Lower-Dimensional Systems and Molecular Electronics

Edited by

Robert M. Metzger

The University of Alabama Tuscaloosa, Alabama

Peter Day

Institut Laue-Langevin Grenoble, France

and

George C. Papavassiliou

National Hellenic Research Foundation Athens, Greece

Plenum Press New York and London Published in cooperation with NATO Scientific Affairs Division

CONTENTS

PLENARY LECTURES: CHARGE-TRANSFER COMPOUNDS

DESIGN CONSTRAINTS FOR C	ORGANIC METALS	AND SUPERCONDUCTORS1
D. O. Cowan, J. A. Fortkort,	and R. M. Metzger	

STRUCTURAL PROPERTIES OF MOLECULAR CHARGE-TRANSFER CONDUCTORS AND SEMICONDUCTORS FROM INFRARED AND RAMAN SPECTROSCOPY
PLENARY LECTURES: ION-RADICAL SALTS AND SUPERCONDUCTORS
REVIEW OF THE RADICAL-ION SALTS
FRONTIERS OF ORGANIC SUPERCONDUCTORS
RECENT DEVELOPMENTS IN ORGANIC SUPERCONDUCTORS
 STRUCTURE-PROPERTY RELATIONSHIPS AS AN AID IN THE RATIONAL DESIGN OF β-(ET)₂X ORGANIC SUPERCONDUCTORS

TRANSPORT PROPERTIES OF SINGLE CRYSTALS AND POLYCRYSTALLINE PRESSED SAMPLES OF (BEDT-TTF) ₂ X SALTS AND RELATED COORDINATION POLYMERS	•
SUPERCONDUCTIVITY IN MOLECULAR AND OXIDE LATTICES: A COMPARISON	

	•	
AND AND	ICAL STUDIES OF THE INTERPLAY BETWEEN ELECTRON-LATTICE DELECTRON-ELECTRON INTERACTIONS IN ORGANIC CONDUCTORS D SUPERCONDUCTORS R. Bozio, M. Meneghetti, D. Pedron and C. Pecile	.129

DESIGN AND SYNTHESIS C	OF POLYHETEROTETRAHETERA	FULVALENES.
	ES, AND THEIR LOW-DIMENSIO	
CONDUCTING AND SUPER	RCONDUCTING SALTS	
G. C. Papavassiliou		

COMMUNICATIONS: ION-RADICAL CONDUCTORS

135 K CRYSTALLOGRAPHIC AND ELECTRONIC STRUCTURE OF (TMTTF) ₂ SbF ₆ 163 T. Granier, B. Gallois, A. Fritsch, L. Ducasse, and C. Coulon
ELECTRON PARAMAGNETIC RESONANCE OF ORGANIC CONDUCTORS
(BEDT-TTF) ₂ X
ORGANIC METALS FROM CHIRAL BEDT-TTF DONORS
NEW CONDUCTING SOLIDS BASED ON SOME SYMMETRICAL AND UNSYMMETRICAL π-DONORS
TTF-DERIVATIVE RADICAL CATION SALTS WITH PLANAR TETRACYANOMETALLATE DIANIONS AND LARGE ACCEPTOR POLYMETALLATES
and P. Delhaès
NEW SYNTHETIC METAL PRECURSORS: SUBSTITUTED TETRATHIOTETRACENE AND RELATED COMPOUNDS
SPECTROSCOPIC INVESTIGATION OF (2,5-DM-DCQNI) ₂ M MATERIALS IN BULK AND THIN FILM FORMS
THE SERIES OF ORGANIC CONDUCTORS: (PERYLENE) _x [M(mnt) ₂]205 V. Gama, R. T. Henriques, and M. Almeida
TRANSPORT AND MAGNETIC PROPERTIES OF (PERYLENE) ₂ Au(i-mnt) ₂ 211 M. J. Matos, R. T. Henriques, and L. Alcácer
THE METALLOPORPHYRINS OF GROUP III _B AS PRECURSORS IN LOW-DIMENSIONAL MOLECULAR SOLIDS
COMMUNICATIONS: ORGANIC SUPERCONDUCTORS
CRYSTAL STRUCTURES AND PHYSICAL PROPERTIES OF DMET
SUPERCONDUCTORS
RADICAL CATION SALTS OF BEDT-TTF WITH METAL-THIOCYANATO
ANIONS
MAGNETOTRANSPORT IN (BEDT-TTF) ₂ Cu(NCS) ₂ : SHUBNIKOV-DE HAAS EFFECT AND UPPER CRITICAL FIELD
RAMAN INVESTIGATIONS ON SINGLE CRYSTALS AND POLYCRYSTALLINE PRESSED SAMPLES OF ORGANIC SUPERCONDUCTORS 239 R. Zamboni, D. Schweitzer, and H. J. Keller

