Studies in Surface Science and Catalysis 28

New Developments in Zeolite Science and Technology

Proceedings of the 7th International Zeolite Conference Tokyo, August 17-22, 1986

Edited by

Y. Murakami Department of Synthetic Chemstry, Nagoya University, Nagoya, Japan

A. lijima Geological Institute, University of Tokyo, Tokyo, Japan

J. W. Ward Union Oil Company of California, U.S.A.

1986

Elsevier Amsterdam-Oxford-New York-Tokyo

Contents

Speakers are asterisked. Figures in parentheses refer to the Lectures' numbers.

Chairman of Organizing Committee & Subcommittees v Sponsors vi List of Contributors vii Preface xv Contents xvii

Introductory Talk and Plenary Lectures

INTRODUCTORY TALK	
Porous Crystals: A Perspective R.M. Barrer*	3
PLENARY LECTURES	
Zeolites and Zeolite-like Materials W.M. Meier*	13
Exploration of the Void Size and Structure of Zeolites and Molecular Sieves Using Chemical Reactions P.A. Jacobs, * J.A. Martens	23

Geology and Mineralogy

Geologic Occurrence of Zeolites and Some Associated Minerals R.L. Hay*	35 (GM-1-1)
The Crystal Chemistry of Natural Zeolites G. Gottardi*	41 (GM-1-3)
Geology of the Itaya Zeolite Deposit, Yamagata, Northeast Honshu Y. Watanabe,* M. Utada, A. Iijima	51 (GM-4-1)
Zeolites from Tertiary Tuffaceous Rocks in Yeongil Area, Korea J.H. Noh,* S.J. Kim	59 (GM-4-2)

xvi Contents

λ

Analcime-Bearing Pyroclastites from Western Taurus Mountains, Turkey N. Tuzcu*	67 (GM-4-3)
Identification and Characterization of Natural Zeolites by Magnetic Resonance S. Nakata,* S. Asaoka, T. Kondoh, H. Takahashi	71 (GM-5-1)
Clinoptilolite Deposit in the Pine Ridge Indian Reservation, South Dakota, U.S.A. W.H. Raymond*	79 (GM-5-2)
Hydrothermal Zeolite Occurrence from the Smrekovec Mt. Area, Slovenia, Yugoslavia P. Kovič,* N. Krošl-Kuščer	87 (GM-5-3)
Zeolites of Yakutia K.Ye. Kolodeznikov,* V.V. Stepanov	93 (GM-5-4)

Synthesis

	Aluminophosphate Molecular Sieves and the Periodic Table E.M. Flanigen,* B.M. Lok, R.L. Patton, S.T. Wilson	103 (SY-7-1)
	Parameters Affecting the Growth of Large Silicalite Crystals D.T. Hayhurst,* J.C. Lee	113 (SY-7-3)
	New Route to Pentasil-Type Zeolites Using a Non Alkaline Medium in the Presence of Fluoride Ions J.L. Guth, H. Kessler,* R. Wey	121 (SY-7-4)
	Titanium-Silicalite: A Novel Derivative in the Pentasil Family G. Perego,* G. Bellussi, C. Corno, M. Taramasso, F. Buonomo, A. Esposito	129 (SY-8-1)
λ	The Synthesis and Characterization of Iron Silicate Molecu- lar Sieves W.J. Ball, J. Dwyer,* A.A. Garforth, W.J. Smith	137 (SY-8-2)
7.	Preparation and Characterization of Iron Bidimensional Zeolitic Montmorillonite G. Murali Dhar,* M. Vittal, T.G. Narendra Babu	145 (SY-8-3)
	Comparative Study of Zeolite.A Synthesis in Batch and Semi- batch Reactors M. Trassopoulos, R.W. Thompson*	153 (SY-9-1)
	Preparation and Properties of a New Synthetic Analogue of Natural Zeolite Mazzite G.V. Tsitsishvili,* M.K. Charkviani	161 (SY-9-2)
	The Role of Interfacial Energy in Zeolite Synthesis R.A. van Santen, J. Keijsper, G. Ooms, A.G.T.G. Kortbeek*	169 (SY-9-3)

	Contents	xvii
The Synthesis of Zeolite NaA from Homogeneous Solutions and Studies of its Properties Pang Wenqin,* S. Ueda, M. Koizumi	(SY-1	177 0-1)
Clear Aqueous Nuclei Solution for Faujasite Synthesis S. Kasahara,* K. Itabashi, K. Igawa	(SY-1	185 0-2)
Crystallization of High-Silica Zeolite in the Mixture of Water and Organic Solvent M. Sugimoto,* K. Takatsu, N. Kawata, T. Konishi	(SY-1	193 0-3)
The Templating Effect during the Formation of ZSM-5 Type Zeolite Song Tianyou, Xu Ruren,* Li Liyun, Ye Zhaohui	(SY-1	201 1-1)
The Influence of Template Size and Geometry on Faujasite Crystallization D.E.W. Vaughan,* K.G. Strohmaier	(SY-1	207 1-2)
Bis-Quaternary Ammonium Compounds as Templates in the Crystallization of Zeolites and Silica Molecular Sieves J.L. Casci*	(SY-1	215 1-3)
Mechanism of Zeolite Crystallization without Using Templa Reagents of Organic Bases FY. Dai,* M. Suzuki, (late) H. Takahashi, Y. Saito	te (SY-1	223 1-4)
Role of Alkali and Tetrapropylammonium Cations in (M)ZSM- Hydrogel Precursors J.B. Nagy, P. Bodart, E.G. Derouane,* Z. Gabelica, A. Nastro	5 (SY-1	231 2-1)
Nucleation and Growth of NH4-ZSM-5 Zeolites LY. Hou,* L.B. Sand, R.W. Thompson	(SY-1	239 2-2)
Application of ²⁹ Si and ²⁷ Al NMR to Determine the Distri- bution of Anions in Sodium Silicate and Sodium Alumino- Silicate Solutions A.V. McCormick, A.T. Bell,* C.J. Radke	(SY-1	247 2-3)
<pre>Influence of Sodium Salts on Zeolite Nu-10 Crystallization R. Aiello,* A. Nastro, C. Pellegrino</pre>	n (SY-1	255 2-4)
Crystallization of Zeolitic Aluminosilicates in Bicationic Systems Including Lithium C. Colella,* M. de'Gennaro, V. Iorio	c (SY-1	263 2 - 5)

