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ENCAPSULATION OF CONDUCTING POLYMERS WITHIN ZEOLITES 

Patricia Enzel and Thomas Bein* 
Department of Chemistry, University of New Mexico 
Albuquerque, NM 87131, USA 

INTRODUCTION 
A great dcal of current research efforts are aimed at the design and understanding of conducting and 

semiconducting structures at sub-micrometer dimensions. The term 'molecular electronics' describes the 
ultimate reduction of electronic circuitry to the molecular level.1 Beyond the development of concepts,2 a major 
challenge in this area is to create isolated, addressable molecular units that function as useful electronic 
components. We study the encapsulation of conducting polymers within the crystalline Channel Systems of 
zeolite hosts as a promising approach to isolated, well-defined chains of molecular conductors. The molecular-
size Channels of these hosts limit the dimensions of the polymer chains to molecular dimensions. The 
conducting polymers polypyrrole and polythiophene have previously been studied in larger scale host structures 
such as layered FeOCl and V 2 O 5 . 3 Polypyrrole fibrils with diameters between 0.03 and 1 Jim at 10 Jim length 
have been synthesized in Nucleopore membranes.4 

Zeolites are open-framcwork aluminosilicates with pore sizes between 0.3 and 1.2 nm, and 
exchangeable cations compensating for the negative Charge of the framework.5«6 Zeolite Y, mordenite (MOR) 
and zeolite A were used in this study (Figure 1). Zeolite Y is composed of interconnected "sodalite" cages, and 
mordenite featurcs a twelve-ring Channel System. Both structures have an open pore size of about 0.7 nm. The 
structure of zeolite A is based upon sodalite cages interconnected via double four-rings, with pore-openings of 
about 0.4 nm. 

Figure 1. Zeolite structures. Three-dimensional Channel Systems of zeolite A (A), zeolite Y (B), and the 
pseudo one-dimensional Channel System of mordenite (C). 
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Table 1. Composition of zeolite/polymer samples. 
Samples Anilinea 

PAN1 
Pyrrole5 
PPy 

Thiophene, 3MTha 
PTh, P3MTh 

Na56Y 
H46Nai0Y 
Na8MOR 
HgMOR 
Na56Y-Vc 
NasöY-H* 
Fei2Na32Y-Vc 
Cui5Na26Y-Vc 
Cui5Na26Y-Hd 
NagMOR-Vc 
NagMOR-H0 
Fe3Na2MOR-Vc 
Cu2.5Na3MOR-Vc 
Cu2.5Na3MOR-Hd 
CugNa8oA-Vc 

43/uc, orange15 
31/uc, deep blue 
5/uc, light orange1 
3/uc, blue 

41/uc, white 
7/uc, white 
39/uc, dark turquoise 
50/uc, dark blue 
6.5/uc, dark blue 
2/uc, white 
1/uc, white 
1/uc, turquoise 
0.8/uc, blue-grey 
0.5/uc, blue 
0.3/uc, light blue 

37 and 31/uc, white 
white 
29 and 25/uc, dark turquoise 
35 and 32/uc, dark blue 
5.4 and 5.7, dark blue 
2 and 2/uc, white 
white 
1 and 1/uc, grcy-grecn 
1.5 and 1/uc, blue-grey 
blue 
0.2/uc, light blue 

a- Monomer loadings and color of the resultant products; uc = zeolite unit cell. The loading lcvcls were 
dctermined gravimetrically (vapor loadings) or spectroscopically (Solution experimcnts). 
b- Unknown oxidation products, no polymer was detected. 
c- Vapor phase loadings; samples were saturated with monomer vapor at 295 K. 
d- Hexane Solution loadings, adjusted to achieve approximately Optimum reaction stoichiometries. 

We reccntly succeded in forming intrazeolite polyaniline (PANI)7*8, polypyrrole (PPy)9, polythiophene 
(PTh) and poly(3-memylthiophene) (P3MTh)10 by oxidative polymerization inside the cavities of diffcrent 
zeolitcs, as demonstrated by vibrational, ESR, and electronic absorption data. It was obscrved that the 
dimensionality and pore sizc of the host determine the polymerization ratcs and intrazeolite products. This 
communication compares the above zeolite/polymer Systems and discusscs evidence for polymerization inside 
the host Channel structures. 
EXPERIMENTAL 

