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Abstract. We calculate the propagator for an electron in a time-dependent quadratic 
potential which results from an expansion of the two-centre Coulomb field around its 
saddle point. Exact solutions are obtained for two types of time dependencies, correspond- 
ing to a straight line as well as a Coulomb trajectory for the internuclear motion. 

1. Introduction 

The final state of electrons ejected in energetic ion-atom collisions is, in general, 
dominated by one of the ionic potentials, either the target field in the case of low-energy 
or binary-peak electrons, or the projectile field for electrons with small momenta 
relative to the projectile (cusp electrons). Special interest has been devoted to situations 
where both fields influence the behaviour of the electrons. In the case of high-energy 
electrons ejected by projectile ions much heavier than the target, there is clear experi- 
mental evidence for two-centre effects in the electron spectra (Stolterfoht et al 1987). 
Alternatively, two-centre effects can be probed by considering electrons which propa- 
gate on the saddle of the potential surface produced by the projectile and the target 
ion in a near-symmetric collision (Meckbach et a1 1986). Although apparently strong 
experimental evidence for the saddle-point electrons appearing as a ridge in the beam 
direction could not be reproduced (Suhrez et a1 1988), a peak structure for electron 
velocities around half the beam velocity has been observed at emission angles around 
20°, both experimentally and in a Monte Carlo calculation (Olson et al 1987) and is 
ascribed to the presence of saddle-point electrons. A detailed theoretical study of these 
electrons requires, however, an explicit knowledge of their proper states. 

An approach to formulating the appropriate wavefunction of the saddle-point 
electrons is considered in the present work. An, albeit approximate, wavefunction 
may be constructed by expanding the two-centre Coulomb potential about its saddle 
point. In this manner, an oscillator-type Schrodinger equation with time-dependent 
frequency is recovered, the treatment following closely the Wannier theory for three- 
body Coulomb break-up (Peterkop 1971, Feagin 1984). The wavefunction is most 
readily calculated from the corresponding propagator. 

The propagator for a one-dimensional time-dependent attractive oscillator potential 
has already been calculated, either directly with the help of Feynman’s path integral 
method (Khandekar and Lawande 1975), or by first simplifying the problem via a 
transformation of the timescale and so establishing, with the path integral method, a 
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relation (Lawande and Dhara 1983) to the well known propagator for an oscillator 
with constant frequency (Feynman and Hibbs 1965). Later, an extension was made 
to oscillators with additional time dependence in the mass parameter and, for the 
calculation of the propagator, a spacetime transformation of the classical equations 
of motion was made in order to reduce the action integral to the one for a constant 
mass-constant frequency oscillator, thus avoiding the calculation of path integrals 
(Nassar et a1 1986). Most recently, the three-dimensional case with inclusion of a 
time-varying magnetic field (with fixed orientation) has been solved employing the 
same methods (Nassar and Berg 1986). With an appropriate gauge, this magnetic field 
leads to a term in the Schrodinger equation proportional to the angular momentum 
operator and thus may conveniently be eliminated by transforming into a rotating 
coordinate system, provided the remaining Hamiltonian is rotationally invariant. 

In all these approaches, the propagator is expressed analytically in terms of an 
unknown function which is a solution to an auxiliary differential equation containing 
the explicit time dependencies of the parameters. In this work, we show that the 
propagator can alternatively be obtained by calculating the complete set of quantum 
mechanical eigenfunctions of the appropriately transformed equations, thus avoiding 
the classical methods (§  2). In this manner, the propagator for the time-dependent 
repulsive oscillator is found, which until now has only been achieved for the time- 
independent case (Barton 1986). Subsequently, the time dependence of the propagator 
is calculated explicitly by solving the auxiliary differential equations for a special class 
of time-dependent frequencies ( §  3). Finally, the wavefunction is calculated for initial 
conditions corresponding to a plane wave and a Gaussian wavepacket, respectively 
( 5  4). Concluding remarks are given in 0 5. Atomic units ( h  = m = e = 1) are used 
throughout. 

2. Formulation and evaluation of the propagator 

Let us assume a symmetric one-electron collision system with the nuclear charge of 
projectile and target denoted by Q. Choosing a reference frame centred at the midpoint 
between the two nuclei a distance R( t )  apart, and making an expansion of the potential 
around r = 0 where r is the electronic coordinate, one obtains the saddle-point potential 

