Z,R) with constructor basis C, a special case
of the calculus from definition 2.4 is defined by:

(REFL), (TRANS), (CONG) as in definition 2.4

(AXIOM-1-C)

ol = or if d > » ER, 0 € SUBST(ZC, X).-

Here Z¢ denotes the constructor-subsignature of Z (¢ = (S,0)).
Derivations within this calculus are denoted by the symbol |-C . O

The following theorem establishes the connection between chapter 2 and the
above-mentioned calculus.

Theorem 4.21

In a specification T = (Z, R) with constructor basis C, the following
proposition holds for t1, t2 € W(Z, X):
Tltl >t2 <« TIl-ctl — 2.

Proof:
The “<="-case (soundness) is a consequence of the fact that |-C is a
special case of the calculus from definition 2.4 except of (AXIOM-1-
C). Wherever (AXIOM-1-C) is applied, the condition: V xE€X: I-
DET(ox) holds because of the implicit DET-axioms, therefore
(AXIOM-1-C) can be replaced by an application of the original
deduction rule (AXIOM-1).

“=>"-case (completeness):
The proof is conducted by induction on the derivation. The following
deduction rules can be excluded here: (DET-D) and (DET-R) (since no
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rewrite rule can be applied to a pure constructor term, due to the form
of the left hand sides). This means that deductions for formulas of the
kind |- DET(t) can use only (DET-X) and (AXIOM-2). For both these
rules tEW(Zc, X) holds. Therefore all deductions for DET-formulas can
be omitted; applications of (AXIOM-1) can be replaced by (AXIOM-1-
C). The remaining deduction rules (REFL), (TRANS), and (CONG) are
common to both calculi. ¢

Please note that this establishes a soundness result for constructor-based
rewriting, which holds independently of the C-completeness of the specification.
In fact, a specification which does not possess the property of C-completeness
can be given a reasonable semantics by regarding the missing cases as
“undefined”. This idea is followed in more depth below in chapter 6 on partiality
in nondeterministic specifications. Chapter 6 below also contains a special
section on constructor-based specifications (section 6.3). Let us state the main
results from section 6.3 shortly in advance:

. There is a well-defined semantics for constructor-based specifications even
without the condition of C-completeness (“partial constructor-based
specifications”).

*  The appropriate deduction calculus for partial constructor-based
specifications coincides with the calculus of constructor-based rewriting
(definition 4.20). Soundness and weak completeness results hold.

e This leads to a sublanguage of nondeterministic specifications which does
not need any checks for DET-completeness and DET-additivity (DET-
completeness is avoided by partiality; DET-additivity is ensured by the
constructor discipline).

For the detailed machinery behind these results, see chapter 6. The results have
been reported already here, since they are useful for a comparison of constructor-
based nondeterministic specifications with algebraic and logic programming.

To summarize this section: Constructor-discipline can be easily integrated into
nondeterministic specifications. The resulting term rewriting calculus differs
from classical term rewriting (by the restriction to constructor matchings in a
rewrite step). However, this restriction is necessary to ensure soundness in the
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nondeterministic case; and it additionally covers an elegant treatment of partiality
without any further modification of the calculus.

4.4.2. Narrowing without Confluence

The catch-word “narrowing” denotes an algorithm, which tries to solve a system
of equations within a theory described by equational axioms. A standard
assumption in this field of research is that the set of axioms form a confluent
and terminating term rewriting system. The idea of narrowing goes back to
[Slagle 74] and [Lankford 75], a first formulation of the algorithm is due to [Fay
79]. Like most literature on narrowing, the exposition given here is based on the
description in [Hullot 80].

It is interesting that the narrowing relation (even for a confluent term rewriting
system) may be non-confluent. This leads to the idea to use implementations of
narrowing to get machine support for nonconfluent term rewriting. See chapter 5
on more details about this approach. Another important observation is that the
correctness and completeness proofs for narrowing do not make any use of the
confluence property of a term rewriting system. This means that narrowing can
be carried over to non-confluent rewriting systems, at least for those cases,
where the rewriting relation is sufficiently similar to the classical case. Below,
we study narrowing in the framework of (partial) constructor-based nondeter-
ministic specifications.

Narrowing adds to term rewriting systems an algorithm similar to Prolog’s
resolution method which computes an answer substitution for queries. Given a
constructor-based term rewrite system, a query consists again of inclusion rules
of the form:

tl — t2,
where free variables can occur in t1 and t2. (More complex queries consisting of
a sequence of such rules are omitted here, they can be treated analoguously.) The
algorithm now has to look for constructor-substitutions o such that

R |I= otl — ot2.
Such a substitution is called a solution. A good algorithm should be able to
enumerate all such solutions. In order to use the rewriting techniques developed
above, the narrowing method tries to find instead a constructor-substitution o
such that

R |-c otl — ot2.
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The connection to actual solutions then is given by soundness and completeness
of constructor-based term rewriting. Since there is only a weak completeness
result available for rewriting, we can only expect narrowing to be weakly
complete (that is for t2 being a constructor term).

In fact, the narrowing process is very tightly coupled with rewriting. It uses a
relation which can be deduced in a similar way to the rewriting relation.
Basically, the matching process in the rewriting algorithm is replaced by
syntactical unification; and out of the unification process a partial approximation
to the answer substitution is computed and stored. Rewriting sequences can be
“lifted” into narrowing sequences, without any regard to confluence or
termination assumptions.

For describing the narrowing process, a new kind of formula is used:
Definition 4.22 (Narrowing Rule)

A narrowing rule is a triple consisting of two terms t1, t2EW(Z, X)) of
the same sort and a substitution c€SUBST(ZC, X); it is denoted by
tl -N—g t2. ¢

Definition 4.23 (Narrowing)

A narrowing rule tl -N—g t2 is called deducible using a constructor-
based rewrite system R (denoted by R I- t1 -‘N—g t2) iff there is a
deduction for t1 -N—q t2 according to the following deduction system:

(REFL-N) - if t€ W, X)
t _N_)l, t

(TRANS-N)  tl -N—>g t2, t2 -N—>g t3
iftl, 2, 13 € W(Z, X),
t] -Ne>gg t3 o, T € SUBST(EC, X)

(CONG-N)
ti -N—g ti’

f(t1, .., ti-1, 4, ti+1, .-.» tn) N—g
f(oty, ..., Oti-1, ti’, Otj+1, ..., Otp)
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if fEF withrank f: s1 x ... x sy =5, EW(Z, X)sj»
ti’ € W(Z, X)si, 0 € SUBST(Z, X)

(AXIOM-N)
t -N—g opr

ftewE,X),teX,d—=n R,
p is a renaming such that Vars(p)NVars(t) = @,
o € SUBST(ZC, X) where o is a mgu of t and pl. ¢

This calculus formally defines the notion of narrowing and is consistent with the
usual definitions. The only difference to the standard notion is that narrowing is
restricted here to the generation of constructor-substitutions. Thus an
implementation enumerating all derivations within this calculus can be gained
from a classical narrowing implementation by a small modification. For
constructor-based systems, the calculus describes only innermost narrowing
steps. Moreover, for C-complete systems, the calculus coincides exactly with
innermost narrowing, as it has been defined for instance in [Fribourg 85].

Example 4.24

Consider the following specification of sequences over an arbitrary data
sort (we do not give any function symbols for this sort here), together
with a “choice” operation:

spec SC

sort Data, Seq

cons empty: —> Seq, insert: Set x Data — Seq

func choose: Seq — Data

axioms
choose(insert(s X)) — x,
choose(insert(s x)) — choose(s)

end

Please note that this is a partial constructor-based specification; it treats
choose(empty) as undefined.

We have for instance the following narrowing derivations starting from
the term
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choose(U)
(The variable U is a free variable to be considered as “unknown” in a
query.)
I- choose(U) -N—g x where ¢ (U) = insert(s x)
I- choose(U) N—¢ y where T (U) = insert(insert(s,y) x). ¢

Correctness of the narrowing method above means that all narrowing sequences
are just “liftings” of rewrite sequences.

Lemma 4.25

Let T = (£, R) be a constructor-based specification, t1, 2EW(Z, X),
o&SUBST(E, X) such that

T |- t1 N—g t2.
Then the following rewriting derivation exists:

T I-c otl — t2.