Ion Exchange and Modification

Ion Exchange in Zeolites: Some Recent Developments in	
Theory and Practice	273
R.P. Townsend*	(IM-1-1)
Nedelling and Orlandsting Tax Buckeys Description of Martin	
Modelling and Calculating ion-Exchange Processes of Metal	
Sorption by Natural Clinoptilolite	283
V.A. Nikashina, * M.M. Senyavin, L.I. Mironova, V.A. Tyurina	(IM-1-3)

xviii Contents

Ternary Exchange Equilibria Involving H ₃ O ⁺ , NH ₄ ⁺ and Na ⁺ Ions in Synthetic Zeolites of the Faujasite Structure K.R. Franklin, R.P. Townsend, S.J. Whelan, C.J. Adams*	289 (IM-1-4)
Germanium Methoxide: New Reagent for Controlling the Pore- Opening Size of Zeolite by CVD M. Niwa,* C.V. Hidalgo, T. Hattori, Y. Murakami	297 (IM-2-1)
The Influence of Structural Modification by Silanation on the Ion-Exchange Properties of Mordenite L.P. P. De Hulsters,* J. Verbiest, J. Philippaerts, G. Peeters, E.F. Vansant	305 (IM-2-2)
Interaction of Tricoordinated Phosphorus Compounds with	311
Th. Bein,* D.B. Chase, R.D. Farlee, G.D. Stucky	(IM-2-3)
The Implantation of Boron-Nitrogen Compounds in Mordenite LP and their Influence on the Adsorption Properties J. Philippaerts,* G. Peeters, E.F. Vansant, P. De Hulsters, J. Verbiest	319 (IM-2-4)
Modification of Y Type Zeolite by Ferric Nitrate Solution S. Hidaka,* A. Iino, K. Nita, Y. Maeda, K. Morinaga, N. Yamazoe	329 (IM-2-5)
Effect of Rare Earth Loading in Y-Zeolite on its Dealumina- tion during Thermal Treatment J.W. Roelofsen,* H. Mathies, R.L. de Groot, P.C.M. van Woerkom, H. Angad Gaur	337 (IM-3-1)
The Effect of Dealumination on the Structure and Acidic Properties of Offretite C. Fernandez, A. Auroux,* J.C. Vedrine, J. Grosmangin, G. Szabo	345 (IM-3-2)
Faujasites Enriched in Silicon. A Comparison of Processes and Products D. Akporiaye, A.P. Chapple, D.M. Clark, J. Dwyer,* I.S. Elliott, D.J. Rawlence	351 (IM-3-3)

Structure

Zeolite Structural Investigations by High Resolution Solid State MAS NMR	361
G.T. Kokotailo,* C.A. Fyfe, G.J. Kennedy, G.C. Gobbi, H. Strobl, C.T. Pasztor, G.E. Barlow, S. Bradley	(ST-9-1)
Distribution of Aluminum in the Synthetic Mordenites K. Itabashi,* T. Okada, K. Igawa	369 (ST-9-3)
Generation of New Paramagnetic Rhodium Species in NaX Zeolite and Coordination with Adsorbates D. Goldfarb, L. Kevan*	377 (ST-10-1)

	Contents xix	
Combined EPR-DRS Spectroscopies on Zeolites: Coordination of Cu(II) to an Oxygen Six-Ring D. Packet, R.A. Schoonheydt*	385 (ST-10-2)	,
Adsorption of Xenon: A New Method for Studying Zeolites J. Fraissard,* T. Ito, M. Springuel-Huet, J. Demarquay	393 (ST-10-3)	
<pre>In Situ Synthesis of Iridium Carbonyl Clusters Encaged in Y-Zeolite G. Bergeret,* P. Gallezot, F. Lefebvre</pre>	401 (ST-11-1)	
Surface States of Aluminophosphate and Zeolite Molecular Sieves S.L. Suib,* A.M. Winiecki, A. Kostapapas, L.B. Sand	409 (ST-11-2)	
Distribution of the Bivalent Nickel Ion in ZSM-5 Molecular Sieves Liu Zhenyi,* Zhang Wangjin, Yu Qin, Lü Guanglie, Li Wangrong, Wang Shuju, Zhang Youshi, Lin Bingxiong	415 (ST-11-3)	
The Application of Electronegativity Equalization Concepts to Zeolites W.J. Mortier*	423 (ST-11-4)	
Quaternary Ammonium Cation Effects on the Crystallization of Zeolites of the Offretite-Erionite Family, Part II. Electron Diffraction Studies J.V. Sanders, M.L. Occelli,* R.A. Innes, S.S. Pollack	429 (ST-12-1)	
The Absence of T-O-T Angles of 180° in Zeolites A. Alberti*	437 (ST-12-2)	
The Structure of Zeolite Li-A(BW) by Single Crystal Data E.K. Andersen,* G. Ploug-Sørensen	443 (ST-12-3)	
Distribution of Cations and Water Molecules in the Heulandite-Type Framework K. Sugiyama,* Y. Takéuchi	449 (ST-12-4)	
Structural Studies of Gallosilicate Zeolites J.M. Newsam,* D.E.W. Vaughan	457 (ST-12-5)	