CALORIMETRIC STUDIES OF THE QUANTIZED MAGNETIC ORDERING IN THE ORGANIC METAL (TMTSF) ₂ ClO ₄
NONLINEAR ELECTRICAL TRANSPORT EFFECTS IN THE SPIN-DENSITY WAVE STATE OF THE ORGANIC CONDUCTORS (TMTSF) ₂ X251 S. Tomić
TWO NEW PHASES OF $(ET)_2I_3$ (β_d ' AND λ_d)
COMMUNICATIONS: INORGANIC LOWER-DIMENSIONAL SYSTEMS
ONE-DIMENSIONAL LINEAR-CHAIN COMPLEXES OF PLATINUM, PALLADIUM, AND NICKEL
POLARONS AND SOLITONS IN HALOGEN-BRIDGED PLATINUM COMPLEXES271 S. Kurita
SLIDING CHARGE-DENSITY WAVES IN INORGANIC CRYSTALS
SYNTHESIS, STRUCTURAL CHARACTERIZATION, AND CONDUCTIVITY OF THE FIRST LARGE ORGANIC ELECTRON INTERCALATES OF GRAPHITE285 T. E. Sutto and B. A. Averill
SYNTHESIS, STRUCTURAL CHARACTERIZATION AND SUPERCONDUCTIVITY IN NOVEL NEUTRAL ORGANIC INTERCALATES OF TaS ₂ AND TiS ₂
PLENARY LECTURES: CONDUCTING POLYMERS
RECENT PROGRESS IN CONDUCTING POLYMERS: CAN WE EXPECT POLYMERS WITH CONDUCTIVITY GREATER THAN COPPER AND STRENGTH GREATER THAN STEEL?
THE POLYANILINES: RECENT ADVANCES IN CHEMISTRY AND PROCESSING303 A. G. MacDiarmid and A. J. Epstein
ELECTRICAL, OPTICAL AND MAGNETIC PROPERTIES OF POLYANILINE PROCESSED FROM SULFURIC ACID AND IN SOLUTION IN SULFURIC ACID 317 Y. Cao, P. Smith, and A. J. Heeger
POLYANILINE: NEW PHYSICS IN AN OLD POLYMER
VIBRATIONAL MOLECULAR SPECTROSCOPY OF CONDUCTING POLYMERS: A GUIDED TOUR
COMMUNICATIONS: CONDUCTING POLYMERS

CONDUCTING POLYMERS FROM 3, 4-CYCLOALKYLTHIOPHENES
ORIENTATION OF STRETCHED POLY(3-OCTYLTHIOPHENE) FILMS: VISIBLE AND INFRARED DICHROISM STUDIES
VIBRATIONAL PROPERTIES OF CONDUCTING POLYMERS WITH AROMATIC OR HETEROAROMATIC RINGS
STRUCTURAL INVESTIGATION AND ELECTRICAL PROPERTIES OF POLY(P-PHENYLENE) PREPARED IN TWO DIFFERENT WAYS
RAMAN CROSS-SECTIONS OF HIGHLY ORIENTED CIS POLYACETYLENE 387 G. Lanzani, A. Piaggi, A. Borghesi, and G. Dellepiane
CHARACTERISATION OF POLY(P-PHENYLENE VINYLENE) [PPV] PREPARED BY DIFFERENT PRECURSOR ROUTES
ELECTROCHEMICAL DOPING PROCESSES OF CONDUCTING POLYMERS STUDIED WITH IN SITU FTIR SPECTROSCOPY
EVOLUTION OF ELECTRIC PERMITTIVITIES OF pTS AND pFBS DIACETYLENES DURING SOLID-STATE POLYMERIZATION
STRUCTURAL CHARACTERIZATION OF THIOPHENE-BASED MONOMERS, POLYMERS, AND OLIGOMERS, AS POWDERS, THICK AND THIN FILMS 411 A. Bolognesi, M. Catellani, S. Destri, W. Porzio, C. Taliani, R. Zamboni, and S. Brückner
TRANSIENT PHOTOCONDUCTIVITY IN ORIENTED CONJUGATED POLYMERS415 J. Reichenbach, H. Bleier, Y. Q. Shen, and S. Roth
ENCAPSULATION OF CONDUCTING POLYMERS WITHIN ZEOLITES
LOW-DIMENSIONAL ELECTRICALLY CONDUCTIVE SYSTEMS. INTERCALATED POLYMERS IN V ₂ O ₅ XEROGELS
GAMMA IRRADIATION OF POLY(PYRROLE)-COATED Pt ELECTRODES: THE EFFECT ON THE ELECTROCHEMICAL BEHAVIOR
COMMUNICATIONS: THEORY
BEYOND THE HUBBARD MODEL: SCREENED INTERACTIONS IN 1 D 441 A. Painelli and A. Girlando
THEORETICAL CHARACTERIZATION OF THE ELECTRONIC STRUCTURE OF POLY(HETEROAROMATIC VINYLENES)