Proof: By induction on the length of the derivation for |- t1 -N—q t2. 0

The following (rather technical) lemma shows that narrowing as defined above
describes all “liftings” of a sequence of rewriting steps. This means, if there is a
solution to a query (in the sense mentioned above), then it can be found with the
narrowing method.

Lemma 4.26

Let T = (£, R) be a constructor-based specification, t1, 2EW(Z, X),
VCX a set of “protected variables” with Vars[t1]CV, cESUBST(ZC,
X) such that Dom[c]CV and

T I-c otl — 2.
Then there are substitutions A, c’ESUBST(ZC, X), a term t2’EW(Z,
X) and a set of Variables V’ with VCV’CX such that:

T |- t1 N—>g t2’ and
) Vars[t2’']JEV’ A Dom[AJCV’ A Vars[c’]CV’,
(i) o=[V]A0o’,and
(iii) 2=At2".
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Proof:
The proof of this lemma (and the lemma itself) follows closely the
ideas of [Hullot 80], which are described more extensively for instance
in [Snyder 91].
For the details of the proof see appendix A. ¢

In order to get an algorithm for solving queries, liftings of rewriting sequences
are enumerated in such a way that a special case of every solution is reached. As
it was remarked above, the weak completeness result entails that this works only
well for queries t1 — t2, where q is a constructor term. The algorithm for
solving a query is then very similar to the classical narrowing algorithm: Its
main part is an enumeration of all possible narrowing sequences starting from
the left hand side of the query:

Algorithm 4.27 (Sketch)

Input: R (a constructor-based rewrite system), «t1 — t2> (a query)

Output: all possible solutions for the query

Method:

Search for all terms t2’ and substitutions <t such that R |- t1 N—>¢ t2’

holds.

For all such terms and substitutions do:
If the term t2’ is unifiable with the term tt2 (with mgu. w),
then output ut as a solution. ¢

Note that a classical implementation of narrowing exactly performs the required
algorithm, if the query is reformulated as “t1 = t2”. If t2 is a constructor term,
no narrowing steps can take place within it. So the only way to solve the
equation is by narrowing steps on t1 and by unification of the left and right hand
sides of the query.

Example 4.28

Given the specification SC from example 4.24 and the query
choose(U) — zero , the algorithm above will compute the following
solutions:

[insert(s,zero) / U]

[insert(insert(s,zero) x) / U]

[insert(insert(insert(s,zero) x),y) / U]
and many other solutions (in fact an infinite enumeration). O
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The correctness of the algorithm is an easy consequence of lemma 4.25, the
completeness of the algorithm is formulated by the following theorem:

Theorem 4.29

Let T = (£, R) be a constructor-based specification, Q = [t] — t2] a
given query where 2EW(ZC, X).

If a substitution cESUBST(ZC, X) is a solution of Q, then there are
substitutions A, 6’ESUBST(ZC, X) such that ¢’ is computed by
algorithm 4.27 and 0 =[] AG’, where V =def Vars[t1]UVars[t2].

Proof:
o is a solution of Q (c€SUBST(ZC, X))
= Rl=otl = ot2
= R I-c otl — ot2 (Thms. 4.21, 2.6)
= RI-tl -N—¢t2’, o =[y]MNtand ot2 =\'t2’
(Lemma 4.26)
= R |- t1 -N—>¢ t2° and AM'tt2 = A’t2° (Vars[t2]CV)
= R |- t1 -N—> t2’ and t2’ is unifiable with tt2
(let n be the mgu.)
= The algorithm considers t2’ and t and computes the solution
o’ =put where A’ =Ap
= o=[V]NT=At=A0". ¢

To summarize, the concept of narrowing can be adapted for constructor-based
nondeterministic specifications. Since the calculus of constructor-based term
rewriting is sound and weakly complete for partial constructor-based
specifications as well, also narrowing can be carried over to this special
sublanguage.

The main advantages of partial constructor-based specifications are the presence
of relatively powerful deduction techniques and the absence of any other than
purely syntactical conditions - just the syntactic shape of constructor-based left
hand sides of the axioms is sufficient. This interesting language has already been
studied and used in a diffreent syntactical shape, within the framework of logic
programming. The next section will show that we have reached now essentially
a functional reformulation of classical logic programming.
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4.5 Logic Programming

Logic Programming is a very successful paradigm of programming, in particular
in applications of symbolic computation. The language Prolog is the most
famous representative of logic programming. For our purposes, we will restrict
ourselves to a small kernel of “pure Prolog” below.

The idea of logic programming is to use a purely logical framework for
programming. This leads to an approach which can be located in between a true
programming language and a specification language, sometimes also called
“declarative programming”. Logic programming to a large extent has been
developed independently of the research in algebraic specification and term
rewriting; for an overview of the theoretical background see [Lloyd 84]. However
there exist very close relationships between these different worlds, which have
been described for instance by [Deransart 83] and [Bosco et al. 88]. In this
section, we will show a one-to-one correspondence between partial constructor-
based nondeterministic specifications and classical definite logic programs. The
results about narrowing in the nondeterministic framework above are needed
here, as a functional equivalent to the concepts of logical variables and queries in
logic programming.

The following definition summarizes a few of the most basic concepts of logic
programming, which are needed for this section.

Definition 4.30 (Logic Program, SLD-Resolution)

A (definite) logic program is built from terms over a signature £ which
contains two sorts, which are called here Data and Bool. There are only
two kinds of operation symbols allowed: The predicate symbols and the
function symbols, which are called constructors here. A predicate
symbol p of arity n has the functionality

p: Data x ... x Data — Bool,
a constructor ¢ has the functionality

c: Data x ... x Data — Data.
The terms of sort Bool (W(Z, X)Bool) are called atoms.
A logic program consists of a finite set of program clauses, which are
formulae of the shape

H:- or H:-B1,...,By
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where H, B1, ..., By are atoms. H is called the head of the program
clause, the (possibly empty) sequence B1, ..., By is called its body.
A query is a nonempty sequence of atoms:

-C1,...,Cn
where C1, ..., Cy are atoms.
A goal is a (possibly empty) sequence of atoms together with a
substitution cESUBST(Z, X), it is here written as

Ci, ..., Cy where o
The empty sequence of atoms in a goal is denoted as [].
Given a program, a goal can be transformed into another goal by the
following (SLD-)resolution rule:

(RES) Al,...,Am, ..., Ak where ¢

0A1,...,6Am-1,60B1, ..., 6Bq, 0Am+], ..., 0Ak where 60

if <A :-Bq, ..., Bq> is a program clause,
0 is a mgu of A and Ap,.

Remarks: This rule also can be used to replace an atom by an empty
body, which shortens the goal. We did omit the technicalities of
creating a variant of a program clause, which can be treated by applying
a renaming (like in the narrowing calculus).

Given a query Q, a substitution o is called an answer, iff, using this
calculus

Q where v |- [] where o
can be deduced. ¢

4.5.1. Narrowing Simulates Logic Programming

As a first interesting correspondence, we will show that logic programming (in
the simplistic sense of definition 4.30) can be simulated by narrowing. We use
the framework developed above; however, the given simulation is independent of
the extension to nondeterminism.

The idea is simply to encode a logic program as a set of rewrite rules working
on the sort Bool. The “comma” operator is replaced by a logical “and”.
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Definition 4.31 (Translation of Logic Program)

Given a logic program P, a partial constructor-based specification I'(P)
is associated to P, which is defined as follows.

The signature of I'(P) consists of the sorts
sort Data, Bool
and the function symbols
cons true, false: — Bool,
¢: Data x ... x Data — Bool for every constructor c in P,
func and: Bool x Bool — Bool,
p: Data x ... x Data — Bool for every predicate p in P.

The axioms of I'(P) are the following:
and(true true) — true,
and(false x) — false,
and(x false) — false,
H — and(B1,and( ..., Bp))
for every program clause <H:-Bq,...,Bp>,
H — true for every program clause < H:- ».

A query Q =:- «Cy, ..., Cp is translated into
T(Q) =def and(C1,and( ..., Cp)).
This is extended to empty sequences of atoms by
([]) =def true. 0

Example 4.32

The following logic program is used to reverse lists. In difference to
standard Prolog notation, we use the functions empty and cons to
construct lists:

empty: — Data, cons: Data x Data — Data.
The program clauses are:

rev(L,R) :- revl(L.empty,R)

revl(empty R R)

revl(cons(H,T) M,R) :- rev1(T cons(H M) R).