Adsorption and Diffusion

<pre>Intracrystalline Diffusion of C₀ Aromatic Isomers in NaX Zeolite and Natural Faujasite M. Goddard, D.M. Ruthven*</pre>	467 (AD-3-1)
The Use of Computer Graphics to Study Adsorption, Diffusion and Catalysis in Zeolites A.K. Nowak,* A.K. Cheetham	475 (AD-3-2)
The Effects of Steam Treatment Impregnation with P, Mg and Ion Exchange on Diffusion in HZSM-5 Zeolite Chuanchang Wu,* Guanlin Qin, Yuming Xie	481 (AD-3-3)

xx Contents

Studies on the Surface Acidity of HY Zeolite by Combined IR and TPD Li Quanzhi,* Zhang Ruiming, Xue Zhiyuan	487 (AD-4-1)
Bronsted Site Population on External and on Internal Surface of Shape-Selective Catalysts J. Take,* Y. Yamaguchi, K. Miyamoto, H. Ohyama, M. Misono	495 (AD-4-2)
A Method for Calculating Activation Energy Distribution of Desorption from Temperature-Programmed Desorption Spectrum of Ammonia K. Hashimoto,* T. Masuda, T. Mori	503 (AD-4-3)
One Dimensional Gas Adsorbed in the Zeolitic Pore T. Takaishi*	511 (AD-5-1)
Smectite Molecular Sieves. Part I. Hydrogen, Deuterium, and Neon in Expanded Fluorhectorites R.M. Barrer,* R.J.B. Craven	521 (AD-5-3)
Adsorption of Hydrocarbons in (Na,K)-ZSM5, -ZSM11 and "Al- Free" NaZSM5 and NaZSM11 Y.H. Ma,* T.D. Tang, L.B. Sand, L.Y. Hou	531 (AD-5-4)
Adsorption Properties of Microporous Aluminophosphate AlPO ₄ -5 H. Stach, H. Thamm, K. Fiedler, B. Grauert, W. Wieker,	539 (AD-6-1)
E. Jahn, G. Ohtmann.	
Hydrocarbon Adsorption Characterization of Some High Silica Zeolites E.L. Wu, G.R. Landolt, A.W. Chester*	547 (AD-6-2)
 Hydrocarbon Adsorption Characterization of Some High Silica Zeolites E.L. Wu, G.R. Landolt, A.W. Chester* Adsorption Equilibrium of Ethylene-Carbon Dioxide Mixture on Zeolite ZSM5 Jin-Gu Wang,* Y.H. Ma, Yang-Chun Chang, Hai-Qing Li, T.D. Tang 	547 (AD-6-2) 555 (AD-6-3)
 Hydrocarbon Adsorption Characterization of Some High Silica Zeolites E.L. Wu, G.R. Landolt, A.W. Chester* Adsorption Equilibrium of Ethylene-Carbon Dioxide Mixture on Zeolite ZSM5 Jin-Gu Wang,* Y.H. Ma, Yang-Chun Chang, Hai-Qing Li, T.D. Tang Simulation of Pressure Swing Adsorption for Air Separation K. Chihara,* Y. Yoneda, S. Morishita, M. Suzuki 	547 (AD-6-2) 555 (AD-6-3) 563 (AD-6-4)
 Hydrocarbon Adsorption Characterization of Some High Silica Zeolites E.L. Wu, G.R. Landolt, A.W. Chester* Adsorption Equilibrium of Ethylene-Carbon Dioxide Mixture on Zeolite ZSM5 Jin-Gu Wang,* Y.H. Ma, Yang-Chun Chang, Hai-Qing Li, T.D. Tang Simulation of Pressure Swing Adsorption for Air Separation K. Chihara,* Y. Yoneda, S. Morishita, M. Suzuki Effect of the Interaction between Admolecules on the Sorption Equilibrium at the Liquid-Solid Interface for the Y Zeolite SK. Ihm,* HS. Lee 	547 (AD-6-2) (AD-6-3) (AD-6-3) (AD-6-4) (AD-6-5)
 Hydrocarbon Adsorption Characterization of Some High Silica Zeolites E.L. Wu, G.R. Landolt, A.W. Chester* Adsorption Equilibrium of Ethylene-Carbon Dioxide Mixture on Zeolite ZSM5 Jin-Gu Wang,* Y.H. Ma, Yang-Chun Chang, Hai-Qing Li, T.D. Tang Simulation of Pressure Swing Adsorption for Air Separation K. Chihara,* Y. Yoneda, S. Morishita, M. Suzuki Effect of the Interaction between Admolecules on the Sorption Equilibrium at the Liquid-Solid Interface for the Y Zeolite SK. Ihm,* HS. Lee Molecular Mobility of Hydrocarbon ZSM5/Silicalite Systems Studied by Sorption Uptake and Frequency Response Methods M. Bülow, H. Schlodder, L.V.C. Rees,* R.E. Richards 	547 (AD-6-2) (AD-6-2) (AD-6-3) (AD-6-4) (AD-6-4) (AD-6-5) (AD-7-1) (AD-7-
 Hydrocarbon Adsorption Characterization of Some High Silica Zeolites E.L. Wu, G.R. Landolt, A.W. Chester* Adsorption Equilibrium of Ethylene-Carbon Dioxide Mixture on Zeolite ZSM5 Jin-Gu Wang,* Y.H. Ma, Yang-Chun Chang, Hai-Qing Li, T.D. Tang Simulation of Pressure Swing Adsorption for Air Separation K. Chihara,* Y. Yoneda, S. Morishita, M. Suzuki Effect of the Interaction between Admolecules on the Sorption Equilibrium at the Liquid-Solid Interface for the Y Zeolite SK. Ihm,* HS. Lee Molecular Mobility of Hydrocarbon ZSM5/Silicalite Systems Studied by Sorption Uptake and Frequency Response Methods M. Bülow, H. Schlodder, L.V.C. Rees,* R.E. Richards Zeolitic Diffusivities of Binary Gas Mixtures by the Fre- quency Response Method Y. Yasuda,* Y. Yamada, I. Matsuura 	547 (AD-6-2) (AD-6-2) (AD-6-3) (AD-6-3) (AD-6-4) (AD-6-5) (AD-7-1) (AD-7-1) (AD-7-1) (AD-7-2) (AD-7-