Q Q 
[x2+ y 2 +  (z - R/2)*]’/’-[x2+ y2+  ( z  + R/2)2]’/2 

V (  r )  = - 

The z axis has been taken along the internuclear line. For non-head-on collisions the 
internuclear coordinate R ( t )  performs a rotation (in the xz plane) which leads to an 
additional Coriolis coupling. Thus the approximate Schrodinger equation is 

with d = bv/  R2, b the impact parameter, v the collision velocity and i, the angular 
momentum operator. As the Coriolis term implies a considerable complication it is 
usually neglected in the theory for Coulomb break-up. In the present case it may also 
be neglected for small collision velocities. In order to give an estimate for the upper 
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limit on U we approximate L,v by bu and require eL, to be much smaller than the 
potential term 4 Q / R  (which is the dominating one for r<< R / 2 ) .  If we consider the 
saddle-point electrons (with momentum k = u / 2 )  to originate from, e.g., K-shell ionisa- 
tion, the relevant impact parameters are of the order of b - 4 k / (  Q2+  k 2 )  which is the 
inverse minimum momentum transferred to the electron. The condition 4 Q /  R >> bu2/ R 
(> b2u2/ R 2 )  implies Q b 2v, such that the omission of the Coriolis term is justified in 
the adiabatic to intermediate collision energy regime for impact parameters up to the 
inverse momentum transfer for inner-shell ionisation. 

Note also that, if the wavefunction in the saddle region is known at some time to 
such that €/(a) - e( to) << T,  then subsequent evolution of the wayefunction into the 
asymptotic region can be computed using the propagator with bLy omitted. This is 
possible even when the Coriolis term may be important for t < t o .  The discussion in 
Meckbach et a1 (1986) employed just this idea, i.e. the wavefunction was assumed 
known at to = R , / v  with R o = 2  au, and was propagated to infinite times using ( 2 . 2 )  
with the Coriolis term omitted. 

With this approximation, and with the choice of Cartesian coordinates for ( 2 . 2 ) ,  
the three oscillators decouple. Let +(r, t )  = +,(x, t ) ~ , b ~ ( y ,  t ) + 3 ( ~ ,  t ) .  Then each of the 
functions $i obeys a differential equation of the type 

i = l , 2 , 3  
a 1 a’ 

i - + - - + b i ( t ) x f + F i ( t )  ( a t  2 ax: (2.3) 

b1,2(t) = - 8 Q / R 3  

The two other functions, F2 and F 3 ,  may be put equal to zero. Apart from a phase 
factor (due to F, )  the two wavefunctions and +2 are solutions to an identical 
(attractive) oscillator equation, while belongs to a repulsive oscillator potential of 
double strength. 

b3( t )  = 16Q/ R3 Fl (  t )  = 4 Q /  R. 

2.1. Harmonic (attractiue) oscillator 

In order to calculate the wavefunction we reduce ( 2 . 3 )  to the Schrodinger equation 
for a time-independent harmonic oscillator by means of a coordinate transformation, 
a similar method as has been used in the classical calculations (Nassar et a1 1986). 
To this aim we make the ansatz 

CLl(X, t )  = exp(-S(t)x2- Q I ( t ) ) U ( A ( t ) X )  (2 .4 )  

which is a generalisation of the conventional form (Peterkop 1971, Feagin 1984, 
Meckbach et a1 1986). Upon substitution into (2.3) for i = 1 one obtains with 5 = A (  t )x  
the differential equation for the Hermite polynomials 

du  d2u 
d 5  d 5  

2nu( 5) - 25-+ 7 = 0 n = 0 , 1 , 2 , .  . . (2 .5)  

with solution U , , ( [ )  = N,,H, , ( t ) ,  N,, being a constant (Abramowitz and Stegun 1965, p 
781) ,  provided the functions S ( t ) ,  Q l ( t )  and A ( t )  obey the following relations: 

-iS+2S2+ b ,  = O  

-io, - S +  Fl = nA2 (2 .6)  

iA - 2SA = - A 3  
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where a dot denotes the time derivative. These equations can be solved in terms of 
an auxiliary function w(t)  which is a solution to the oscillator equation 

W -2bl  w = O .  (2.7) 

Explicitly, one finds 

i w  s=- - -  
2 w  

A’= S+S* = 2  Re S 

where to is some initial time and the integration constant for Q1 has been dropped. 
Thus, the general solution to (2.3) for i = 1 is given by 

The constant N, has been determined from the normalisation of (Clln(x, t = to)  to unity. 
Like the wavefunction, the propagator defining arbitrary solutions to the Schrodin- 

ger equation (2.2) can be factorised in Cartesian coordinates 

K ( r ,  t ;  ro, t o )  = KI(X, t ;  xo, tO)K’(Y, t ;  Y o ,  t O ) K 3 ( Z ,  t ;  zo, t o )  (2.10) 

and the propagators K ,  are constructed from 

Kr(x,, t ;  xro, t o )  = E  ( C l i n ( x t ,  t)(~lZ(xio, to)  i =1 ,2  (2.1 1) 
n 

where the summation runs over the complete set of eigenstates of (2.3). Upon insertion 
of the solutions (2.9) and with the help of the completeness relation of the eigenfunctions 
of the stationary harmonic oscillator (Feynman and Hibbs 1965), the propagator in 
the x direction becomes 

It can be shown that (2.12), together with (2.6) and (2.7), agrees with the result found 
previously (Khandekar and Lawande 1975, Lawande and Dhara 1983), and that it 
reduces to the well known result for constant frequency -2bl( t )  = wg (Feynman and 
Hibbs 1965). The propagator K 2  is also given by (2.12) with omission of the phase 
exp(i j:, F,  dt) .  