The corresponding specification is:
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spec REV
sort  Data, Bool
cons true, false: — Bool,
empty: —> Data, cons: Data x Data — Data.
func and: Bool x Bool — Bool,
rev: Data x Data — Bool,
revl: Data x Data x Data — Bool,
axioms
and(true true) — true,
and(false x) — false,
and(x false) — false,
rev(L,R) — revl(L empty R),
revl(empty ,R,R) — true,
revl(cons(H,T),M,R) = rev1(T cons(HM) R)
end

Please note that this specification is truly partial: E.g. the term

rev1(empty empty,cons(1,2))
cannot be reduced to a Boolean constructor term. 0

The following lemma makes the obvious relationship between resolution in P
and narrowing in I'(P) explicit.

A purely technical remark: The lemma needs a more flexible use of the operator
T', which transforms a sequence of atoms into a nested and-term. For the
purposes of the proof, we consider such translations only modulo associativity
of “and”. Please note that this associativity is not added as an axiom to the
specification I'(P), but is kept implicit within the proof. This is possible, since
the structure of the and-term does not play any role in the narrowing
computation; it is destroyed as soon as all the literals within it have been
narrowed into “true”.

Lemma 4.33

Let P be a definite logic program, I'(P) the associated specification.
Then for any deduction by resolution from P holds:

If Q where ¢ |- Q’ where 60

then I'(P) I- T(Q) -N—g T'(Q’).
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Proof:

For the case, where (RES) is applied, let Q = <Aq, ..., Anm, ..., Ap.
Then I'(Q) = and(A1,and(..., and(Ap,.. -, Ak))).
According to (RES) there are a program clause <A :-Bj,...,Bg and a
most general unifier 0 of A and Ap,.
In I'(Q) there is an axiom <A — and(Bj,and( ..., Bq))>. Using
(AXIOM-N), we have

I'(P) I- Am -N—g and(6B1.,and( ..., 6Bq)).
Using (CONG-N) several times, we get

I'(P) I- and(A1,and(..., and(Ap,...,AK))) N—9

and(6A1 and(..., and(and(6B1.and( ..., 6Bg)).... 0AK))),
which modulo associativity of "and" means

I'(P) I-T(Q) N—p T'(Q").
There are two other cases to consider, which are implicitly contained in
the resolution calculus (since it is described as a deduction system).
They correspond to the reflexive and transitive closure. In fact this
means a proof by induction on the length of the derivation.
The “reflexive” case (induction basis) is

Q where o |- Q where ,ie. Q' =Q,0=1.
Using (REFL-N), we get

I'(P) I-T(Q) N—, T(Q).
The “transitive” case (induction step) is

Q where o |- Q”’ where8’c |- Q’ where 6°’6°0,

ie.0=070".
By induction hypothesis, we have
I'(P) I-T(Q) N—p' T(Q™"), I'(P)I-T(Q™") -N—g> T'(Q").
Using (TRANS-N), we get
I'(P) - T(Q) N—g’g’ T(Q). 0

Theorem 4.34

Given a definite logic program P and a query Q, any answer
substitution o, which is computed by SLD-resolution, is also a
solution to the query I'(Q)—true in the specification I'(P), and o is
computed by the narrowing algorithm 4.27.

Proof:
If o is an answer to Q in the logic program P, there is a deduction
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Q where v |- [] where o
Using lemma 4.34, then

T'(P) I- T(Q) N—g I'([]), and therefore

T'(P) I- T(Q) N—>g true.
This means that algorithm 4.27 will consider the subsitution o, when
working on the input <"'(Q) — true>. Since true is trivially unifiable
with true using v, the substitution o will be output as a solution. ¢

Example 4.35

Consider the logic program from example 4.32. Using SLD-resolution,
the query
:- rev(X cons(1,cons(2,empty)))
is treated as follows (we show here only the relevant parts of the
where-terms):
rev(X,cons(1,cons(2,empty))) where v
l- rev1(X,empty,cons(1,cons(2,empty))) where v
- rev1(T1 cons(H1 empty).cons(1,cons(2,empty)))
where [cons(H1,T1)/X]
l- rev1(T2,cons(H2 cons(H1,empty)),cons(1,cons(2,empty)))
where [cons(H1,cons(H2,T2))/X]
- [] where [cons(2,cons(1,T2))/X].

The corresponding narrowing sequences are:
rev(X,cons(1,cons(2,empty)))
N—, revl(X,empty.cons(1,cons(2,empty)))
N=[cons(H1,T1)/X]
rev1(T1 cons(H1 empty) cons(1,cons(2,empty)))
-N=>[cons(H2,T2)/X]
rev1(T2,cons(H2,cons(H1 ,empty)),cons(1,cons(2,empty)))
-N—[2/H1,1/H2] true. 0

The theorem and the example show that SLD-resolution can be simulated by
constructor-based narrowing in all operational details. Even the apparent
difference that SLD-resolution has a more direct representation of the solution
(as in the example above), comes only from different representation in the
respectively calculi. Any implementation of narrowing will keep an analoguous
“where-part”, as it was shown above for SLD-resolution.
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To summarize, SLD-resolution can be simulated by constructor-based
narrowing. The translation has been proven sound for definite programs, but the
possibility to specify also the result “false” for a predicate gives access to a
simulation of the more general “normal programs” (in the sense of [Lloyd 84]).
The next section shows that also SLD-resolution can be used to simulate
constructor-based narrowing. Altogether this means that both mechanisms are
essentially equivalent.

4.5.2. Logic Programming Simulates Narrowing

In this section another close correspondence between narrowing within
constructor-based specifications and logic programming is studied. A technique
is described which simulates the narrowing calculus from above using SLD-
resolution. This can be used to construct a simple implementation of narrowing
for nondeterministic specifications, in the partial constructor-based subcase.

The basic idea is here to translate every non-constructor operation into a
predicate symbol. Nested occurrences of non-constructors are “flattened”, using
auxiliary variables, in order to achieve the syntactical form of definite Horn
clauses. This technique has been studied in several variations. A good overview
using a rather general approach can be found in [Bosco et al. 88]. The first usage
of the technique was, according to this paper, in [Brand 74]. In the framework of
logic programming with equality, the flattening technique has been studied in
[Deransart 83], [Tamaki 84], [Barbuti et al. 85], [van Emden, Yukawa 87}, and
others.

Below the technique is sketched in a variant which is tailored to the particular
subcase which is of interest here.

Definition 4.36 (Flattening)

Given a constructor-based specification T = (£, R), = = (S, F), where
CCEF is the set of constructor operations, the flattened signature ®(Z) is
defined as
O(Z) = (SU{Bool}, CU{D(f) | fEF\C}),
where for [f: s1 x ... s — s]EF:
O(f) = [f: s1 x ... s x s— Bool].
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Terms from W(®(X), X) can be used to construct atoms of a logic
program.
The flattening of a term gives a constructor term together with a
sequence of atoms:

D: WE,X) = WEc, X) x (W(D(Z), x)",

Ox]=(x,e) if x€X,

P[f(t1,....tn)] = (f(c1,..-,cn), B1*...*Bp) if feC,

P[f(t1,...tn)] =(z,f(c1,...cn,2)*B1°...*Bp ) if fERC,
where ( ¢i, Bi ) = ®[tj] i=1,...,n), z&EX a “fresh” variable..
Using these operations, a logic program ®(T) can be derived from the
specification, if all sorts except of Bool are identified with Data, the
predicate and constructor symbols are taken from ®(Z), and every
axiom <—pER is transformed into a program clause ®[1—r] according
to:

®[f(cy,...cn)—>1] = f(c],... cnc) - B>,

where (¢,B ) = ®[r]. 0

Example 4.37

The logic program ®(C_DOUBLE) associated to the constructor-based
version of the “double”-specification (see example 4.14) is:

add(zero x x) :-

add(succ(x),y succ(z1)) :- add(x,y z1)

double(x,z2) :- add(xx,z2)

zero_or_one(zero) :-

zero_or_one(succ(zero)) :-.
The deduction of

double(zero_or_one) — succ(succ(zero))
from example 2.5 can now be transformed into a resolution sequence
within the logic program. We indicate the corresponding lines from
example 2.7 in a separate column on the right side.