Contents xx	1
-------------	---

<pre>Study of the Mobility of Ca²⁺ in Ca, Na-A by n-Pentane Sorption D. Fraenkel*</pre>	601 (AD-7-4)
Four Different States of Benzene Adsorbed in Faujasites A. de Mallmann, D. Barthomeuf*	609 (AD-8-1)
Combined UV and IR Spectroscopic Studies on the Adsorption of SO ₂ onto Faujasite-Type Zeolites H.G. Karge,* M. Zaniecki, M. ZioZek	617 (AD-8-2)
Heat Capacities and Adsorption Energies of Helium Adsorbed on Y Zeolites with Various Cations N. Wada,* Y. Yamamoto, H. Kato, T. Ito, T. Watanabe	625 (AD-8-3)
NMR Investigations of Self-Diffusion in Pentasils J. Kärger, H. Pfeifer,* D. Freude, J. Caro, M. Bülow, G. Öhlmann	633 (AD-8-4)

Catalysis

Catalytic and Acidic Properties of Boron Pentasil Zeolites G. Coudurier, J.C. Védrine*	643 (CA-1-1)
Disproportionation of Paraffins I. Pentanes N.Y. Chen*	653 (CA-1-3)
<pre>Shape Selective Cracking of Octane in the Presence of Another Hydrocarbon on HZSM-5 S. Namba,* K. Sato, K. Fujita, J.H. Kim, T. Yashima</pre>	661 (CA-1-4)
Pore Size and Shape Effects in Zeolite Catalysis J.G. Bendoraitis, A.W. Chester,* F.G. Dwyer, W.E. Garwood	669 (CA-2-1)
The Nature of the Catalytic Sites in HZSM-5 — Activity Enhancement R.M. Lago, W.O. Haag,* R.J. Mikovsky, D.H. Olson, S.D. Hellring, K.D. Schmitt, G.T. Kerr	677 (CA-2-2)
Influence of the Activation Conditions on the Catalytic Behaviour of Offretite F. Hernandez, C. Oliver, F. Fajula,* F. Figueras	685 (CA-2-3)
<pre>Investigation of Carbonaceous Deposits on a LaY Zeolite Catalyst by CP/MAS-¹³C-NMR Spectroscopy S. Maixner, C.Y. Chen, P.J. Grobet, P.A. Jacobs, J. Weitkamp*</pre>	693 (CA-2-4)
Formation and Nature of Coke Deposits on Zeolites HY and HZSM-5 M. Guisnet,* P. Magnoux, C. Canaff	701 (CA-2-5)
Preparation of Bifunctional Pt/H-ZSM5 Catalysts and their Application for Propane Conversion C.W.R. Engelen, J.P. Wolthuizen, J.H.C. van Hooff,* H.W. Zandbergen	709 (CA-3-1)

xxii Contents

Transformation of Propene into Aromatic Hydrocarbons over	
ZSM-5 Zeolltes M. Shibata, H. Kitagawa, Y. Sendoda, Y. Ono*	(CA-3-2)
Aromatization of Hydrocarbons over Platinum Alkaline Earth	
Zeolites T.R. Hughes,* W.C. Buss, P.W. Tamm, R.L. Jacobson	725 (CA-3-3)
Alkylation of Chlorobenzene over H-Mordenite and H-ZSM-5:	
Effect of Si/Al Ratio Chen Fang Ren, G. Coudurier, C. Naccache*	733 (CA-4-1)
The Selective Alkylation of Aniline with Methanol over	
ZSM-5 Zeolite P.Y. Chen, M.C. Chen, Y.Y. Chu, N.S. Chang, T.K. Chuang*	739 (CA-4-2)
Para-Selective Chlorination of Chlorobenzene on Modified	
Y-Type Zeolites T. Miyake,* K. Sekizawa, T. Hironaka, M. Nakano, S. Fujii, Y. Tsutsumi	747 (CA-4-3)
Some Catalytic Applications of 75M-5 Zeolite. Para-Selective	
Dealkylation and Vapor Phase Beckmann Rearrangement H. Sato,* N. Ishii, K. Hirose, S. Nakamura	755 (CA-5-1)
Reaction of Ethanol and Ammonia to Pyridine over ZSM-5-Type	
Zeolites F.J. van der Gaag, F. Louter, H. van Bekkum*	763 (CA-5-2)
Catalytic Vapor-Phase Hydration of Lower Olefins over	
Protonic Zeolite Catalysts E. Kikuchi.* T. Matsuda, K. Shimomura, K. Kawahara.	(CA-5-3)
Y. Morita	(011 5 5)
Manufacture of Dimethylamine Using Zeolite Catalyst Y. Ashina, T. Fujita, M. Fukatsu,* K. Niwa, J. Yagi	779 (CA-5-4)
The Influence of Hydrogen Sulfide in Hydrocracking of $n-$	
Dodecane over Palladium/Faujasite Catalysts H. Dauns, S. Ernst,* J. Weitkamp	787 (CA-6-1)
The Kinetics of Hydrodenitrogenation over a Zeolite Catalyst	795
I.E. Maxwell,* J.A. van de Griend	(CA-6-2)
Hydrothermal Aging of Cracking Catalysts - III: Effect of	
Vanadium on the Structure of LaY Zeolites F. Maugé, J.C. Courcelle, Ph. Engelhard, P. Gallezot,*	803 (CA-6-3)
J. Grosmangin	
On the Hydrodesulfurization Activity of Zeolites Containing	
Transition Metals N. Davidova.* P. Kovacheva. D. Shopov	811 (CA-6-4)
	,
Olefin Oligomerization and Aromatization, Processes of	
Coke Deposition A A Slinkin, A V Kucherov, D A Kondratvev, T N	819 (CA-6-5)
Bondarenko, A.M. Rubinstein, Kh.M. Minachev*	(CA-0-3)

