International International Journal Journal Journal For Reviews and Communications in Heterocyclic Chemistry Volume 26 Number 4 ## **HETEROCYCLES** An International Journal for Reviews and Communications in Heterocyclic Chemistry ### CONTENTS | | COMMUNICATIONS | |-------------|--| | 863 | GHEORGHE SURPATEANU, ALAIN LABLACHE-COMBIER, PIERRE GRANDCLAUDON, and BERNARD MOUCHEL. Cycloaddition Reaction of 1,2,4-Triazolium Phenacylides with Cinnamic Esters | | | ISTVÁN BITTER, GÁBOR TÓTH, ISTVÁN HERMECZ, and ZOLTÁN MÉSZÁROS. Nitrogen Bridgehead Compounds Part 59. Nucleophilic Substitution Reactions of 9-Bromo-6,7,8,9-tetrahydro-4 <i>H</i> -pyrido- | | 869 | [1,2- <i>a</i>]pyrimidin-4-ones | | | YASUOKI MURAKAMI, YUUSAKU YOKOYAMA, CHIYOKO AOKI, CHIEMI MIYAGI, TOSHIKO WATANABE, and TAICHI OHMOTO. A New Route to 4-Oxygenated β-Carbolines: The Total Synthesis | | 875 | of Crenatine | | | HANH DUFAT-TRINH VAN, ELISABETH SEGUIN, FRANÇOIS TILLEQUIN, and MICHEL KOCH. Total Synthesis of 7-Hydroxy-``9-oxa''-anthra- | | 879 | cyclinone and Glycoside Derivatives | | 883 | A Novel Ring Formation of 1,2-Dihydroquinoxalines | | | HANS LUDESCHER, CHING-PONG MAK, GERHARD SCHULZ, and HANS FLIRI. Chemistry of Penicillin Diazoketones. Part II: From | | 885 | Beta-lactam to Beta-lactone | | | MASANORI SOMEI, FUMIO YAMADA, and YOSHIHIKO MAKITA. Total Syntheses of (\pm) -Agroclavine-I, (\pm) -6-Nor-chanoclavine-II, | | 895 | and (±)-Chanoclavine-II | | | MONA HASSAN MOHAMED, NADIA SOBHY IBRAHIM, and MOHAMED HILMY ELNAGDI. Nitriles in Heterocyclic Synthesis: Synthesis of | | 899 | Some New Pyridine, Pyridazine and Pyrimidine Derivatives | | | EBTISAM ABDEL AZIZ HAFEZ, MOHAMED HILMY ELNAGDI, ABDEL | | | GHANI ALI ELAGAMEY, and FATHY MOHAMED ABDEL AZIZ | | 9 03 | EL-TAWEEL. Nitriles in Heterocyclic Synthesis: Novel Synthesis of Benzo[c]coumarin and of Benzo[c]pyrano[3,2-c]quinoline Derivatives | | 503 | JUZO NAKAYAMA. MASAHIRO SHIBUYA. and MASAMATSU HOSHINO. | | Preparation of 2,5-Diacylselenophenes by Condensation of α,α - | 000 | |---|-------| | Diketo Selenides with Glyoxal | . 909 | | Synthesis of 4-Mercaptoindoles | 913 | | KLAUS TH. WANNER and ANNEROSE KÄRTNER. Isomerization of | | | N-Acyl-1,2,5,6-tetrahydropyridines to N-Acyl-enamines by Palladium | | | on Carbon | .917 | | KLAUS TH. WANNER and ANNEROSE KÄRTNER. Asymmetric α - | | | Amidoalkylation. Synthesis of α -Substituted Piperidines of High | | | Enantiomeric Purity | . 921 | | JUNKO KOYAMA, TERUYO OKATANI, KIYOSHI TAGAHARA, YUKIO | | | SUZUTA, and HIROSHI IRIE. Synthesis of Guaipyridine, Epiguai- | | | pyridine, and Related Compounds | . 925 | | MAKOTO WADA, HIDEKI AIURA, and KIN-YA AKIBA. Synthesis of | | | Pyrrolidine Derivatives by Improved Aminoselenation <i>via</i> Addition | | | of Boron Trifluoride Complex of Dihomoallylcuprate to Aldimines | 020 | | Containing α-Hydrogen | .929 | | YOSHITERU OSHIMA, MAKI OKAMOTO, and HIROSHI HIKINO. Epimedins A, B and C, Flavonoid Glycosides of Epimedium koreanum | | | Herbs | 935 | | JUZO NAKAYAMA, YOICHI NAKAMURA, SHIGERU MURABAYASHI, | . 000 | | and MASAMATSU HOSHINO. Preparation of α -Quinque- and α - | | | Septithiophenes and Their Positional Isomers | . 939 | | YANG-CHANG WU, TIAN-SHUNG WU, MASATAKE NIWA, SHENG-TEH | | | LU, and YOSHIMASA HIRATA. Thalicsessine, a New C20-Diterpenoid | | | Alkaloid from <i>Thalictrum sessile</i> Hayata | . 