:- double(z3,X), zero_or_one(z3)

:- double(succ(zero) , X) )
:- add(succ(zero) succ(zero) ,X) ©)
:- add(zero succ(zero) z3) where [succ(z3)/X] ?3)
:- [] where [succ(succ(zero))/X] @

However, there are also various other deductions admitted by the logic
program. The standard strategy of a Prolog system would lead to:
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:- double(z4,X), zero_or_one(z4)

:- add(z4,24,X), zero_or_one(z4)

:- add(z5,succ(zs),z6), zero_or_one(succ(zs)) where [succ(zg)/X]
:- zero_or_one(succ(zero)) where [succ(succ(zero))/X]

- 0

It is an interesting observation that logic programming can expand the definition
of double first, before expanding the definition of zero_or_one. This effect is due
to the use of auxiliary variables, which lead to “structure sharing”. For instance,
the intermediate goal
:- add(z4,24.X), zero_or_one(z4)

cannot be represented within a term rewriting framework, since it involves a
“sharing” of the result of zero_or_one. See section 5.2 for another aproach to
structure sharing.

The soundness of the translation with respect to the intended semantics is almost
obvious. To show the soundness, we adapt the interpretation of Horn clauses
from logic programming (for instance :- is interpreted as reverse implication).

Theorem 4.38

Given a constructor-based specification T = (Z, R) and a model
AEPMod(T)1, let the interpretation of a predicate symbol ®(f) (for
fEF) be defined by

<I>(f)A (e1,..-,en,€) < €€ fA(el,..., en)
(whereeq, ..., en, € are elements out of the respective carrier sets).
Then the axioms of ®(T) are logically valid within A, ie. A I= ®(R).

Proof:
If the interpretation of a pair (c, B1e...*Bp), as it appears in the
definition of ®, is defined by

Ig‘[(c,Bl-...-Bn)] = (e efg‘ (] llg[Bl] A A Ig‘[Bn] %,

1 PMod(T) denotes the class of models of T which admits partial and strict
functions as interpretations of the functions. For a precise definition of PMod(T)
see chapter 6 below.
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then by induction on the structure of t, for an environment 3 the
following can be shown:

A A
T T@[H] =T,

For an inclusion rule «f(cy,...,cp)—>p in R, and ( ¢, B ) = ®[1], this
means

eE€ I‘g‘[r] se€ Ig[fb[r]] o e€ I'g[c] A Ig‘[B] *)

Since A is a model of T, we have
(Ve:e € Ig[r] =ecE I‘g[f(cl BT ]))

Therefore, using (*)

(Ve:e € I‘g[c] A Ig [Blaeg € Ig‘[ci] =eEfA],...en))

which implies (due to the definition of ®(H)A)
A A
(Ve: Ig [B] = 1[3 [@(f)(c1,... cnOD).

This last line is exactly the semantical meaning of ®[f(c1,...,cn)—1].)

The completeness of the implementation of narrowing by flattened SLD-
resolution can be shown directly in terms of the deductions (as the first
derivation in the example above indicates). Detailed proofs for this can be found
in the literature. The following lemma shows the idea for such a proof, adapted
to the special case studied here.

Lemma 4.39

Under the preconditions of definition 4.36, let t1, 2EW(Z, X),
6ESUBST(Z, X). Let the flattenings of t1 and t2 be given by ®[t1] =
(c1,B1), ®(t2) = (c2, B2).
Then the following implication connects derivations in T and ®(T):
TI-tl -N—gt2 =

V 0€SUBST(Z, X): B1 where o |- B2 where 68’0
where 8°ESUBST(Z, X) such that 8°’cl =c2, 0’ = 0UA, and Dom[A]
contains only the variables introduced during the flattening of t1.
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Proof: See appendix A. O

Lemma 4.39 provides the main argument for the following theorem, which
shows the close correspondence between constructor-based narrowing and SLD-
resolution.

Theorem 4.40

Let T = (2, R) be a constructor-based specification, Q = [t] — 2] a
given query where t2EW(ZC, X).
Every solution c€SUBST(ZC, X), which is computed by algorithm
4.27, is an answer of the logic program

S(THU{ eq(X, X) :- }
(where eq is a predicate symbol not used in ®(T))
to the query

:-eq(cl 2Bl where (c1,B1) = ®[t1].

Proof:
If o is computed by the algorithm, there is a term t2’ such that T I- t1
~N—>¢ t2°, 0 = o and p is a mgu. of T t2 and t2’. Since t2’ must be a
constructor term, ®[t2’] = (t2°, ¢). Using lemma 4.39, in ®(T) exists
the resolution sequence B1 where o |- [] where t’c. This means for
the query from above:
eq(cl,t2)*B1 where |- eq(t’cl,t’t2) wheret’
According to lemma 4.39,t’cl =t2’ and T’t2 =t t2. So we have
eq(cl,t2)sB1 where v
I- eq(t2’t t2) wheret’
- [1 where ut’
(using (RES) on the program clause for eq).
This means that o is an answer substitution. ¢

As an example for an implementation of non-confluent rewriting on top of
Prolog, see the LOG(F) system [Narain 88].

This completes the comparison between algebraic programming in nondeter-
ministic specifications and logic programming. An almost one-to-one
correspondence could be found in the subcase of partial constructor-based
specifications.
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From the logic programming viewpoint, this result can be understood as a way
to subsume an important subcase of nondeterministic specifications. However, it
should be kept in mind that the general case of nondeterministic specifications
(and in particular partial ones, as studied below in chapter 6) provides a richer
language than the simple sublanguage which can be translated to Prolog. For
instance, it admits the definition of a deterministic basis which is different from
a true subsignature, also reductions (equations) between terms of the
deterministic basis are legal in the general case.

From the algebraic specification viewpoint, the result above leads to a simple
implementation of deductions within nondeterministic specifications, for the
above-mentioned sublanguage. The task of computing for a ground term t1 all
ground constructor terms which fulfil T |I=t1 — t2, is accomplished by the
query [t1 — X], where X is a “fresh” variable. However, in the Prolog
implementation it is not easy to take advantage of the situation, where a subpart
of a specification is given using a canonical system of rules. In term rewriting
(and narrowing) implementations, it is easy to normalize intermediate terms and
goals using a canonical subsystem (see lemma 5.10 below). As an alternative,
the techniques described in [Cheong, Fribourg 91] are interesting, where
“simplification” of intermediate goals in logic programming is studied.



Chapter S

Implementation and
Examples

For the practical use of a specification language, algorithmic support is
essential. Software tools can be used for instance to test a given specification
against informal requirements, to generate test data for an implementation, or to
generate (semi-)automatically formal proofs for propositions over a
specification. Below it is shown that existing tools for term rewriting can be
used for experiments with nondeterministic specifications.

5.1 Term Rewriting

Most of the currently available interpreters for algebraic specifications provide an
algorithm which reduces a term to normal form. In the following it is explained,
-~ how such algorithms can be generalized to non-confluent rewriting systems. It
will turn out that there are basically two ways to do so: Using classical term
rewriting with a particular strategy, or using graph rewriting techniques.

The question which has to be answered by a reduction algorithm is, for given
ground terms t1 and t2, whether

Tl=tl — t2.
As it was shown above in section 2.2, a complete deduction system for this task
can be constructed only using semi-formal rules (for instance breadth-induction)
or by a conditional calculus in the sense of [Walicki 92/92]. So we restrict our
attention here to the case where a simple rewriting-like calculus has been shown
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to be sound and complete. This is the case for T |- DET(t2). Together with the
weak completeness result, we are looking for ground terms t2 such that
TI-tl =2 where T |- DET(t2).

The calculus under discussion has been defined in definition 2.4 and is quite
similar to term rewriting, except of one important point (which is necessary to
achieve soundness in the nondeterministic case). The only difference between the
classical term rewriting calculus and the calculus of definition 2.4 comes from
the use of the DET-predicate and the corresponding deduction rules (DET-X,
DET-D, DET-R, AXIOM-1, AXIOM-2). The deduction rules (DET-X), (DET-
D), (DET-R) and (AXIOM-2) serve only for deducing DET-axioms, so the main
difference is in (AXIOM-1), where a rewrite rule can be applied only if for all
terms of the matching substitution determinacy has been proven (using the
.DET-predicate). The classical term rewriting mechanism must be modified in
such a way that it respects this built-in restriction for substituting only
determinate terms.