	Contents	xxiii
New Horizons in Catalysis Using Modified and Unmodified Pentasil Zeolites W. Hölderich*	(CA-	827 7-1)
Catalytic and Acidic Properties of SAPO-5 Molecular Sieve Xu Qinhua,* Yan Aizhen, Bao Shulin, Xu Kaijun	(CA-	835 7-3)
Molecular Sieve Effects in Carboniogenic Reactions Cataly: by Silicoaluminophosphate Molecular Sieves R.J. Pellet,* G.N. Long, J.A. Rabo	zed (CA-	843 7-4)
Metallosilicate Zeolites as Catalysts for Alkylation of Toluene with Methanol R.B. Borade, A.B. Halgeri, T.S.R. Prasada Rao*	(CA-	851 8-1)
New Aspects in Catalytic Performance of Novel Metallosili- cates Having the Pentasil Pore-Opening Structure T. Inui,* A. Miyamoto, H. Matsuda, H. Nagata, Y. Makino K. Fukuda, F. Okazumi	- , (CA-	859 8-2)
Transalkylation of Alkylaromatic Compounds on Silicates with ZSM-5 Structure Containing Al, B, and Ga H.K. Beyer,* G. Borbely	(CA-	867 8-3)
Selective Synthesis of C3 and C4 Hydrocarbons from Synthes Gas by Utilizing Hybrid Catalysts Containing Y-Type Zeolites K. Fujimoto,* H. Saima, H. Tominaga	∃is (CA-	875 9-1)
Molybdenum Zeolites as Fischer-Tropsch Catalysts: Compara- tive Study of the Adsorption and Decomposition of Mo(CO) in Different Zeolites Yong Y.S., R.F. Howe*	-) ₆ (CA-	883 9-2)
Reaction Mechanism for Selective Synthesis of Gasoline- Range Isoalkanes from Syngas over RuPtHY Zeolites T. Tatsumi,* Y.G. Shul, Y. Arai, H. Tominaga	(CA-	891 -9-3)
Mechanism of the ZSM-5 Catalyzed Formation of Hydrocarbons from Methanol-Propanol LM. Tau, A.W. Fort, B.H. Davis*	3 (CA-]	899 LO - 1)
Deactivation of Modified Pentasil Zeolites for Methanol Conversion to Olefins at High Temperature Guoquan Chen, Juan Liang,* Qingxia Wang, Guangyu Cai, Suqin Zhao, Muliang Ying	(CA-]	907 L0-2)
Comparative Investigation of Time on Stream Selectivity Changes during Methanol Conversion on Different Zeolite: H. Schulz,* W-Böhringer, W. Baumgartner, Zhao Siwei	5 (CA-]	915 10-3)
Particle Size Effect on the Selectivity for Methanol Synthesis on Faujasite X Supported Platinum N.I. Jaeger,* G. Schulz-Ekloff, A. Svensson	(CA-1	923 1-1)
Hydroconversion of n-Octane on Pt/USY Zeolites: Effect of Alloying Pt with Cu M. Dufaux, M. Lokolo, P. Mériaudeau,* C. Naccache, Y. Ba Taârit	en (CA-1	929 1-2)

xxiv Contents

Sodium Clusters in Zeolites as Active Sites for Carbanion Catalyzed Reactions L.R.M. Martens,* P.J. Grobet, W.J.M. Vermeiren, P.A. Jacobs	935 (CA-11-3)
Catalytic Decomposition of Nitric Monoxide over Copper Ion- Exchanged Zeolites M. Iwamoto,* H. Furukawa, S. Kagawa	943 (CA-11-4)
Zinc and Aluminium Substitutions in MFI-Structures: Synthesis, Characterization and Catalysis W.J. Ball, S.A.I. Barri, S. Cartlidge, B.M. Maunders, D.W. Walker*	951 (CA-12-1)
Acid-Base and Catalytic Properties of Alkali Metal Exchanged ZSM5 M. Derewinski, J. Haber,* J. Ptaszynski, J.A. Lercher, G. Rumplmayr	957 (CA-12-2)
Interaction of Nickel Ions with Ethylene Molecules in Ethylene Dimerization over Ni-X Zeolites Lubin Zheng,* Gongwei Wang, Xinlai Bai	965 (CA-12-3)
n-Heptane Isomerization over Platinum-Loaded Mordenite Catalysts K. Mahos,* R. Nakamura, H. Niiyama	973 (CA-12-4)
Oxidative Heterogenous Catalysis over Zeolites D.B. Tagiyev,* K.M. Minachev	981 (CA-12-5)

Application

Development of Zeolite for Non-Phosphated Detergents in Japan I. Yamane,* T. Nakazawa	991 (AP-2-1)
Studies on the Initial Product in the Synthesis of Zeolite A from Concentrated Solutions Y. Tsuruta,* T. Satoh, T. Yoshida, O. Okumura, S. Ueda	1001 (AP-2-3)
Sodium Aluminosilicates in the Washing Process. Part IX: Mode of Action of Zeolite A/Additive Systems C. P. Kurzendörfer, M. Liphard, W. von Rybinski, M.J. Schwuger*	1009 (AP-2-4)
Calcium Ion Exchanging Behavior of Zeolite A in the Washing Process T. Mukaiyama,* H. Nishio, O. Okumura	1017 (AP-2-5)
Carbohydrate Separations Using Zeolite Molecular Sieves J.D. Sherman,* C.C. Chao	1025 (AP-6-1)
Polyvalent Cation Exchanged X Zeolites with Improved Gas Separation Properties C.G. Coe,* G.E. Parris, R. Srinivasan, S.R. Auvil	1033 (AP-6-2)

...

	Contents	xxv
Vacuum Freeze Drying of Food Using Natural Zeolite	1	041
A. Takasaka,* Y. Matsuda	(AP-6	-3)
Natural Zeolites in Energy Storage and Heat Pumps	1	047
S. Ülkü*	(AP-6	-4)
The Effect of Zeolite on Ruminal Bacteria Population and its Activity in Heifers Fed Sunflower: Sorghum Silage J. Galindo,* A. Elías, M.R. González	1 (AP-6	055 -5)

.