THEORETICAL DESIGN OF ORGANIC METALS BASED ON THE		
PHTHALOCYANINE MACROCYCLE		
E. Ortí, M. C. Piqueras, and R. Crespo		
ELECTRICALLY CONDUCTIVE PHTHALOCYANINE ASSEMBLIES.		
STRUCTURAL AND NON-INTEGER OXIDATION NUMBER CONSIDERATIONS 461		
F. Torrens, E. Ortí, and J. Sánchez-Marín		
VALENCE-BOND TREATMENT OF 3/4-FILLED DIMERIZED CHAINS -		
EXTENDED HUBBARD RESULTS		
A. Fritsch and L. Ducasse		
PLENARY LECTURES: LANGMUIR-BLODGETT FILMS		
POSSIBLE NICHES FOR LANGMUIR BLODGETT FILMS		
G. G. Roberts		
INVESTIGATIONS OF THE MICROSTRUCTURE OF LIPID INTERFACE FILMS 491 M. Lösche		
MI. LOSCHE		
CHARGE-TRANSFER CONDUCTING LANGMUIR-BLODGETT FILMS		
M. Vandevyver		
SOLID-STATE MOLECULAR ENGINEERING IN LANGMUIR-BLODGETT FILMS511		
A. Ruaudel-Teixier		
COMMUNICATIONS, LANCHUR DI ODCETT EU MC		
COMMUNICATIONS: LANGMUIR-BLODGETT FILMS		
DEVELOPMENT OF NOVEL CONDUCTIVE LANGMUIR-BLODGETT FILMS:		
METALLIC PROPERTIES AND PHOTOCHEMICAL SWITCHING PHENOMENA 519		
T. Nakamura, H. Tachibana, M. Matsumoto, M. Tanaka, and		
Y. Kawabata		
THE QUEST FOR HIGHLY CONDUCTING L-B FILMS		
K. Lerstrup, J. Larsen, P. Frederiksen, and K. Bechgaard		
LANGMUIR-BLODGETT FILMS FROM DONOR-ACCEPTOR SUBSTITUTED		
POLYENES		
S. Hagen, H. Schier, S. Roth, and M. Hanack		
LANGMUIR-BLODGETT FILMS OF A PYRROLE AND FERROCENE MIXED		
SURFACTANT SYSTEM		
L. Samuelson, A. K. M. Rahman, S. Clough, S. Tripathy,		
P. D. Hale, T. Inagaki, T. A. Skotheim, and Y. Okamoto		
MEASUREMENT TECHNIQUES IN PYROELECTRIC LANGMUIR-BLODGETT		
M. W. Poulter, R. Colbrook, and G. G. Roberts		
EFFECT OF LIGHT INTENSITY AND TEMPERATURE ON THE PHOTOVOLTAIC		
PARAMETERS OF CHLOROPHYLL b LANGMUIR-BLODGETT FILMS		
A. Désormeaux and R. M. Leblanc		
PLENARY LECTURES: NON-LINEAR OPTICS		
PHOTONICS AND NON-LINEAR OPTICS - MATERIALS AND DEVICES		
P. N. Prasad		
LANGMUIR-BLODGETT FILMS FOR NON-LINEAR OPTICS		