A first idea for avoiding the “built-in” predicate DET can be found in the
analoguous situation for partial equational specifications (using a DEF-
predicate). [Broy, Pair, Wirsing 84] propose to simulate the DEF-predicate by an
operation with a Boolean result. Unfortunately, this technique cannot be
transferred to inclusion rules and the DET-predicate. For instance, consider the
following axioms:

DET_OP(a) — true, DET_OP(b) — true, f—a, f—b.
In such a framework, with the rules (CONG) and (TRANS) the formula

I- DET_OP(f) — true
can be deduced, which obviously is not always correct.

5.1.1 Innermost Rewriting

A better suited approach for a number of cases is the innermost-strategy for
replacement which is well known from the operational semantics of applicative
programming languages. Innermost-replacement means to apply a rewrite rule to
a term t only, if no axiom can be applied to any subterm of t. [O’Donnell 77]
explains that innermost-rewriting corresponds to a “call-by-value” semantics (cf.
also [Bauer, Wossner 81]). Similarly, innermost-rewriting is appropriate for the
“call-time-choice”-semantics, which is under consideration here. If the
specification T is DET-complete, then for every ground term t the following



IMPLEMENTATION AND EXAMPLES 127

inclusion holds:
No axiom can be applied to any subterm of t | = T I- DET(t).

This means soundness of innermost rewriting with respect to definition 2.4.
This idea is followed now in detail.

In the theory of term rewriting the following notions are known [O’Donnell 77]:

Definition 5.1 (Redex)

Let R be a term rewriting system.
An occurrence uE0cc(t] within a term t is called a redex, iff there exists
an axiom <1 — pER and a substitution cESUBST(Z, X) such that t/u
= ol. A redex u€Occ(t] is called innermost, iff there is no further redex
located in t below u, i.e. iff for all vEN*, vze:

uevEOcc[t] = uev is not a redex in t.
A term rewriting step t1 —R t2 is called innermost, iff an axiom of R
is applied at an innermost redex in tl. The restriction of the term

- . . s im .
rewriting relation to innermost rewriting is denoted by —pR > its

. im* .
transitive closure by R respectively. "

The relationship between innermost rewriting and nondeterministic rewriting

over a deterministic basis can be made more precise (for ground terms) as
follows.

Theorem 5.2

Let T = (Z, R) be a DET-complete specification. Then for all t1, t2 €
W(E):
1 *
tlop' 2 = Thtl—>

Proof:
As it was already mentioned, for every —-terminal term t we have T |-
DET(t). (Because of DET-completeness, there must be a t’ such that T
[-t — t’ and |- DET(t’). Since t is terminal, the only possibility for
this is the case using (REFL), where t =t’.)

1 Such terms have been called terminal wrt. — above in definition 4.17.
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In an innermost rewriting step using the matching substitution o, the
terms ox are terminal. Therefore T |- DET(ox), which fulfils the
additional condition of the deduction rule (AXIOM-1). 0

The following counterexample shows that the reverse direction does not hold:

Example 5.3

spec FDT
sort s
func a:—s, g — s, fs—s
axioms
DET(a), DET(g),
f(g) — a, g—>a
end

The specification FDT is DET-complete and DET-additive. We have

FDT I- f(g) — a,
but there is no innermost term rewriting sequence using the inclusion
rules of FDT such that
im*
f(g) R & 0

The example above shows that additional syntactical restrictions for the
specifications are necessary to ensure not only soundness but also completeness
of innermost term rewriting. A very simple but usable sublass of specifications
is given by the constructor-based specifications, as defined in section 4.1.1. So
the further argumentation in this section only refers to constructor-based
specifications. For C-complete constructor-based specifications, the theorem
above can be sharpened.

Theorem 5.4

Let T = (Z, R) be a C-complete constructor-based specification. Then

for all t], t2 € W(Z):
1 *
Thtl > 2 < t] =,

R t2.
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Proof:
Theorem 4.21 gives the result T |- t1 — t2 « T I-c t] — t2. So we
can restrict our attention to constructor-based deductions (see definition
4.20 for I-Q).
The “=>"-case is a consequence of the syntactic form of the axioms: All
proper subterms of a |-C-redex are automatically constructor terms;
therefore no redices can be contained within them.
The “<="-case follows from theorem 5.2. O

These results can be reformulated immediately in the form of an algorithm. (We
use here an informal notation, which should be self-explaining.)

Algorithm 5.5
Let T = (£, R) be a C-complete specification with constructor basis C.

input: a ground term tEW(X)
output: a ground term t'EW(ZC), such that: TI-ct—t’

funct reduce = (termy t) termy:
if 3 uEOcc[t1]: t/u = f(t],....,tn) A fEC
then termy t]’ =reduce(ty); ...; termy ty’ = reduce(ty);
Choose nondeterministically an axiom <1 = pER
and c€SUBST(Z), such that ol = f(t1’,... tn");
reduce(tfu<—or])
else t

fi 0

~ Here the innermost reduction is realized by the control flow: All subterms of the
given term are normalized (transformed into a constructor form) before the
application of an axiom. The C-completeness guarantees that there always exists
an appropriate axiom at occurrence u. Note that the algorithms works nondeter-
ministically with a non-determinate result. It computes an arbitrary tEW(ZC)
such that the condition I-C t = t’ is fulfilled. For many cases, it will be a more
realistic implementation to compute the set of all appropriate t’. (Then it is easy
to determine whether a given t’ occurs within this set.) The algorithm reduce is
correct (i.e. all the possible results t’ fulfil I-c t — t’) and complete (i.e. for
each t’ such that I- t — t’ there exists a possible computation of reduce(t) with



130 IMPLEMENTATION AND EXAMPLES

result t’). The correctness and completeness with respect to the semantical
concepts of chapter 2 follows from the theorems 5.4, 2.6 and 2.15.

If considered as an algorithm for the computation of a result set, reduce is a
terminating algorithm only, if the given axiom set generates a terminating term
rewriting relation. For a non-terminating axiom set reduce can be considered as a
semi-algorithm, which tries to generate the correct (infinite) result set. Such an
enumeration obviously cannot terminate. (For implementation questions in this
context see section 5.1.2 below.)

Given a terminating rewriting relation, reduce is a true (terminating) algorithm.
In this case for any ground term t there exist only finitely many ' EW(ZC) such
that |- t — t’. As a consequence, then the —-relation for arbitrary ground terms
t1 and t2 is decidable, by a comparison of the (finite) sets of constructor normal
forms:

Algorithm 5.6

Let T = (X, R) be a C-complete specification with constructor base C
where the corresponding rewrite relation is terminating.

input: Two ground terms t1, t2 EW(X)
output: Boolean value, indicating whether T |- t1 — 2

funct decide_— = (termy tl, termy t2)bool:
V termyz t’: t’ € Results(reduce(t2))

= t’ € Results(reduce(t1)) O

The correctness and completeness of algorithm 5.6 relies on the theorems 2.19
and 5.4.

In the general case of possibly nonterminating rewriting sequences (see example
2.20), a breadth-induction proof can be necessary, in order to answer the question
whether t1—t2 holds (even for ground terms tl1, t2).

In the following two subsections, two essential issues will be adressed, in which
an implementation for nonconfluent rewriting differs from usual implementation
techniques for term rewriting. It turns out that the new problems are basically
the same as they appear in an implementation of narrowing.
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5.1.2 Search Strategies

The main difference between a classical interpreter for term rewriting systems
and algorithm 5.5 comes from the fact that within a nondeterministic
specification all admissible results are of interest, using arbitrary (nondeterminis-
tic) choices during the evaluation. For confluent rewriting, it is sufficient to
study an arbitrary evaluation, since the final result here is independent of any
actual choices during evaluation.