Interaction of Tricoordinated Phosphorus Compounds with Zeolites

Th. Bein, D. B. Chase, R. D. Farlee and G. D. Stucky Central Research and Development Department, E. I. du Pont de Nemours and Company, Experimental Station E262, Wilmington, Delaware 19898, USA

> Vapor phase chemisorption of dimethylphosphine (DMP), trimethylphosphine and trimethylphosphite (TMP) in acidic faujasite has been studied with in situ IR and MAS-NMR techniques. Effects of pore filling on the spectral properties of trimethylphosphine are discussed. Protonation of DMP in a reversible acid-base reaction with dry HY zeolite is indicated by a single ¹P resonance at -56 ppm due to $P(CH_3)_2H_2$ and by the appearence of different P-H stretching modes. An acid catalyzed Arbuzov rearrangement converts TMP into dimethylmethylphosphonate which splits off methoxy groups upon heat treatment in the zeolite.

INTRODUCTION

Phosphorus compounds have gained considerable interest in the surface chemistry of metal oxides. Research activity encompasses chemisorption studies [1-11], anchoring of phosphine ligands (see e.g., [12,13]), modification of acidic surface properties [14-16], selective poisoning of acid sites [17], titration of these properties [18,19], and fine tuning of zeolite pore geometries for shape selective catalytic reactions [20-22].

The chemisorption and protonation of trimethylphosphine in the acid form of faujasites has been studied by means of IR and ¹P-NMR techniques [8,18,19]. Different physphonium species which depend on the degree of loading have been reported. ¹P MAS-NMR resonances between -32 and -58 ppm were assigned to Lewis acid-base complexes with acidic species like Al_2O_3 clusters generated upon dehydroxylation of the HY zeolite [19].

In contrast to the acid-base reactions discussed above, details of the more severe modifications of zeolites with other phosphorus compounds like $P(OR)_3$, PCl₃ or phosphates are much less understood. The purpose of the present work is to understand in the above context the interaction of HY zeolite with DMP, trimethylphosphine and with trimethylphosphite, respectively. The study also emphasizes the value of solid state NMR and in situ IR techniques as powerful diagnostic tools for phosphorus/zeolite systems.

EXPERIMENTAL

1. Materials

Vapor of dimethylphosphine (Alfa) was admitted into a storage flask with dried molecular sieve 4A. Trimethylphosphite and trimethylphosphine (Strem Chemicals) were stored over sieve 4A without further purification. NH₄Y zeolite with the composition $Na_8(NH_4)_47A1_{55}Si_{137}O_{384}$ nH₂O was obtained from Linde (LZ-Y62). Prior to use, the ammonium form of the zeolite was degassed by heating for 12 hours at 670 K under 10⁻⁵ torr to yield the dry proton form (HY). The linear heating rate was 2 K/min.

2. Methods

Samples for solid state NMR experiments were prepared as follows. Batches of dry HY were weighed into a small quartz holder, introduced into a tubular quartz reactor and evacuated at a greaseless vacuumline (10⁻¹ torr) for 30 min. A degassed and frozen vial with the phosphine was allowed to warm up to 273 K and dosed manometrically onto the zeolite. After equilibrating for 120 min at 295 K, the zeolite was pumped off for 30 min, and weight changes were recorded in the drybox. Heat treatments were done in the same reactor under vacuum, with a heating rate of 1 K/min. The ¹³ P and ¹³ C MAS-NMR spectra were obtained on a Bruker CXP-300 instrument.

The "P and "C MAS-NMR spectra were obtained on a Bruker CXP-300 instrument. Andrews type rotors were filled with ca. 200 mg of sample in the drybox and introduced into the NMR probe in a glovebag under flowing nitrogen. Dry nitrogen was used as the drive gas for the rotor to obtain spinning rates between 2 and 4 kHz. For "P, a 30° to 90° pulse with 10 s recycle time was used, depending on the T₁, to obtain quantitative spectra. For "C, 5 ms cross-polarization with 1 to 10°s recycle time was used. H-decoupling time was 20-60 ms in both cases. Chemical shifts were referred to 85% H₃PO₄ or (CH₃)₄Si. No significant oxidation of the phosphines was observed during the NMR experiments.

In situ infrared experiments were done with self-supporting zeolite wafers (5 mg/cm²), compacted at 100 kg/cm², in a controlled-atmosphere cell with CaF₂ windows connected to a Nicolet 7000 FT-IR spectrometer. Sample treatment was similar to that of the NMR samples, with the exception of shorter temperature cycles.

RESULTS AND DISCUSSION

Acid/base Reactions between Zeolites and P(CH₃)₃, PH(CH₃)₂
 Reactions with trimethylphosphine

Vapor of trimethylphosphine was dosed into the cage system of dry HY. The qualitative details of our results are consistant with both IR and NMR data reported in the literature₃[8,19]. In Fig. 1, a series of P MAS-NMR spectra of trimethylphosphine dosed on dry

In Fig. 1, a series of $^{-P}$ MAS-NMR spectra of trimethylphosphine dosed on dry HY to different degrees of loading is presented. At a temperature of 295 K, the zeolite is saturated with 5.0 molecules of phosphine per supercage (5.0/s.c.). A sharp resonance at -69 ppm (Fig. 1a) is assigned to physisorbed phosphine (2.0/s.c.) and the broader band at -3.4 ppm, proton decoupled, represents 3.0 trimethylphosphonium ions per s.c. In a proton coupled spectrum, a doublet with the typical P-H scalar coupling constant of ca. 500 Hz and strong sideband intensity due to P-H dipolar coupling is observed (Fig. 1b).

IR data demonstrate that upon saturation less than 3.0 protons per s.c. represent the accessible "supercage protons" observed at 3650 cm^{-1} since also the 3550 cm⁻¹ band is reduced in intensity.

If 2.8 molecules of trimethylphosphine per s.c. are dosed into the zeolite, protonation is complete as shown in Fig. lc: only the phosphonium resonance appears, shifted to -6 ppm with significantly reduced sideband intensity. Degassing the sample at 570 K under vacuum for 60 min further narrows the phosphonium resonance at -5 ppm with a well resolved doublet due to P-H scalar coupling (Fig. ld).