943 | | | | | HETEROCYCLIC PARERS | | | HETEROCYCLIC PAPERS | | | LAJOS KOVÁCS, PÁL HERCZEGH, GYULA BATTA, and ISTVÁN | | | FARKAS. Two Acyclic Analogues of 2-β-D-Ribofuranosylthiazole-4- | 047 | | carboxamide (Tiazofurin)GURY ZVILICHOVSKY and MORDECHAI DAVID. Molecular Structure | . 947 | | and Stability of Isoxazolium Enolates | 961 | | SHARON MARINUZZI-BROSEMER, BHALCHANDRA H. PATWARDHAN, | . 501 | | KENNETH A. GREENBERG, and DONALD C. DITTMER. Interaction | | | of Thietes with Electron-deficient Molecules | . 969 | | JOSÉ M. ALONSO, M. ROSARIO MARTÍN, JAVIER DE MENDOZA, | | | TOMÁS TORRES, and JOSÉ ELGUERO. Proton-ionizable Macrocycles | | | Containing 1,2,4-Triazole and 4-Amino-1,2,4-triazole Subunits | 989 | | CHING-PONG MAK, GERHARD SCHULZ, and HANS FLIRI. Chemistry | | | of Penicillin Diazoketones. Part III: Transformation of Tricyclic | | | Beta-lactams | .1001 | | ETSUKO KAWASHIMA, YUKO AND MIYAMAE. Cyclization of C- and | DO, KATSUMI TABEI, and HIROSHID O -Acyl Derivatives of p -Toluamide | | |---|---|------| | | | 1015 | | | -de]quinazoline and Pyrido[3,4,5-de] | | | quinazoline | | 1029 | | JOHN M. HERBERT, PAUL D. WOO | DDGATE, and WILLIAM A. DENNY
ocycles by Intramolecular Displace | | | | | | | JOHN M. HERBERT, PAUL D. WOO | | | | Behaviour of Some Perimidines | towards Oxidants | 1043 | | | ¥a ti | | | REVIEWS | | | | AHMED KAMAL and PRALHAD B. | | | | | esis of Heterocycles | | | ARYA K. MUKERJEE. Azlactones: F | Retrospect and Prospect | 1077 | | | | | | NEW HETEROCYCLIC NATURAL PRO | ODUCTS | | | Polyacetates | | 1099 | | Aromatics | | | | Terpenes | | 1111 | | Steroids | | | | Alkaloids | | | | Antibiotics | | | | Miscellaneous | | 1144 | | TOTAL CVALUE OF HETEROCYC | LIC MATURAL PRODUCTS | | | TOTAL SYNTHESIS OF HETEROCYC | | 4445 | | Polyacetates | | | | Aromatics | | | | Terpenes | | | | Alkaloids | | | | Antibiotics | | 1159 | | | | | ISOMERIZATION OF N-ACYL-1,2,5,6-TETRAHYDROPYRIDINES TO N-ACYL-ENAMINES BY PALLADIUM ON CARBON Klaus Th. Wanner and Annerose Kärtner Institut für Pharmazie und Lebensmittelchemie der Universität München, Sophienstrasse 10, 8000 München 2, FRG $\underline{\underline{Abstract}}$ - Allylic amides $\underline{\underline{1}}$ were rearranged to enamides $\underline{\underline{2}}$ using palladium on carbon as catalyst. Carbon-carbon bond formation at the α - and β -positions of amines is of considerable interest in preparative organic chemistry; it can be achieved (e.g. by) utilizing enamides (e.g. 2) as starting compounds 1 . As some of the most important synthetic pathways to this class of compounds may be mentioned the acylation of imines with acid chlorides or anhydrides 1b and the elimination of methanol from α -methoxylated amides 2 , which are readily available by electrochemical methods 3 . $$\begin{array}{c|c} & Pd-C \\ & N \\ & O \\ & 1 \end{array}$$ In the course of our studies concerning the asymmetric α -amidoalkylation 4 mediated by chiral enamides, we looked for a simple and efficient route to cyclic enamides of type $\underline{2}$. In this case the imine acylation sequence was not feasible, since the corresponding imine does not exist 5 , and the electrochemical oxidation did not appear promising since a high degree of substitution in the acyl moiety is known to reduce the yield 6 . We therefore envisaged the synthesis of enamides $\underline{2}$ from $\underline{1}$ by double bond isomerization as an attractive alternative. Similar isomerizations effected by iron, rhodium and ruthenium catalysts, have been reported 7 . After