Example 5.7

The following reductions refer to the specification NAT from example 1.12
(which is made constructor-based by defining C={zero,succ}). We try to reduce
the term add(some ,some).

add(some,some)

add(zero,some) add(succ(some) some)

add(zero,zero) add(zero,succ(some)) see seeees

\j

Zero add(zero,succ(zero)) add(‘sze))

succ(zero)

0

If a classical term rewriting interpreter (for confluent axiom sets) was applied to
this example, it would deliver only one result. Whether this result is “zero” or
" “succf(zero)” (for an arbitrary n) or even nontermination (that is no result,
actually), depends on the chosen evaluation strategy. An interpreter for
nondeterministic specifications, however, should enumerate all the possible
results (even if this is a nonterminating enumeration). Therefore the interpreter
needs a tree-like organisation of rewriting sequences, as in the figure above; the
corresponding tree search is similar to an interpreter for Prolog. In order to cope
with nonterminating enumerations, a facility is needed to stop the interpreter
after a finite number of results.
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The example moreover demonstrates that an implementation of the tree search
by backtracking (depth-first search) like in Prolog is not always appropriate. If
the axioms are applied in a “strange” order, a depth-first search may follow an
infinite path, without ever reaching one of the results. For such cases a breadth-
first search seems to be more promising. A “breadth-first”-interpreter is
guaranteed to deliver every result after a finite amount of time (nevertheless it
may go into a nonterminating computation). For efficiency reasons, in many
cases a “depth-first”-organisation will be preferred, maybe with a preset limit on
the depth. This means that the user should have a choice between alternative
search strategies. Another interesting approach is to use an appropriate multi-
processor architecture for the evaluation of independent rewriting sequences in
parallel. (First attempts in this direction have been described for instance in
[Pinegger 87], similar ideas are followed in [Dershowitz, Lindenstrauss 90].)

It is clear that the nondeterministic rewriting algorithm is basically of
exponential complexity. Therefore those optimizations are particularly useful
which help to reduce the search space.

5.1.3 Optimizations

An essential step towards a smaller search space is achieved already by a special
innermost strategy. If the alternatives of one step are restricted to one singular
redex, for instance the leftmost one (leftmost-innermost), then the search space
from example 5.7 can be reduced to the following:

add(some,some)

— T

add(zero,some) add(succ(some),some)

— v

e Y s e
)

Please note that at every redex still the full range of applicable axioms is
considered. In this example, there exist two alternative axioms for every redex
(in comparison to 2*(number of redices) alternatives above). Again a similarity
to Prolog’s SLD-resolution technique can be observed here: The selection of one
single clause from a goal is analoguous to the technique described here.
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The optimization preserves correctness and completeness of the algorithm (since
the replacements for various innermost redices can be considered independently).

Another important optimization refers to confluence. It should be ensured that an
interpreter for nondeterministic specifications works well in the special case of
confluent axioms. In this case it should achieve roughly the same efficiency as a
classical interpreter. Unfortunately, the situation is more complicated, since the
interpreter has to handle mixed forms of confluent and non-confluent rewriting.
An extreme example is the following variant of the specification NAT:

Example 5.8

Let the axioms of a specification (intended for natural numbers) be:

add(zero x) = x, add(x ,zero)—x,
add(succ(x),y) — succ(add(x,y)), add(x,succ(y)) — succ(add(x.y)),
Zero_or_one —> Zero, zero_or_one —> succ(zero) .

A tree of possible innermost rewritings then is given by:

add(zero_or_one succ(zero))
add(zero succ(zero)) add(succ(zero) ,succ(zero))

succ(zero) succ(add(zero zero)) succ(add(zero,succ(zero))) ves

)

succ(zero) succ(zero)

0

In this example, almost the full search effort goes into the inspection of
' superfluous paths, which are all equivalent to one out of two single paths. It
should be sufficient to investigate these two paths. This idea goes into the
direction of a remark in [O’Donnell 85] where an implementation of term
rewriting is described (which does not yet support nondeterminism): “The ideal
facility would allow equational definitions with multiple normal forms, but
recognise special cases where uniqueness is guaranteed.” (p. 135)

The obvious idea for the example above is to normalize the terms occuring in
the tree with the subset of axioms which is terminating and confluent. In the
example, the rules for the operation add can be used for normalization:
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add(zero_or_one,succ(zero))

add(zero succ(zero)) add(succ(zero),succ(zero))
succ(zero) succ(add(zero,succ(zero)))
succ(succ(zero))

For the correctness of this optimization it is quite important that only those
terms are normalized which contain deterministic operations only.

The correctness of such an optimization is obvious, as long as the principle of
innermost rewriting is kept. For a proof of completeness, it has to be shown
that the subset of axioms used for normalization cooperates with the rest of the
axioms. More precisely: Let DCR be a set of “deterministic” axioms, which
shall be used for normalization, and therefore are terminating and confluent.
Normalization induces an equivalence relation on ground terms:

t=pt’ <def the D-normal forms of t and t’ are equal.

Then we have to show the following “sub-commutativity property” :

tl>pp 2 A taptl = 320t >pii 2’ A 2D 2.

The lemma below shows that this property holds under appropriate
preconditions. We use here the following notion of an innermost-normal form:

Definition 5.9 (Innermost Normal Form)

- im* L
Let D be a term rewriting system such that —p s terminating and
confluent.

The innermost-normal form ,Lgn[t] of a term tEW(Z) is defined
inductively by:
. bp [tu—or]] ifFuE0cc[t) d—>nED,
Ip [t=def oESUBST(Z):t/u=0l

t otherwise.
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Lemma 5.10

Let T = (£, R) be a constructor-based specification, DCR a subset of
the axioms such that the following conditions are satisfied:

im* N
—p s terminating and confluent.

* D is non-overlapping with R\D, i.e. there does not exist any term
t such that dp—rp>E€D, <—nER, cESUBST(ZC) and olp =t
=ol.

In this case, for t1, 2 € W(Z):
| »im p
H~rp ¥ =

ERVR ¢g“[t1] —»};’“\D 2 A plel=ip el
Proof: See appendix A. ¢

This lemma shows that the efficiency of confluent rewriting is not lost, when
nonconfluent reduction is allowed. In order to designate a well-suited subset D,
the following facts are to be observed:

* 1m ¥
. . . m® . . .
* —’D 1s terminating = —>D 1s terminating

* 1m*
. im* .
* —p is confluent = —p is confluent

Therefore, termination can be tested with one of the usual methods (see
' [Dershowitz 87]). The confluence of D-innermost-term rewriting does not follow
directly from the confluence of D, but the classical method from [Knuth, Bendix
70] can be easily adapted to this case. (The critical pairs just have to computed
with respect to innermost rewriting.)

Example 5.8 demonstrates that there is an important gain of efficiency by
normalization if there are overlaps of the left hand sides of axioms within D. But
even if this not is the case, and the number of terms is not reduced, the
normalization optimization can still improve the efficieny. Since it is more
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expensive to represent a branching node (“choice point”) of the proof tree on a
real machine, memory space and time (for copying terms) can be saved.

5.2 Graph Rewriting

This section gives a discussion of a concept which is useful for the
implementation of term rewriting in general, but in particular for non-confluent
rewriting. The basic idea for this concept has been studied already in [Astesiano,
Costa 79] for the semantics of nondeterministic processes (“Sharing in
Nondeterminism™), but it can be generalized to arbitrary term rewriting systems.
Term rewriting is performed here on terms which explicitly share some
subterms. The term structure is enriched by information recording which pairs of
equal subterms are identical. In [Hesselink 88], the combinator-like notation of
terms (“accumulated arrows”) leads to a similar effect.

From a completely independent aspect, term rewriting with sharing has been
studied as an efficient implementation technique for (confluent) term rewriting.
Starting from techniques for the implementation of the lambda-calculus
(Wadsworth 1971), various approaches have been developed by Staples (1980),
Raoult (1984), Barendregt et al. (1987), Hofmann and Plump (1988). In
[Corbin, Bidoit 83], it is recommended to represent terms by DAGs (directed
acyclic graphs), to achieve a simple and efficient implementation of unification
and substitution algorithms on terms. In many implementations of term
rewriting (among them RAP [Hussmann 85/87]) these ideas have been used
successfully.

