Phosphorus, Sulfur, and Silicon, 1993, Vol. 76, pp. 183–186 © 1993 Gordon and Breach Science Publishers S.A. Reprints available directly from the publisher Photocopying permitted by license only

PHOSPHORUS(V) NITRIDES: PREPARATION, PROPERTIES, AND POSSIBLE APPLICATIONS OF NEW SOLID STATE MATERIALS WITH STRUCTURAL ANALOGIES TO PHOSPHATES AND SILICATES.

WOLFGANG SCHNICK

Institute for Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Str.1, D-5300 Bonn 1, Federal Republic of Germany

<u>Abstract</u> With the synthesis of pure, stoichiometric, and crystalline phosphorus nitride P_3N_5 an essential for the systematic investigation of higher phosphorus nitrides has become available. By solid state reaction of P_3N_5 with Li₃N and Ca₃N₂, respectively, the following ternary compounds have been synthesized and have been characterized by their crystal structures and properties: Li₇PN₄, Li₁₂P₃N₉, Li₁₀P₄N₁₀, LiPN₂, and Ca₂PN₃. By defined heterogeneous ammonolyses of P_3N_5 the phosphorus nitride imides HPN₂ and HP₄N₇ have been obtained. Sodalite-type phosphorus nitrides (e.g. M_{7-x}H_{2x}[P₁₂N₂₄]Z_{2-y}; M=Fe, Co, Ni, Mn etc.; $0 \le x \le 2$; Z=Cl, Br; $0 \le y \le 2$) are accessible via reaction of HPN₂ with metal chlorides MCl₂. Silicon phosphorus nitride SiPN₃ is obtained by ammonolysis of Cl₃SiNPCl₃ followed by pyrolysis in an ammonia stream. All phosphorus nitrides obtained so far contain PN₄-tetrahedra as characteristic building units which may be interconnected by common vertices showing differing degrees of condensation. Practical applications of phosphorus nitrides as solid state electrolytes and pigments are discussed.

INTRODUCTION

In contrast to the huge number of well characterized molecular phosphorus-nitrogencompounds (e.g. phosphazanes, phosphazenes) only fragmentary and contradictory results concerning syntheses, properties, and solid state structures of binary phosphorus(V) nitride as well as its ternary and higher compounds in combination with electropositive elements have been elucidated so far. Starting from the successful synthesis of pure, defined, crystalline, and hydrogen-free P_3N_5 we began a large scale investigation on phosphorus nitrides.

PHOSPHORUS NITRIDE P3N5

Binary phosphorus nitride is accessible via reaction of PCl_5 or $(PNCl_2)_3$ with NH_4Cl according to Eq. (1) and (2). Because of the high amount of HCl formed this reaction

is performed using thick-walled quartz-ampoules [1].

 $(PNCl_2)_3 + 2 NH_4Cl \longrightarrow P_3N_5 + 8 HCl$ (1)

 $3 \text{ PCl}_5 + 5 \text{ NH}_4 \text{Cl} \longrightarrow P_3 \text{N}_5 + 20 \text{ HCl}$ (2)

According to SEM-, XRD-, ED-, HRTEM-, IR-, EXAFS-, ¹⁵N- and ³¹P-MAS-NMRinvestigations phosphorus nitride is obtained as a colorless, microcrystalline solid. It is built up by a three-dimensional framework structure of corner-sharing PN_4 tetrahedra. Two fifths of the nitrogen atoms each are covalently connected to three phosphorus atoms, the rest is bonded only to two P-atoms (average P-N-distance: 160 pm). As revealed by HRTEM and ED in the solid a stacking disorder along the crystallographic c-axis has been found.

ALKALI AND ALKALINE EARTH METAL PHOSPHORUS NITRIDES

Ternary phosphorus nitrides in combination with lithium or calcium are obtained by reaction of the respective metal nitrides and binary phosphorus nitride [2-6] in tungsten crucibles under pure nitrogen atmosphere. Crystallographic data and structural details concerning the P-N-partial structures of these compounds are summarized in Table I.

Compound	Unit cell [pm, ^o]	Spcgrp.	No. of form. units	type of condensation of PN ₄ -tetrahedra
Li ₇ PN ₄	a=936.48(3)	P -4 3 n	8	isolated tetrahedra [2]
Li ₁₂ P ₃ N ₉	$\begin{array}{l} a{=}1207.82(2)\\ b{=}764.05(2)\\ c{=}969.66(3)\\ \beta{=}90.90(2) \end{array}$	Сс	4	rings of 3 tetrahedra [3]
Li ₁₀ P ₄ N ₁₀	a=1230.9(1)	F d -3 m	8	cage of 4 tetrahedra P ₄ O ₁₀ -analogously
LiPN ₂	a=457.5(2)	I -4 2 d	4	β -crystobalite-type
Ca ₂ PN ₃	a=518.92(1) b=1031.16(3) c=1128.45(3)	Cmca	8	infinite chains

TABLE I Crystallographic data and structural details in Li- and Mg-P-N-phases.