Zeolite host materials werederived from the sodiumand ammonium forms of zeolite Y(LZ-Y52,LZ-Y62; 
Alfa), Na-mordcnite (MOR; LZ-M5; Union Carbide), and zeolite A (Alfa 5A). The ammonium form of MOR 
was obtained by refluxing Na-MOR two timcs in exccss of 0.1 M NH4CI for 12 h. Cu(II) and Fc(II) ions wcrc 
introduced into the zcolites via ion exchange with 0.1 M Cu(N03)2 and 0.1 M FeS04, rcspectivcly. All 
zeolitcs were dcgassed in an oxygen strcam followed by evacuation (620 K, 10'^ Torr). This treatmcnt gcneratcs 
the acidic forms in the case of ammonium zcolites, and oxidizes the Fc(II) zcolites to Fc(III) zcolites, 
rcspectively. The resulting zeolite cation contents per unit cell are NasßY, H46NaifjY, Cui5Na26Y, 
Fei2Na32Y, NagMOR, HgMOR, Cu2.5Na3MOR, Fe3Na2MOR, and CugNagoA. Intrazeolite PANI was 
synthesized in the acidic zeolite forms by analogy with the chemical polymerization of anilinc in acidic 
S o l u t i o n . 1 1 Aniline was loadcd into the degassed zeolitcs from hexane Solut ion (Table 1) and subsequenüy 
reacted with an aqueous Solution of (NH4)2S208 at a ratio of 4:1 intrazeolite aniIinc:oxidant. Intrazeolite Cu(II) 
and Fc(III) ions served as oxidants for the oxidative polymerization reaction of pyrrole12 and thiophencs.13 
Pyrrole, thiophene and 3-mcthylthiophenc monomers were loadcd into the dcgassed zcolites from cither the 
vapor phase in small quartz reactors, or from zeolite suspensions in watcr and hexane (Table 1). Bulk polymers 
were synthesized aecording 10 publishcd procedures.1 LI2»13 
RESULTS AND DISCUSSION 

The monomer-loadcd zeolite samples display dramatic color changes from white 10 diffcrent hucs of 
blue and green when (a) anilinc in different acidic zeolite forms is treated with the oxidant, or when (b) pyrrole or 
thiophene monomers are admilted into Cu(U)/Fc(ni)-containing zeolitcs Y or MOR from the vapor phase or 
from hexane (or other hydrocarbon) Solutions (Table 1). These color changes correspond to thosc obscrved in 
bulk synthesis rcactions.11"13 No reaction is obscrved with the zeolite sodium forms, indicating that the 
polymerizauons proeeed only in the prcscncc of intrazeolite protons and/or appropriatc oxidants. No polymer 
formation is detected in zeolite Cu(II)A (pore size 0.4 nm, smallcr than pyrrole or thiophene). This is 
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1800 1600 1400 1200 

Wavenumber 
Figure 2. FTIR speclra of zcolites, conducting polymers, and zeolite/polymer adduets (KBr pcllcis, 4 

cm'1 resolution). Nas6Y (A), H46Nai0Y/PANI (B), PANI (C), Fei2Na32Y-V/PPy (D), PPy 
(E), Cui5Na26Y-V/P3MTh (F), P3MTh (G). For sample names, sce Table 1. 
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consistent with the inability of the monomers to diffuse into the zeolite cavities where the majority of the 
oxidant ions are locatcd. In contrast to trends observed in bulk synthesis reactions, polar solvents such as water 
do not favor the intrazeolite polymerization of pyrrole and thiophenes, probably because the intrazeolite metal 
ions are screened by the polar solvent molecules. Based upon the small surface capacity of the zeolite crystals 
relative to the total pore volume (ca. 0.2 monomer molecules per unit cell of zeolite Y, for 1 |im crystals), and 
the high monomer uptake (Table 1), it is evident that most of the monomer molecules will reside in the pore 
System of the zeolite host. Hence, it can be concluded that most of the polymer is also formed inside the 
zeolitcs. Ii should be noted that in the zeolite/PPy and PTh Systems derived from vapor phase-saturated zeolites, 
the excess of monomer vs. oxidant ions will prevent 100% conversion to the polymer. However, since the 
monomers have no visible absorption and much smaller absorption coefficients in the IR than the polymers, no 
spectroscopic intcrference is expected. No deposition of polymer on the surface of the zeolite crystals was 
detected in scanning electron micrographs, while zeolite samples deliberately coated with polymer showed 
distinet bulk polymer featurcs. 

Intrazeolite polymers show mid-IR bands similar to those typical for the bulk polymers PANI14, 
PPy15, and P3MTh16, and a charactcristic tail of the electronic excitation corresponding to free carrier absorption 
(Figure 2). Certain shifts are observed between IR frequencies of the bulk polymers and the zeolite/polymer 
adduets, suggesting some interaction of the polymer chains with the host. The intrazeolite polymers could be 
recovered by dissolution of the zeolite host with HF. IR spectra of the recovered products are comparable to 
those of ehernically synthesized bulk materials. 