Unfortunately, the exact description of rewriting on graph-like structures leads to
a significant technical overhead, if compared with term rewriting. Below, we
reproduce some of the most important notions from [Barendregt et al. 87] and
demonstrate the particularities of non-confluent rewriting in this context. In
order to use the terminology of [Barendregt et al. 87] with only slight
adaptations, the following arguments only apply to the case which is studied
there. Therefore we assume here tha axioms to be left-linear and not to contain
“extra variables” (which occur in the right hand side of a axiom, but not in the
left hand side). The results can be generalized to remove these restrictions; but
this generalization is not covered here.
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5.2.1 Representation of Terms by Graphs

The following definition is almost literally taken from [Barendregt et al. 87].
Definition 5.11 (Graph)

Let 2 = (S, F) be a signature, X = (Xg)se§ a sorted set of variable
names.
A (labelled directed) graph (over %) is a triple
G = (N, lab, arg),
where N is set of nodes, lab: N — FUX is the labelling function, and
arg: N — N* is the argument (or successor) function. The i-th
component of arg(n) is denoted by arg(n);.
Th graph G is called well-sorted, iff there is a function sort: N — S
such that for all nEN:
lab(n) = x A xEXg
= sort(n) =s,
lab(n) =f A [fis] x...xsk =>Ss]EF
=> sort(n) =s A sort(arg(n)j) =s;i
(for all i€{1,... k} , i.e. larg(n)l = k).
For two nodes n, n’€N the node n’ is said to be reachable from n, iff
either n’ = n or there is a n’’€EN, such that arg(n); = n’’ and n’ is
reachable from n’’.
The graph G is called acyclic iff every node is reachable from itself only
through the trivial case in this definition.
A rooted graph is a quadruple G’ = (N, lab, arg, root), where rootEN
and all nodes in N are reachable from root.
The subgraph of G at a node nEN is defined as the graph Gin = (Np,
labp, argp) with node set N ={m&N | m is reachable from n}, labp =
labINy, and argp = argINp O

For the purposes of term representation, we use rooted directed acyclic graphs
(DAGs). It is obvious that a term is a subcase of such graphs. However, it is
important to use only representations which share variable occurrences.
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Definition 5.12 (Graph Representation of Terms)

Given a term tEW(Z, X), a directed acyclic graph GR[t] = (N, lab, arg,
root) representing t can be constructed as follows (where n<jpdex> is
used as a name for a unique object out of some basic set of nodes).
N = { ny | uEO0cc[t] A Vug&X } U {nx | xEVars[t] };
lab: N — FUX such that
xEX = lab(ny) = x,
t/u = f(t1,... ty) = lab(ny) =T;
arg: N — N* such that
xEX => arg(ng) = ¢,
t/u = f(ty,....tx) = larg(ny)l =k A arg(ny)j = nyej for

ie{l,... k};

root = ng € N.
Please note that for any variable x, there is only a single node in N
labelled with x, which is called ny. ¢

Example 5.13

The graphical notation for a graph is in most cases easier to understand
and conceive than the formal notation from above.

The term add(x,x) is represented by the graph depicted at (add)
the right margin. Please note that the variable x is

shared. The upper node is called ng in the formalism (X)
above, the lower one is called ny.

The graph at the right represents the

term add(zero_or_one, zero_or_one). (Ladd)
Please note that the arguments of add
are not shared here. The upper node is
called ng in the formalism above, the

€ero_or_one) (zero_or_ong

lower ones are called n(1, and n(p,,

respectively O

The following definition adds semantic interpretation to the notions of
[Barendregt et al. 87]. The basic idea is here that every node of the graph is
assigned to a single value (by a so-called valuation function). The nondeter-
ministic breadth of interpretations is given by the range of such valuation
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functions for the graph. This is needed to achieve a sensible interpretation of
graphs which share other subterms than just variables.

Definition 5.14

Given a model AEMod(T) and an environment BEENV(X, A), the
interpretation IS[G] of a (rooted directed acyclic) graph G = (N, lab, arg,

root) is defined by
IS[G] = { val(root) | valGVALg[G] }

where VAL‘?[G] denotes the set of admitted valuation functions. To be

precise, it is a family of sets of functions, indexed by a sort. Again the
sort is omitted for better readability.

A —_—
VALGIG) =

{val: N — sA |
VneEN: (lab(n) = x A xEX = val(n) = fx) A
(labn)=fAafisyx...xsk—>s]EF=
val(n) € fA(val(arg(n)l), ..., val(arg(n)k)) }.
The well-definedness follows from the fact that G is acyclic.

It is obvious that I?[GR[t]] = Ig[t]. O

5.2.2 Rewriting of Term Graphs

The definition of a graph replacement rule again is mainly taken from
[Barendregt et al. 87] (with correction of a minor error). Additionally, a formal
translation of inclusion (or term rewrite) rules into graph rewrite rules is given.

Definition 5.15

A graph rewrite rule (over %) is a triple (G, root[, rootR) where G is a
graph and rooty, and rootR are nodes of G such that every node of G
is reachable from either root, or rootR.

Given an inclusion rule <1 = > over Z and X, a graph rewrite rule
GR[« = n] = (G, root]_, rootR) is defined by:
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G = (N, lab, arg),
N = { Iy [ u€O0cc[l] A Vug&X } U { ry | uEOcc[l] A riuéEX }
U {nx | xEVars[l]UVars|r] };
lab: N — FUX such that
xEX = lab(ny) =X,
lu = f(t],....tx) = lab(ly) =1,
r/lu =f(t],...,tx) => lab(ry) =f;
arg: N — N* in analogy to definition 5.12;
root], = lg € N; rootR = r¢€EN.

The application of a graph rewrite rule (G, root[ ,, rootR) to some target
graph Gg = (N, labg, argQ, rootq) is defined as follows.
A redex for the rule in Gg is a graph homomorphism ¢: Glroot], —
Gy, i.e. a function ¢: N — Np, such that for all nEN, which are
reachable from rooty, holds: lab(n)&X => labg(¢(n)) = lab(n) and
argo(¢(n)) = ¢*(arg(n)), where ¢* is the elementwise extension of ¢ to
sequences of nodes.
Given such a redex, the application of the rule proceeds in three phases:
(i) build phase: We assume that nodes and variables of G and G( are
disjoint. Then the right hand side of G is added to Gq, instantiating
variables according to ¢. This gives a new graph G| = (N1, laby, argq,
root]), formally:
N1 =
No U {n€N | n reachable from rootR and not from rooty },
labg(m) ifmEN
laby(m) = lab?r(n)) otherwi(s)e’, for n€Ny;
argo(m)j ifmENg,
arg](m)j = {arg(m)i ifm,arg(m);{€ENNN1,
d(arg(m);) ifmENNN{,arg(m)iENNNT,
root] = rootg.
The root for the instantiated right hand side is now nEN1, where
_ ¢(rootRr) ifrootRreachablefromrooty,
'™ Lrootr otherwise.
(ii) redirection phase: All references to ¢(rooty ) are replaced by
references to np. This gives a new graph G2 = (N2, labp, argp),
formally:
N2 =Nj,
labp(m) =lab1(m),
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o Jnp ifarg](m)ij=¢(root ),
arga(m)j = {argl(m)i otherwise,

Sy ifroot1=¢(rootL ),
rootz = {rootl otherwise.

(iii) garbage collection phase: Nodes which are not accessible from
root) are removed. Formally this gives a graph G3 = Gplroot).

A graph rewriting step is denoted by Gg —-GR G3. 0
Example 5.16

In this example, the rule

add(zero, x) = x _
is applied to the graph Gg, which contains a shared G
occurrence of the function symbol zero.

The rule is represented by the graph G.

.. . . . G t
This is a special case, since the right hand @ rooty,
side does not contain any non-variable

nodes.
Zero e root R

The result of the pattern matching of G onto G is represented by the
graph homomorphism ¢:

Gy G

m - — .rootL
L)
@ - - rootR
-
-

~
S

The graph G1 does not differ much from the Gl (add )
original graph Gy, since there is no node added.

However, the nodes ¢(root] ) and ny indicate the .
nodes to be raplaced. O

d(root;)


file:///rootj
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After the replacement, ny becomes the root of

the graph G2 (which does not differ from G in Gs
other respects). After garbage collection, G3

contains one single node.

Using the algebra NN from example 1.15, where the interpretation of
the function symbols is: zeroNN = {0, 1}, addNN(el, e2) = {el+e2},
we have the following interpretations for the graphs:

NN[Go) = INN[G1]={0,2},

INN[G] = INN[G3] =0, 1}, 0

Soundness and Completeness

Example 5.16 shows clearly that the standard graph rewriting techniques are not

sound in the general case for nondeterministic interpretations. This is due to the

non-injective mapping ¢, which does not ensure that all the rule nodes which are
mapped onto a single target node, are always interpreted equally.