ALL-OPTICAL SWITCHING USING OPTICAL FIBERS AND NON-LINEAR ORGANIC LIQUIDS
OPTICAL STUDIES OF AMPHIPHILIC MOLECULES WITH INTERESTING ELECTRO-OPTICAL AND NON-LINEAR OPTICAL PROPERTIES
COMMUNICATION: NON-LINEAR OPTICS
THE USE OF THE SURFACE PLASMON RESONANCE TECHNIQUE IN NON-LINEAR OPTICS
PLENARY LECTURE: MOLECULAR DEVICES
REVIEW OF THE ORGANIC RECTIFIER PROJECT: LANGMUIR-BLODGETT FILMS OF DONOR-SIGMA-ACCEPTOR MOLECULES
COMMUNICATIONS: MOLECULAR DEVICES
SOLID-STATE MICROELECTROCHEMICAL DEVICES: TRANSISTOR AND DIODE DEVICES EMPLOYING A SOLID POLYMER ELECTROLYTE
POLYMER FIELD-EFFECT TRANSISTORS FOR TRANSPORT PROPERTY STUDIES
MOLECULAR LINES
MULTIFREQUENCY PHOTOCHROMIC MEMORY MATERIALS
FUNCTIONALIZED CONDUCTING POLYMERS TOWARD MOLECULAR DEVICES
PROSPECTS FOR TRULY UNIMOLECULAR DEVICES
PARTICIPANTS
AUTHOR INDEX
SUBJECT INDEX

ENCAPSULATION OF CONDUCTING POLYMERS WITHIN ZEOLITES

Patricia Enzel and Thomas Bein*

Department of Chemistry, University of New Mexico Albuquerque, NM 87131, USA

INTRODUCTION

A great deal of current research efforts are aimed at the design and understanding of conducting and semiconducting structures at sub-micrometer dimensions. The term 'molecular electronics' describes the ultimate reduction of electronic circuitry to the molecular level.¹ Beyond the development of concepts,² a major challenge in this area is to create isolated, addressable molecular units that function as useful electronic components. We study the *encapsulation of conducting polymers within the crystalline channel systems of zeolite hosts* as a promising approach to isolated, well-defined chains of molecular conductors. The molecular-size channels of these hosts limit the dimensions of the polymer chains to molecular dimensions. The conducting polypyrrole and polythiophene have previously been studied in larger scale host structures such as layered FeOCl and V₂O₅.³ Polypyrrole fibrils with diameters between 0.03 and 1 µm at 10 µm length have been synthesized in Nucleopore membranes.⁴

Zeolites are open-framework aluminosilicates with pore sizes between 0.3 and 1.2 nm, and exchangeable cations compensating for the negative charge of the framework.^{5,6} Zeolite Y, mordenite (MOR) and zeolite A were used in this study (Figure 1). Zeolite Y is composed of interconnected "sodalite" cages, and mordenite features a twelve-ring channel system. Both structures have an open pore size of about 0.7 nm. The structure of zeolite A is based upon sodalite cages interconnected via double four-rings, with pore-openings of about 0.4 nm.

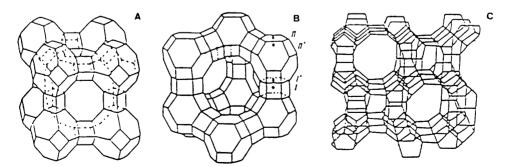


Figure 1. Zeolite structures. Three-dimensional channel systems of zeolite A (A), zeolite Y (B), and the pseudo one-dimensional channel system of mordenite (C).

Table 1. Composition of zeolite/polymer samples.			
Samples	Aniline ^a PANI	Рупоle ^a РРу	Thiophene, 3MTh ^a PTh, P3MTh
Na56Y H46Na10Y Na8MOR H8MOR Na56Y-V ^c Na56Y-H ^d Fe12Na32Y-V ^c Cu15Na26Y-V ^c Cu15Na26Y-H ^d Na8MOR-V ^c Na8MOR-H ^d Fe3Na2MOR-V ^c Cu2.5Na3MOR-V ^c Cu2.5Na3MOR-V ^c Cu2.5Na3MOR-H ^d Cu8Na80A-V ^c	43/uc, orange ^b 31/uc, deep blue 5/uc, light orange ^b 3/uc, blue	41/uc, white 7/uc, white 39/uc, dark turquoise 50/uc, dark blue 6.5/uc, dark blue 2/uc, white 1/uc, white 1/uc, turquoise 0.8/uc, blue-grey 0.5/uc, blue 0.3/uc, light blue	37 and 31/uc, white white 29 and 25/uc, dark turquoise 35 and 32/uc, dark blue 5.4 and 5.7, dark blue 2 and 2/uc, white white 1 and 1/uc, grey-green 1.5 and 1/uc, blue-grey blue 0.2/uc, light blue

a- Monomer loadings and color of the resultant products; uc = zeolite unit cell. The loading levels were determined gravimetrically (vapor loadings) or spectroscopically (solution experiments).