several experiments employing various rhodium complexes we found that the isomerization of $\underline{1a}$ to enamide $\underline{2a}$ is best effected by palladium on carbon in THF-NEt₃ at 120°C. The conversion ($\underline{1a}$ - $\underline{2a}$) was almost complete within 3 h (>90% by NMR) and after 6 h (conversion >95%) we isolated $\underline{2a}$ in 80.5% yield. This reaction appears to represent a general method for the synthesis of enamides of type $\underline{2}$. The results are shown in the Table. Crucial to this process, when employed for the synthesis of hydroxy substituted enamides is the presence of NEt₂. Without this additive the rearrangement (to afford e.g. $\underline{2a}$) was followed by an intramolecular ring closure (entry 2). It is worthwhile to note that in the isomerization excellent results were obtained even with 1/50(w/w) of catalyst (entry 3). In a typical procedure, a mixture of 217.3 mg (1.0 mmol) $\underline{1a}$, 10.9 mg Pd-C(10% Pd) and 1 ml THF/NEt₃ (8/2) was heated 6 h at 120°C in a sealed tube. After filtration the organic layer was evaporated under reduced pressure and the residue was purified by radial chromatography (SiO₂, n-hex/EtOAc) to give $\underline{2a}$ (174.9 mg, 80.5%). | entry | substr.8 | R | NEt 3 | conditions a | prod. | yield(%)b | [a] ^c | |-------|-----------|--------------------|--------------|---------------|---------------|--------------------------|------------------| | 1 | <u>1a</u> | 0 C Ph | + | 1:20,120°C,6h | <u>2a</u> | 80.5
(100/0/0) d | - | | 2 | <u>1a</u> | _"- | - | 1:20,120°C,6h | <u>2a,3,4</u> | e _(75/17/8) d | - | | 3 | <u>1b</u> | 0 1000 | - | 1:50,110°C,3h | <u>2b</u> | 90.7 | + 2.7° | | 4 | <u>1c</u> | О НОН | + | 1:20,120°C,3h | <u>2c</u> | 81.7 | -10.8° | | 5 | <u>1d</u> | O OCH ₃ | + | 1:20,120°C,3h | <u>2d</u> | 78.7 | -26.6° | a) Pd-C (10% Pd)/substr. (w/w), temp., reaction time. b) Yield of pure products from radial chromatography. All compounds were fully characterized by $^{1}\text{H-NMR}$, IR and MS spectra and by C,H,N combustion analyses. c) Calculated from [α] and [α] $_{578}$, c~1.0, CH $_{3}$ OH. d) Ratio $_{2a/3/4}$ determined by HPLC. e) $_{3}$: # 7 0 Ph 74: 0 P ### **ACKNOWLEDGEMENT** We would like to thank Prof. Dr. F. Eiden for generous support. ### REFERENCES AND NOTES - (1) For reviews, see: a) H.E. Zaugg, <u>Synthesis</u>, <u>1984</u>, 85; H.E. Zaugg, <u>ibid.</u>, <u>1984</u>, 181; b) G. R. Lenz, <u>ibid.</u>, <u>1978</u>, 489. See also: c) T. Shono, Y. Matsumura, K. Tsubata, and Y. Sugihara, <u>Tetrahedron Lett.</u>, <u>23</u>, 1201 (1982). - (2) K. Nyberg, Synthesis, 1976, 545. - (3) T. Shono: Electroorganic chemistry as new tool in organic synthesis. Springer-Verlag, Berlin 1984, p. 63. - (4) See the accompanying paper. - (5) K. Warning and M. Mitzlaff, Tetrahedron Lett., 1979, 1565. - (6) M. Mitzlaff, K. Warning, and H. Jensen, Liebigs Ann. Chem., 1978, 1713. - (7) J.K. Stille and Y. Becker, <u>J. Org. Chem.</u>, 45, 2139(1980). - (8) The starting compounds were prepared as follows: <u>1a</u>: treatment of 2,2-dimethyl-5-phenyl1,3-dioxolan-4-one with 1,2,5,6-tetrahydropyridine (2 eq.) in THF(25°C, 45 h, 82.8%); <u>1b</u>: reaction of (-)-camphanic acid chloride and 1,2,5,6-tetrahydropyridine; <u>1c</u>: reduction of <u>1b</u> with 1.5 eq. NaBH₄ in diglyme (120°C, 60 h, 64.6%); <u>1d</u>: methylation of <u>1c</u> (1.1 eq. KH, THF, 0°C; 2.0 eq. CH₃I -60°C→-20°C, 60.4%). Received, 22nd December, 1986