The electronic absorption spectra of the zeolite/polymer samples (Figure 3) show absorption bands that 
are related to diffcrent electronic transitions in the bulk polymers. The zeolite/PANI samples display a weak 
band at 560 nm (2.2 cV) associated with quinone diiminc structures of polymer at high oxidation levels. 
Shoulders at 400 nm (3.1 eV) and the broad featurcs in the red (<1.8 eV) are associated with radical cations 
supporting polarons as Charge carriers.17 The electronic spectra of intrazeolite polypyrrole are influenced by the 
nature of the zeolite host. The spectrum of sample Fei2Na32Y-V/PPy (Figure 3E) shows a Shoulder at ca. 450 
nm (2.7 eV) and at energies lower than 650 nm (1.9 eV). The red absorption of zeolite Y samples is gcnerally 
stronger than that in mordenite. In addition, sample Fe3Na2MOR-V/PPy shows a feature between 520 and 700 
nm (ca. 2 eV, Figure 3D). Absorption maxima at 2.3 and 0.7 eV have been observed with electrochemically 
formed, highly doped polypyrrole; the higher energy band shifted to lower values at lower oxidation levels.18 
Thus, we assign the bands at 2.7, 2.0 eV and that in the near infrared to bipolaron absorptions typical for PPy at 
diffcrent oxidation levels, and conclude that the oxidation level of PPy in zeolite Y is high, while in MOR 
probably a bimodal distribution of PPy at high and intermediate oxidation levels is present. Intrazeolite PTh 
and P3MTh show bands at 450 nm (2.8 eV), 600 nm (2 eV) and absorption extending into the near infrared (< 
1.7 eV, Figure 3F). Transitions at about 2.5 eV have been associated with interband excitations of neutral 
P3MTh19 which deercase in intensity with progressive oxidation. The additional bands at 2 eV and in the 
red/near IR are assigned to bipolaron transitions typical of intermediate oxidation levels (in bulk P3MTh: 1.6 
and 0.6 eV). It would not be unexpected if the decouplcd intrazeolite polymer chains had a different electronic 
strueture (and band positions) than the corresponding bulk material. Additional bands, obscrved for some of the 
zeolite/polymer samples, can be attributed to diffcrent chain-lengths and/or oxidation levels of the constrained 
polymers in the zcolites Channels. 

ESR data of the intrazeolite PANI show the presence of ca. 0.0025 Curie-type spins per anilinc loadcd 
(comparable to bulk spin densities if the lower polymer content in the zeolites is considered), with g-values 
(g=2.0034) similar to bulk polymers .20 ESR spectra of intrazeolite PPy confirm the low spin count expected 
for bipolaron formation and g-values (2.0027) charactcristic of polypyrrole.21 Large linewidths in both cases 
(8-10 G) could indicate strong dipolar interactions with the zeolite host. 

No bulk conduetivity is observed in pressed wafers of the zeolite/polymer samples (detection limit: 
10"8 S/cm). However, pressed pellcts of zeolite samples deliberately coated with a thin film of polymer show 
conduetivities of about 10"^ S/cm, compared to 1-10 S/cm for bulk polymers. The products recovered after 
dissolution of the zeolite/polymer adduets in HF have conduetivities at the order of 0.001 S/cm. These 
observaüons indicate that the polymers do not coat the zeolite crystals and that the intrazeolite polymer chains 
are probably decouplcd from each other. 

The location of the polymer phase is further illustrated by the polymerization rates in the zeolite hosts 
which are Orders of magnitude slower than in bulk ehernical Solution syntheses (no reaction in A, MOR < Y « 
Solution). The oxidant and/or the monomers have to diffuse into the Channels of the zeolites in order to reach 
the intrazeolite reaction partners. These diffusion and pore volume limitations would not have been observed if 
the polymers had only formed on the crystal surfaces. 
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CONCLUSION 
We have demonstrated that oxidative polymerization reactions leading to conducting polymers can be 

carried out within the Channel Systems of zeolites. Acidic zeolite forms are required to synthesize intrazeolite 
polyaniline by analogy to the oxidative coupling of aniline in acidic Solutions. The presence of intrazeolite 
oxidants such as Cu(II) and Fe(III) ions is fundamental for the polymerization of pyrrole, thiophene and 3-
methylthiophene. The degree of polymer chain oxidation and probably the chain lengths are influenced by the 
dimensionality of the zeolite Channels. 
This is the first approach towards the encapsulation and stabilization of molecular wires in well-defined hosts of 
molecular dimensions. 
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