b- Unknown oxidation products, no polymer was detected.

c- Vapor phase loadings; samples were saturated with monomer vapor at 295 K.

d- Hexane solution loadings, adjusted to achieve approximately optimum reaction stoichiometries.

We recently succeded in forming intrazeolite polyaniline (PANI)^{7,8}, polypyrrole (PPy)⁹, polythiophene (PTh) and poly(3-methylthiophene) (P3MTh)¹⁰ by oxidative polymerization inside the cavities of different zcolites, as demonstrated by vibrational, ESR, and electronic absorption data. It was observed that the dimensionality and pore size of the host determine the polymerization rates and intrazeolite products. This communication compares the above zeolite/polymer systems and discusses evidence for polymerization inside the host channel structures.

EXPERIMENTAL

Zeolite host materials were derived from the sodium and ammonium forms of zeolite Y(LZ-Y52,LZ-Y62; Alfa), Na-mordenite (MOR; LZ-M5; Union Carbide), and zeolite A (Alfa 5A). The ammonium form of MOR was obtained by refluxing Na-MOR two times in excess of 0.1 M NH4Cl for 12 h. Cu(II) and Fc(II) ions were introduced into the zeolites via ion exchange with 0.1 M Cu(NO₃)₂ and 0.1 M FeSO₄, respectively. All zeolites were degassed in an oxygen stream followed by evacuation (620 K, 10⁻⁵ Torr). This treatment generates the acidic forms in the case of ammonium zeolites, and oxidizes the Fe(II) zeolites to Fe(III) zeolites, respectively. The resulting zeolite cation contents per unit cell are Na₅6Y, H₄6Na₁0Y, Cu₁5Na₂6Y, Fe₁2Na₃2Y, Na₈MOR, H₈MOR, Cu₂5Na₃MOR, Fe₃Na₂MOR, and Cu₈Na₈0A. Intrazeolite PANI was synthesized in the acidic zeolite forms by analogy with the chemical polymerization of aniline in acidic solution.¹¹ Aniline was loaded into the degassed zeolites from hexane solution (Table 1) and subsequently reacted with an aqueous solution of (NH₄)₂S₂O₈ at a ratio of 4:1 intrazeolite aniline:oxidant. Intrazeolite Cu(II) and Fe(III) ions served as oxidants for the oxidative polymerization reaction of pyrrole¹² and thiophenes.¹³ Pyrrole, thiophene and 3-methylthiophene monomers were loaded into the degassed zeolites from either the vapor phase in small quartz reactors, or from zeolite suspensions in water and hexane (Table 1). Bulk polymers were synthesized according to published procedures.^{11,1,2,13}

RESULTS AND DISCUSSION

The monomer-loaded zeolite samples display dramatic color changes from white to different hues of blue and green when (a) aniline in different acidic zeolite forms is treated with the oxidant, or when (b) pyrrole or thiophene monomers are admitted into Cu(II)/Fe(III)-containing zeolites Y or MOR from the vapor phase or from hexane (or other hydrocarbon) solutions (Table 1). These color changes correspond to those observed in bulk synthesis reactions.¹¹⁻¹³ No reaction is observed with the zeolite sodium forms, indicating that the polymerizations proceed only in the presence of intrazeolite protons and/or appropriate oxidants. No polymer formation is detected in zeolite Cu(II)A (pore size 0.4 nm, smaller than pyrrole or thiophene). This is