The results of the quantitative dosing and desorption experiments can be understood in terms of the following model: At lower loadings of the phosphine, there are only phosphonium ions present in the supercage. Weak repulsion between these species as well as the space available in the cage account for a relatively high mobility of the ions which results in a narrow 'P resonance. If the loading exceeds the number of protons available, a crowded situation is expected with trimethylphosphine filling up the remaining space and hindering the mobility of the phosphonium ion, thus changing the chemical shift of the ion to -3 ppm. The 'P chemical shift of the ion remains -6 ppm up to a loading of 2.8 per s.c. which closely corresponds to the maximum number of protons available. No evidence can be found for different species due to different origins of the protons as invoked in a former study [19]. The data obtained in

Fig. 1. Effect of pore filling on the ³¹P MAS-NMR spectrum of P(CH₃)₃ adsorbed in dry HY zeolite. A, 5.0 per s.c. at 295 K, H-decoupled. B, spectrum A, H-coupled. C, 2.8 per s.c. at 295 K, H-coupled. P, sample C, degassed at 570 K for 60 min, H-coupled.

this study suggest that the chemisorption of trimethylphosphine in HY is essentially an acid/ base reaction which is only reversible under severe degassing conditions.

1.2. Dimethylphosphine as a probe for acid suface sites

Dimethylphosphine (DMP) is a weaker base compared to trimethylphosphine and different behavior in acid zeolites can therefore be anticipated. If HY zeolite is saturated with DMP and subsequently degassed under vacuum at 295 K, only one species is detected in the P NMR at -56 ppm. The P resonance of neat DMP is

at -99 ppm. We assign the observed species to the dimethylphosphonium ion (DMPH) adsorbed in the zeolite (Fig. 2). In the IR experiment, DMP shows a strong band at 2289 cm⁻¹ due to the P-H stretching vibration. The intensity of this band allows the determination of adsorbed quantities of the phosphine. Upon adsorption of the molecule in HY zeolite₁ the band is broadened. (Fig. 3a). The concomitant disappearence of the 3650 cm⁻¹ band indicates complete proton transfer in the supercage. Two new bands at 2495 and 2450 cm⁻¹ appear. These bands are interpreted as due to the symmetric and antisymmetric P-H stretching vibrations of DMPH⁻ generated in the zeolite. Degassing experiments indicate that adsorption and proton transfer are reversible with DMP (Fig. 3b). The hydroxyl groups are restored to the original intensity, whereas both the P-H and C-H bands dissappear.

These features demonstrate some advantages of DMP as a probe molecule for acid sites on oxide surfaces compared to trimethylphosphine: In the IR, independent determination of DMP and DMPH is possible. In the NMR experiment, DMP is a reversible probe for acid sites showing no interference with remaining unprotonated species.

Fig. 2. (Top) 31 P MAS-NMR of P(CH₃)₂H in HY, degassed at 295 K, H-decoupled.

2. Reactions of Trimethylphosphite with Zeolites 2.1. Adsorption at 295 K $\,$

If HY is saturated with 3.6 molecules trimethylphosphite (TMP) per supercage, one dominant species is observed in the ¹P NMR at +36 ppm with a moderate sideband intensity (Fig.4a) This resonance indicates a substantial change in the isotropic shift as compared to the value of the starting phosphine at +140 ppm. A small amount of a second species which shows cross-polarization (CP) is represented by a resonance at +21 ppm. The ¹C NMR spectrum of the same system is dominated by resonances in the

The $^{\circ}C$ NMR spectrum of the same system is dominated by resonances in the methoxy-region at +55 and 53 ppm, in addition to a smaller peak at +8 ppm which is assigned to P-CH₃ (Fig.4b). The key for understanding these results is a rearrangement reaction of the TMP to yield tetracoordinated dimethylmethyl-phosphonate (DMMP) adsorbed in the zeolite.

A reaction sequence is proposed which resembles the well-known Arbusov rearrangement of trialkylphosphites:

Fig. 3. IR spectra of a wafer of HY, degassed at 670 K, loaded with $P(CH_3)$, H. A, 30 torr of the phosphine added at 295 K. B, degassed at 360, 440 and 610 K for 60 min.

Fig. 4. NMR spectra of trimethylphosphite adsorbed on HY zeolite. A, ³ P MAS-NMR of HY, saturated with TMP at 295 K (¹H-decoupled). B, ¹C spectrum of sample A, cross-polarized and H-decoupled. (X = rotor signal)

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} H^{+} \\ (H_{3}CO)_{3}P & --- \rangle \\ H_{3}C - O - P(OCH_{3})_{2} \end{array} = > \\ \begin{array}{c} H_{3}CO)_{3}PCH_{3} + \\ \end{array} \\ \begin{array}{c} H_{3}CO)_{3}P \\ (H_{3}CO)_{2}(CH_{3})PO \\ \end{array} \\ \begin{array}{c} H_{3}CO)_{2}(CH_{3})PO \\ \end{array} \\ \begin{array}{c} H_{3}CO)_{2}(CH_{3})PO \\ \end{array} \\ \begin{array}{c} H_{3}CO)_{2}(CH_{3})PO \\ \end{array} \\ \begin{array}{c} H_{3}CO)_{3}PCH_{3} \end{array} \\ \begin{array}{c} H_{3}CO)_{2}(CH_{3})PO \\ \end{array} \\ \begin{array}{c} H_{3}CO)_{3}PCH_{3} \end{array} \\ \begin{array}{c} H_{3}CO)_{3}PCH_{3} \end{array} \\ \begin{array}{c} H_{3}CO)_{3}PCH_{3} \end{array} \\ \begin{array}{c} H_{3}CO)_{3}PCH_{3} \end{array} \\ \end{array}$$

Nucleophilic attack of TMP at a methoxy carbon of protonated TMP generates a trimethoxymethylphosphonium ion which acts as chain propagating species. Reaction of this ion with TMP results in DMMP. Dimethylphydrogenphosphite is expected to be a byproduct of this reaction, and the ¹P resonance of this molecule adsorbed into HY indeed resembles the second species observed upon adsorbing TMP in HY.