Again, the restriction to constructor-based specifications helps to overcome the

problem. In this case all the nodes mapped by ¢ are interpreted deterministically

(except of the root), and therefore graph rewriting is sound for this subcase. The

following theorem formulates soundness of graph rewriting in this sense.

Theorem 5.17

Proof:

Let T = (X, R) be a constructor-based specification, where all axioms
are left-linear and where in each axiom the variables in the right hand
side form a subset of the variables in the left hand side.

Let Gq be a rooted acyclic graph over Z. Let G3 be a graph constructed
out of G using the graph representation GR[<I — r>] of a rule d —
pER, according to definition 5.15.

Given a model A and an environment {3, we have

v val3EVAng[G3]: 3 val()EVALS[Go]: valg(rootp) = valz(root3).

The proof is technically rather complex. In appendix A, a sketch is
given which covers the essential arguments. 0
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Please remember that the restrictions which were put onto the form of the
axioms are only due to the use of the framework of [Barendregt et al 87]; they
can be removed by extending this framework.

In [Barendregt et al. 87], it is shown moreover that also the completeness of
graph rewriting with respect to term rewriting is not obvious. In general, there
are term rewriting sequences which cannot be simulated by graph rewriting. This
is illustrated by the following example.

Example 5.18 (Example 5.4 from [Barendregt et al. 87])

spec CGR

sort s

func a: —s, b: — s, c.—s,
f:sxs—>s, g:s—>s

axioms
f(a,b) — c, a—b, b—a,

g(x) — f(x x)
end

There is a term rewriting sequence

g(a) — f(a,a) — f(a,b) = ¢;
but there is no graph rewriting sequence starting from any graph
representation of g(a) and leading to a graph representation of c. The
reason is that the first rule (f(a,b) — c) can never be applied, due to the
sharing of the subterms instantiated for x. ¢

This counterexample has close similarities to the running example of this text
(using the “double” operation). In fact, we can construct a model which shows
that classical term rewriting is unsound for this example, under nondeterministic
interpretations. This means that it is no longer a counterexample in the
framework of this text.

Example 5.19

A nondeterministic model C for the specification CGR from example
5.18 is given by:

sC = {al,a2,c},

aC=bC={al,a2}, C={c},
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fCal,al)={al}, Cal,a2)={c}, fCal,c)={c},
fC@2,al)={c}, 1Ca2,22) = {22 }, fCa2,c)={c},
fCc,al)={c}, fCc,a2)={c}, Cc,c)={c},

gCan={al}, gC@)={a2}, gfc)={c}.

Within the model C, the inclusion <g(a) — ¢> does not hold:
IClg(a)] = { al,a2 },IC[c] = {c }. 0

This demonstrates that the counterexample cannot be carried over to the
nondeterministic case. Even better, under the preconditions of the above
soundness result, also completeness holds with respect to constructor-based term
rewriting. In order to state this result formally, the notion of “unravelling”
([Barendregt et al. 87]) a graph into a term is needed.

Definition 5.20

Let G = (N, lab, arg, root) be an acyclic and finite graph over a
signature = and variable names X.
The operation TM constructs a term TM[G]EW(Z, X) out of G,
according to the following definition:
lab(root)EX = TM[G] = x,
where lab(root) = x;
lab(root)&X = TMI[G] = f(TM[G1],.... TM[Gp)),
where lab(root) = f, [f: s{ x ... x sh = s] EF,
G;j = Glarg(root); for i€{1,...,n}. ¢

Theorem 5.21

Let T = (Z, R) be a constructor-based specification, where all axioms
are left-linear and where in each axiom the variables in the right hand
side form a subset of the variables in the left hand side.

Then for any two terms t1, t2EW(Z, X) holds:

Tlctl =12 =
*

3 graph G2: GR[t1] —5p G2 A TMIG2] = 2,

where graph replacement refers to the rules {GR[ — p] | 1 — pER}.
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Proof:

The proof mainly relies on the fact that the graph representation GR[t1]
and subsequent rewriting steps always produce graphs in which all
shared subgraphs are irreducible (with respect to graph rewriting). This
is formalized by the following two predicates.
Let G = (N, lab, arg), nEN. Then
is_shared([n] <>def

I nl,n2€N, 1, jE N: nl=n2 A arg(nl)j=n= arg(n2);,
wilG] <def

V n, n’EN: is_shared[n] A n’ reachable from n =

lab(n’)ECUX.

Using the predicate wf, the following lemma can be shown for an
arbitrary acyclic and finite graph G1 over £ and X:

wi[G1] A TM[Gl] =tl Al-Cctl = 2 =

*
3 G2: wilG2) A TM[G2] =2 A Gl —=p G2.

The theorem then follows from the simple facts that wf[GR[t1]] and
TMIGR[t1]] =tl.
In the appendix A, a sketch for the proof of the lemma is given. ¢

To summarize, we have shown that an implementation by graph rewriting is
sound for constructor-based specifications, and that it is able to reproduce all the
derivations which are admitted in constructor-based rewriting. It should be
mentioned that graph rewriting does even admit a greater number of sound
derivations than constructor-based rewriting or the innermost strategy for
classical term rewriting (see section 5.1). Since graph rewriting is sound for
constructor-based nondeterministic specifications (theorem 5.17), an arbitrary
redex selection strategy can be used. An outermost replacement sequence
corresponding to example 1.12 is, for instance, the following one. Please note
that this reduction sequence is not deducible using constructor-based rewriting.

oubie

i

(zero_or_one)
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—GR ﬁ using the rule: double(x) — add(x x)

ZEro_or_one

—GR using the rule: zero_or_one — succ(zero)
—>GR using the rule: add(succ(x),y) — succ(add(x,y))
—GR using the rule: add(zero x) — x.

An implementation of terms by directed acyclic graphs admits another
optimization. If a subterm is changed (for instance by normalization), these
changes may concern simultaneously many copies of the subterm. This
behaviour is similar to the D-evaluation rule invented by Vuillemin (see [Bauer,
Wossner 81]). Efficient implementations of graph reduction techniques are
described for instance in [Johnsson 84].

It is also interesting to compare the implementation by graph rewriting with an
implementation based on logic programming, as it was used for instance for
example 4.37 above or in the LOG(F) system ([Narain 88]). Using the technique
of translation to logic programs, a form of subterm sharing is present “for free”,
by Prolog’s built-in variable sharing. This is the reason, why the logic
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programming and graph rewriting approach both show more flexibility in the
reduction strategy than constructor-based rewriting.

To summarize, existing software tools can be used to perform deductions within
nondeterministic algebraic specifications, if
i only constructor-based specifications are studied, and
. the implementation admits either
* innermost term rewriting and a constructor-completeness test, or
¢ representation of terms by graphs with variable-sharing.

The system RAP [Hussmann 85/87], although designed independently of the
nondeterministic framework, fulfils the requirements from above (since it uses a
graph representation for terms), so it can be used for computer experiments based
on nondeterministic specifications.

5.3 Examples

This section shows the application of nondeterministic specifications to a few
typical examples. The examples are taken from different areas of computer
science; in order to keep the length of the examples within a reasonable size,
only the basic ideas are sketched here. The first two examples are from
theoretical computer science, then two classical examples for nondeterministic
algorithms are given, and finally it is sketched how nondeterminism can be used
to specify abstractly some concrete sequences of events within an operating
system.

5.3.1 Nondeterministic Finite State Automata

Automata theory frequently uses nondeterministic machine models. The
following example shows that this classical nondeterministic framework can be
specified easily by algebraic methods.

In the following, a nondeterministic finite automaton is considered, which
appears during the systematic construction of an algorithm for string pattern
matching (cf. also [Knuth, Morris, Pratt 77]). The idea is here, to follow
nondeterministically (“simultaneously”) all possible patterns during the read
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process. The following simple automaton comes out of the task of checking
whether one of the patterns <OL> or <LO»> appears within a sequence of binary
digits ({O,L}*):

L,O

LO

The symbol € here denotes a so-called “spontaneous” transition. Please note that
the automaton is constructed easily from the pattern matching task: For every
pattern, a sequence of states and transitions is built, and from every state a
spontaneous ret<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>