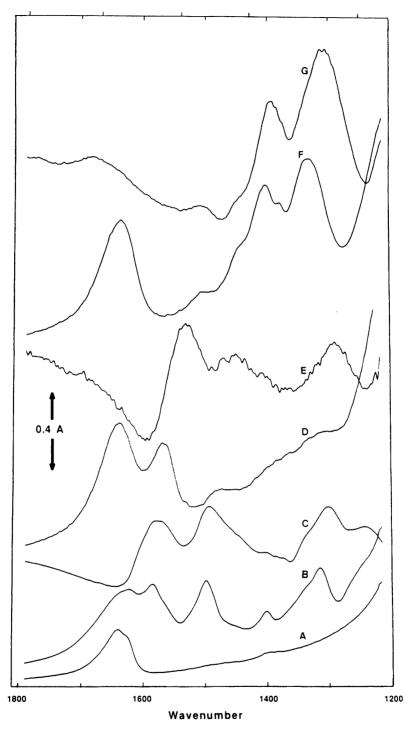


Figure 2. FTIR spectra of zeolites, conducting polymers, and zeolite/polymer adducts (KBr pellets, 4 cm⁻¹ resolution). Na₅₆Y (A), H₄₆Na₁₀Y/PANI (B), PANI (C), Fe₁₂Na₃₂Y-V/PPy (D), PPy (E), Cu₁₅Na₂₆Y-V/P3MTh (F), P3MTh (G). For sample names, see Table 1.

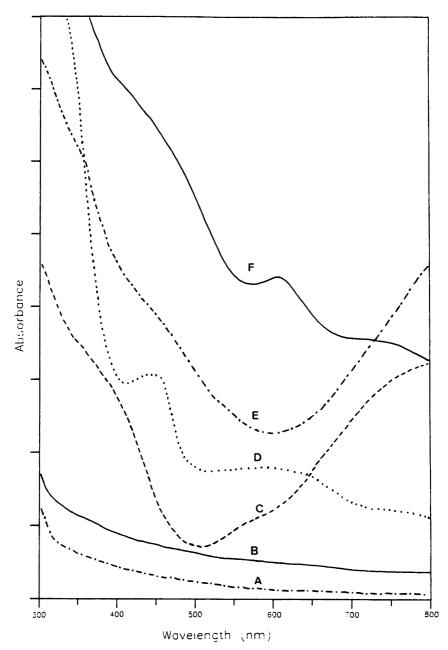


Figure 3. Electronic absorption spectra (samples dispersed in glycerol) of zeolites and zeolite/polymer adducts. Na₈MOR (A), Na₅₆Y (B), H₄₆Na₁₀Y/PANI (C), Fe₃Na₂MOR-V/PPy (D), Fe₁₂Na₃₂Y-V/PPy (E), Cu₁₅Na₂₆Y-V/P3MTh (F). For sample names, see Table 1.

consistent with the inability of the monomers to diffuse into the zeolite cavities where the majority of the oxidant ions are located. In contrast to trends observed in bulk synthesis reactions, polar solvents such as water do not favor the intrazeolite polymerization of pyrrole and thiophenes, probably because the intrazeolite metal ions are screened by the polar solvent molecules. Based upon the small surface capacity of the zeolite crystals relative to the total pore volume (ca. 0.2 monomer molecules per unit cell of zeolite Y, for 1 μ m crystals), and the high monomer uptake (Table 1), it is evident that most of the monomer molecules will reside in the pore system of the zeolite heat. Hence, it can be concluded that most of the polymer is also formed inside the zeolites. It should be noted that in the zeolite/PPy and PTh systems derived from vapor phase-saturated zeolites, the excess of monomer vs. oxidant ions will prevent 100% conversion to the polymer. However, since the monomers have no visible absorption and much smaller absorption coefficients in the IR than the polymers, no spectroscopic interference is expected. No deposition of polymer on the surface of the zeolite crystals was detected in scanning electron micrographs, while zeolite samples deliberately coated with polymer showed distinct bulk polymer features.

Intrazeolite polymers show mid-IR bands similar to those typical for the bulk polymers PANI¹⁴, PPy¹⁵, and P3MTh¹⁶, and a characteristic tail of the electronic excitation corresponding to free carrier absorption (Figure 2). Certain shifts are observed between IR frequencies of the bulk polymers and the zeolite/polymer adducts, suggesting some interaction of the polymer chains with the host. The intrazeolite polymers could be recovered by dissolution of the zeolite host with HF. IR spectra of the recovered products are comparable to those of chemically synthesized bulk materials.