If DMMP is adsorbed into HY, both the 31 P and 13 C NMR features are similar to those obtained with TMP. This presents strong evidence for the reaction proposed above.

2.2. Infrared results

A thin wafer of HY saturated with TMP has been studied in the infrared cell. Proton transfer from both supercage and weaker acid sites towards the adsorbed phosphorus compounds is observed in the hydroxyl region (consumption of the 3650 and 3550 cm⁻¹ bands). A new, broad band at ca. 2440 cm⁻¹ is indicative for a P-H interaction (Fig. 5a).

Fig. 6. NMR spectra of TMP/HY adduct, degassed at 670 K for 12 bours. A, ¹P MAS-NMR of TMP/HY, H-coupled. B, ¹C MAS-NMR of TMP/HY, cross-polarized and H-decoupled. (X = rotor)

Evidence for the generation of DMMP is found in the C-H bending region: The new methyl group is represented by a band at 1304, whereas a pair at 1460/30accounts for the methoxy group. In addition, a shoulder at 1250 cm cm can be understood as being due to the newly generated P=O double bond.

2.3. Thermal decomposition of the TMP/zeolite adducts

Heating the phosphine-loaded wafer in the infrared cell under vacuum (60 min at 440 K and at 610 K) reduces the overall C-H intensity (Fig. 5b,c). However, the hydroxyl bands are not restored as would be expected upon simple dissociation of a phosphonium species. In contrast, the OH-intensity decreases with heating time, indicating an irreversible reaction with the phosphorus compound.

NMR data provide further evidence for the species obtained upon thermal desorption treatments. If TMP adsorbed in partially exchanged HY is degassed at 670~K for 12 hrs, the rearrangement product DMMP transforms to another species with a $^{31}{\rm P}$ resonance at +13 ppm and strong anisotropy as indicated by the sideband intensity (Fig. 6a). The ¹³C spectrum of TMP heated in HY at 570 K for 12 hrs substantiates the

findings of the IR experiments: The methoxy-bands are considerably smaller compared to the system at 295 K, whereas a large fraction of methyl groups is indicated by a resonance at 14 ppm (Fig. 6b).

Both IR and NMR results suggest that the rearrangement product DMMP reacts irreversibly with the zeolite hydroxyl groups upon heating under vacuum. This reaction is accompanied by a loss of methoxy groups which probably desorb from the zeolite as methanol.

We propose the generation of stable condensation products between a $(-0)_{P}(0)$ CH, unit and the zeolite framework. Similar behavior of DMMP upon reaction with the hydroxyl groups of Al_{20} , has been reported in the literature [3,4]. Thermal desorption data together² with chemical probing of the modified zeolite will be required to confirm the nature of this reaction, including possible oligomerization of organic fragments in the pore system.

A more detailed discussion of our studies on organophosphorus and organosilicon chemistry in zeolites will be published in the near future [23].

The technical assistance of R.F. Carver and N. Rapposelli is gratefully acknowledged.

REFERENCES

- 1. S. T. Lin and K. J. Klabunde, Langmuir 1, 600 (1985).
- 2. M. Higo, Y. Owaki and S. Kamata, Chem. Lett. 1309 (1985).
- M. K. Templeton and W. H. Weinberg, J. Am. Chem. Soc. 107, 97 (1985).
 M. K. Templeton and W. H. Weinberg, J. Am. Chem. Soc. 107, 774 (1985).
- 5. T. Ohgushi, A. Yusa, K. Kinoshita and Y. Yatsurugi, Bull. Chem. Soc. Jap. 51, 419 (1978).
- 6. R. A. Schoonheydt, D. Van Wouwe and H. Leeman, J.C.S. Faraday I, 76, 2519 (1980).
- 7. R. A. Schoonheydt, D. Van Wouwe and M. Vanhove, J. Coll. Interf. Sci. 83, 279 (1981).
- 8. R. A. Schoonheydt, D. Van Wouwe and H. Leeman, Zeolites 2, 109 (1982).
- 9. R. G. Herman, Inorg. Chim. Acta, 34, 119 (1979).
- 10. G. Geismar and U. Westphal, Z. anorg. allg. Chem., <u>487</u>, 207 (1982).
- 11. S. P. Banerjee, Thermochim. Acta, 47, 207 (1981).
- 12. D. K. Liu, M. S. Wrighton, D. R. McKay and G. E. Maciel, Inorg. Chem. 23, 212 (1984).
- 13. J. P. Collman, J. A. Belmont and J. I. Brauman, J. Am. Chem. Soc., 105, 7288 (1983).
- 14. W. W. Kaeding and S. A. Butter, J. Catal., 61, 155 (1980).

- M. Derewinski, J. Haber, J. Ptaszynski, V. Shiralkar and S. Dzwigaj, Stud. Surf. Sci. Catal., <u>18</u>, 209 (1984).
 K. H. Chandawar, S. B. Kulkarni and P. Ratnasamy, Appl. Catal., <u>4</u>, 287
- (1982).
- 17. J. Nunan, J. Cronin and J. Cunningham, J. Catal. <u>87</u>, 77 (1984). 18. W. P. Rothwell, W. X. Shen and J. H. Lunsford, J. Am. Chem. Soc., <u>106</u>, 2452 (1984).
- 19. J. H. Lunsford, W. P. Rothwell and W. Shen, J. Am. Chem. Soc., 107, 1540 (1985).
- 20. N. P. Forbus and W. W. Kaeding, U.S. 4,469,806, 4 Sep 1984.
- N. P. Forbus and W. W. Kaeding, Cur. 4,405,000, 4 Sp 1963.
 N. P. Forbus and W. W. Kaeding, Eur.Pat.Appl. EP 89,787 28 Sep 1983.
 Z. Gabelica, G. Debras, J. P. Gilson and E. G. Derouane, Calorim. Anal. Therm., <u>14</u>, 371 (1983).
 T. Bein, D. B. Chase, D. R. Corbin, R. D. Farlee and G. D. Stucky, in
- preparation.