As revealed by impedance spectroscopy Li_7PN_4 and $LiPN_2$ are lithium ion conductors. Structural features of $Li_{12}P_3N_9$ and $Li_{10}P_4N_{10}$ also suggest a high lithium ion mobility in the solid.

PHOSPHORUS NITRIDE IMIDES

Phosphorus nitride imides HPN₂ [1] and HP₄N₇ [8] are obtained by heterogeneous ammonolyses of pure and crystalline P_3N_5 according to Eq. (3) and (4), respectively.

$$P_3N_5 + NH_3 \longrightarrow 3 HPN_2$$
 (3)

The reaction is carried out in a quartz ampoule and the ammonia used for this reaction *in situ* is produced by reaction of Mg_3N_2 with NH_4Cl [1].

$$4 P_3 N_5 + N H_4 Cl \longrightarrow 3 H P_4 N_7 + H CL$$
 (4)

Both compounds (HPN₂ : a=461.82(2), c=702.04(3) pm, I -4 2 d, Z=4. HP₄N₇: a=480.33(8), b=710.88(15), c=1508.06(20) pm, β =92.15(1)^o, Z=4) are built up by three-dimensional framework structures of corner-sharing PN₄-tetrahedra with the structure of HP₄N₇ being a shear-variant of the former one [8].

P-N-SODALITES

By using Zn_3N_2 instead of Mg_3N_2 for production of ammonia during ammonolysis of phosphorus nitride (cf. Eq. (3)) the new compound $Zn_5H_4[P_{12}N_{24}]Cl_2$ is formed [9]. By further reaction with $ZnCl_2$ it is transformed to a hydrogen-free compound $Zn_7[P_{12}N_{24}]Cl_2$ (a=824.21(1) pm, I -4 3 m, Z=1). Both compounds are built up by three-dimensional framework-structures of corner-sharing PN₄-tetrahedra. These arrangements are isoelectronic with and topologically equivalent to the well-known (Al/Si)-O-frameworks in normal sodalites [9]. On the basis of 8- and 12-membered rings of alternating P- and N- atoms typical β -cages are formed which are characteristic building units of zeolite-type structures.

Surprisingly P-N-sodalites are also accessible via more simple synthetic routes according to the Eq. (5), (6) and (7).

W. SCHNICK

$5 \operatorname{MCl}_2 + 4 \left(\operatorname{PNCl}_2 \right)_3 + 12 \operatorname{NH}_4 \operatorname{Cl}$	>	$M_{5}H_{4}[P_{12}N_{24}]Cl_{2} + 44 HCl$	(5)
7 $MCl_2 + 4 (PN(NH_2)_2)_3$	>	$M_7[P_{12}N_{24}]Cl_2 + 12 NH_4Cl$	(6)
$5 \text{ MCl}_2 + 12 \text{ HPN}_2$	>	$M_{5}H_{4}[P_{12}N_{24}]Cl_{2} + 8 HCl$	(7)

By these routes we succeeded to synthesize a considerable number of P-N-sodalites containing metal cations M = Co, Ni, Cr, Fe, Cu, Zn, Pb and others. Even mixed P-N-sodalites containing two or more different metal cations are possible.

The most striking features of this new class of compounds are the strong color of some representatives (e.g. Fe, Co, Ni) as well as the remarkable chemical and thermal stability of these compounds (insoluble in common solvents, hot acids and bases; thermal stability up to approximately 800 °C).

SILICON PHOSPHORUS NITRIDE

Silicon phosphorus nitride SiPN₃ is synthesized by low-temperature ammonolysis of Cl₃Si-N=PCl₃ followed by pyrolysis at 900 °C in an ammonia atmosphere [10]. Silicon phosphorus nitride SiPN₃ (a=904.12(6), b=527.96(4), c=470.21(4), C m c 2₁, Z=4) is isostructural with Si₂N₂NH [11] and Si₂N₂O [12]. Above 1000 °C thermal decomposition to α -Si₃N₄ is observed [10].

REFERENCES

- W. Schnick and J. Lücke, Z. Anorg, Allg, Chem., 610, (1992) in press. W. Schnick and J. Lücke, J.Solid State Chem., 87, 101 (1990). 1.
- 2.
- 3. W. Schnick and U.Berger, unpublished.
- W. Schnick and U.Berger, <u>Angew. Chem. Int. Ed. Engl.</u>, <u>30</u>, 830 (1991).
 W. Schnick and J. Lücke, <u>Z. Anorg. Allg. Chem.</u>, <u>588</u>, 19 (1990).
 W. Schnick and V. Büsch, publication in progress. 4.
- 5.
- 6.
- W. Schnick and J. Lücke, Solid State Ionics, 38, 271 (1990). 7.
- 8. W. Schnick and J. Lücke, unpublished.
- W. Schnick and J. Lücke, Angew. Chem. Int. Ed. Engl., 31, 213 (1992).
 H.P. Baldus, J. Lücke, W. Schnick and U. Wannagat, publication in progress.
 D. Peters, H. Jacobs, J. Less-Common. Met., 146, 241 (1989).
- 12. I. Idrestedt, C. Brosset, Acta Chem. Scand., 18, 1879 (1964).