The electronic absorption spectra of the zcolite/polymer samples (Figure 3) show absorption bands that are related to different electronic transitions in the bulk polymers. The zeolite/PANI samples display a weak band at 560 nm (2.2 eV) associated with quinone diimine structures of polymer at high oxidation levels. Shoulders at 400 nm (3.1 eV) and the broad features in the red (<1.8 eV) are associated with radical cations supporting *polarons* as charge carriers.¹⁷ The electronic spectra of intrazcolite polypyrrole are influenced by the nature of the zeolite host. The spectrum of sample Fe₁₂Na₃₂Y-V/PPy (Figure 3E) shows a shoulder at ca. 450 nm (2.7 eV) and at energies lower than 650 nm (1.9 eV). The red absorption of zeolite Y samples is generally stronger than that in mordenite. In addition, sample Fe₃Na₂MOR-V/PPy shows a feature between 520 and 700 nm (ca. 2 eV, Figure 3D). Absorption maxima at 2.3 and 0.7 eV have been observed with electrochemically formed, highly doped polypyrrole; the higher energy band shifted to lower values at lower oxidation levels.¹⁸ Thus, we assign the bands at 2.7, 2.0 eV and that in the near infrared to bipolaron absorptions typical for PPy at different oxidation levels, and conclude that the oxidation level of PPy in zeolite Y is high, while in MOR probably a bimodal distribution of PPy at high and intermediate oxidation levels is present. Intrazeolite PTh and P3MTh show bands at 450 nm (2.8 eV), 600 nm (2 eV) and absorption extending into the near infrared (< 1.7 cV, Figure 3F). Transitions at about 2.5 cV have been associated with interband excitations of neutral P3MTh¹⁹ which decrease in intensity with progressive oxidation. The additional bands at 2 eV and in the red/near IR are assigned to bipolaron transitions typical of intermediate oxidation levels (in bulk P3MTh: 1.6 and 0.6 eV). It would not be unexpected if the decoupled intrazeolite polymer chains had a different electronic structure (and band positions) than the corresponding bulk material. Additional bands, observed for some of the zcolitc/polymer samples, can be attributed to different chain-lengths and/or oxidation levels of the constrained polymers in the zeolites channels.

ESR data of the intrazeolite PANI show the presence of ca. 0.0025 Curie-type spins per aniline loaded (comparable to bulk spin densities if the lower polymer content in the zeolites is considered), with g-values (g=2.0034) similar to bulk polymers.²⁰ ESR spectra of intrazeolite PPy confirm the low spin count expected for bipolaron formation and g-values (2.0027) characteristic of polypyrrole.²¹ Large linewidths in both cases (8-10 G) could indicate strong dipolar interactions with the zeolite host.

No bulk conductivity is observed in pressed wafers of the zeolite/polymer samples (detection limit: 10^{-8} S/cm). However, pressed pellets of zeolite samples deliberately coated with a thin film of polymer show conductivities of about 10^{-6} S/cm, compared to 1-10 S/cm for bulk polymers. The products recovered after dissolution of the zeolite/polymer adducts in HF have conductivities at the order of 0.001 S/cm. These observations indicate that the polymers do not coat the zeolite crystals and that the intrazeolite polymer chains are probably decoupled from each other.

The location of the polymer phase is further illustrated by the polymerization rates in the zeolite hosts which are orders of magnitude slower than in bulk chemical solution syntheses (no reaction in A, MOR < Y << solution). The oxidant and/or the monomers have to diffuse into the channels of the zeolites in order to reach the intrazeolite reaction partners. These diffusion and pore volume limitations would not have been observed if the polymers had only formed on the crystal surfaces.

CONCLUSION

We have demonstrated that oxidative polymerization reactions leading to conducting polymers can be carried out within the channel systems of zeolites. Acidic zeolite forms are required to synthesize intrazeolite polyaniline by analogy to the oxidative coupling of aniline in acidic solutions. The presence of intrazeolite oxidants such as Cu(II) and Fe(III) ions is fundamental for the polymerization of pyrrole, thiophene and 3-methylthiophene. The degree of polymer chain oxidation and probably the chain lengths are influenced by the dimensionality of the zeolite channels.

This is the first approach towards the encapsulation and stabilization of *molecular wires* in well-defined hosts of molecular dimensions.

ACKNOWLEDGMENT

Instrumentation used in this work was acquired with funding from the National Science Foundation. We thank L. Zuppiroli and F. Beuneu (Ecole Polytechnique, Palaiseau) for the ESR studies.

REFERENCES

- 1 F. L. Carter, Ed. Molecular Electronic Devices II, Marcel Dekker, New York, 1987.
- 2 J. J. Hopfield, J. N. Onuchic, B. N. Beratan, Science 1988, 241, 817.
- 3 (a) M. G. Kanatzidis, L. M. Tonge, T. J. Marks, H. O. Marcy and C. R. Kannewurf, J. Am. Chem. Soc. 1987, 109, 3797. (b) M. G. Kanatzidis, M. Hubbard, L. M. Tonge, T. J. Marks, H. O. Marcy and C. R. Kannewurf, Synth. Met., 1989, 28, C89. (c) M. G. Kanatzidis, C.-G. Wu, C. R. Kannewurf and H. O. Marcy, Paper INOR134 presented at the 197th ACS National Meeting, Dallas, April 1989.
- 4 (a) R. M. Penner, C. R. Martin, J. Electrochem. Soc., 1986, 133, 2206. (b) Z. Cai, C. R. Martin, J.Am. Chem. Soc., in press.
- 5 D. W. Breck, Zeolite Molecular Sieves, R. E. Krieger, Malabar, Fl, 1984.
- 6 R. Szostak, Molecular Sieves. Principles of Synthesis and Identification, Van Nostrand Reinhold, New York, 1989.
- 7 T. Bein and P. Enzel, Synth. Met., 1989, 29, E163.
- 8 P. Enzel and T. Bein, J. Phys. Chem., to be published.
- 9 T. Bein and P. Enzel, J. Am. Chem. Soc., submitted.
- 10 P. Enzel and T. Bein, J. Chem. Soc., Chem. Comm., to be published.
- 11 A. G. MacDiarmid, J. C. Chiang, A. F. Richter, N. L. D. Somasiri, and A. J. Epstein, in Conducting Polymers, L. Alcácer, Ed., Reidel Publications, Dordrecht, The Netherlands, 1986, 105.
- (a) R. E. Myers, J. Electron. Mat., 1986, 15, 61.
 (b) S. P. Armes, Synth. Met., 1987, 20, 365.
 (c) S. Rapi, V. Bocchi and G. P. Gardini, Synth. Met. 1988, 24, 217.
- (a) N. Mermilliod-Thevenin and G. Bidan, Mol. Cryst. Liq. Cryst., 1985, 118, 227. (b) M. B. Inoue, E. F. Velazquez and M. Inoue, Synth. Met., 1988, 24, 223.
- (a) L. W. Shacklette, J. F. Wolf, S. Gould, and R. H. Baughman, J. Chem. Phys. 1988, 88, 3955. (b)
 N. S. Sariciftci, M. Bartonek, H. Kuzmany, H. Neugebauer, and A. Neckel, Synth. Met., 1989, 29, E193. (c) Y. Furukawa, F. Ueda, Y. Hyodo, I. Harada, T. Nakajima, and T. Kawagoe, Macromolecules, 1988, 21, 1297.
- 15 (a) K. G. Neoh, T. C. Tau, and E. T. Kang, *Polymer*, 1988, **29**, 553. (b) M. Zagorska, A. Pron, S. Lefrant, Z. Kucharski, J. Suwalski and P. Bernier, *Synth. Met.*, 1987, **18**, 43.
- 16 (a) J. E. Osterholm, P. Sunila and T. Hjertberg, Synth. Met., 1987, 18, 169. (b) H. Neugebauer, G. Nauer, A. Neckel, G. Tourillon, F. Garnier and P. Lang, J. Phys. Chem., 1984, 88, 652.
- 17 (a) A. J. Epstein, and A. G. MacDiarmid, *Mol. Cryst. Liq. Cryst.* 1988, 160, 165. (b) S. H. Glarum and J. H. Marshall, *J. Phys. Chem.*, 1988, 92, 4210.
- 18 J. H. Kaufman, N. Colaneri, J. C. Scott, K. K. Kanazawa and G. B. Street, Mol. Cryst. Liq. Cryst. 1985, 118, 171.
- 19 (a) G. Dian, G. Barbey and B. Decroix, Synth. Met., 1986, 13, 281. (b) N. Colaneri, M. Nowak, D. Spiegel, S. Hotta and A. J. Heeger, Phys. Rev. B, 1987, 36, 7964.
- 20 H. H. S. Javadi, R. Laversanne, A. J. Epstein, R. K. Kohli, E. M. Scherr and A. G. MacDiarmid. Synth. Met., 1989, 29, E439.
- 21 J. C. Scott, P. Pfluger, M. T. Krounbi and G. B. Street, Phys. Rev. B, 1983, 28, 2140.