Although one may get the impression from expression (2.12) that the propagator 
depends on the boundary conditions imposed on the system at the point (xo, to) ,  this 
is actually not the case. In order to demonstrate this we rewrite K ,  by inserting the 



Time-dependent two-centre model potential 4155 

definitions (2.8) for S and A in terms of w, and by using the identity 
A( to) exp(iqo( t)/2)( w (  to)/ w (  t ) ) ' l 2  = (A(t)A(to))l /2 we have 

where these abbreviations have been introduced: 

PI ( t , ,  tz )  = k(tl)w*(tz) - w*(fl)w(t*) 

TI(t1, t*) = W(fl)W*(f2) - W*(fl)W(tZ). 
(2.14) 

The general solution w ( t )  of the second-order differential equation (2.7) is obtained 
as a superposition of two linearly independent solutions w,( t )  and w b (  t ) :  

(2.15) 

with complex constants A, and Ab.  It is immediately seen from the structure of (2.13) 
that only ratios of the functions w or their derivatives enter into K1. Thus, K1 will, 
at most, depend on the ratio Ab/,+, and we may set A, = 1. Upon insertion of (2.15) 
into (2.13) with (2.14), and using real basis functions w, and wb, the propagator retains 
the form (2.13), but now with the definitions 

W ( 1) = ha Wa ( t )  f A h  Wb ( t )  

(2.16) 

The complete arbitrariness of the functions w, and w b  (apart from the required linear 
independence) ensures that the propagator does not depend on the boundary condi- 
tions. 

2.2. Inverse harmonic oscillator 

We now proceed to the solutions of (2.3) for i = 3 ,  i.e. with a positive potential. 
Insertion of the ansatz 

(2.17) 

with real functions S3 and A, into (2.3) leads to the following differential equation: 
+3(z, t )  = exp(-iS3(t)z2- Q3(f))u3(A3(t)~) 

d2u3 du, 
-- 2i5--+2KU,(5) = 0 4' = A3( t)z. a2 d 5  

(2.18) 

Its solutions u3(5)  = NE exp(ic2/2)E*(-&, t )  can be expressed in terms of the 
parabolic cylinder functions E* to positive energy E, where K = E -i/2, and NE a 
constant (Barton 1986, Abramowitz and Stegun 1965, p 692). Equation (2.18) holds, 
provided the functions S 3 ,  Q3 and A3 obey the relations 

3 3  - 2S:f b3 = o  
iA, - 2iS3A3 = -iAi 

-iQ3 - i s 3  = KA:. 

be two linearly independent real solutions of the auxiliary equation 
v-2b3v=0. (2.20) 

(2.19) 

Let U, and 
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Then the solutions to (2.19) are obtained similarly as in § 2 in the following form: 
3 -I. A:=S3+S3 3 - 2 v b /  v b  

s -2. / 
3 -  20, v a  

(2.21) 

with to defining some initial time. From this, the general solution to the inverse 
harmonic oscillator is obtained: 

exp($iA:z2)E*(-s, f i  A3z) $,(z, t )  = N, exp(-iS,z’) (%p) - 4 ( t )  - l i e - ;  

(2.22) 
21/4~:’2( t o )  

(4.r)”*[ 1 + exp( -2m)]”’  ‘ 
NE = 

v a  ( t o )  v h  ( t )  
v a  ( t )  v b (  t o )  

4 ( t )  = 

The normalisation constant NE has been chosen such that $, is 8-normalised in energy 
at t = to (Barton 1986). 

Generalising the results of the time-independent inverse oscillator (Barton 1986), 
the propagator K3 is readily obtained: 

cc 

i 
(2 sinh($ In 4 (  t ) )  [(A:( t)z2 + A:( to)zi) cosh(+ In 4( t ) )  

- 2A3( to)A3( r)ZZo1).  (2.23) 

This expression is basically of the same structure as the propagator (2.12) for the 
attractive oscillator. In fact, since A3( to)( va( t o ) / v a (  t ) ) ”24 (  t ) - ” 4  = (A3( t)A3( 
K3 can be cast into a form identical to (2.13): 

( P3(f0,  I O ) )  1’2 K3(Z, t ;  zo, t o )  = - (2T1)”* T,(t, t o )  

P3(tl, f 2 ) =  U a ( t I ) U b ( t Z ) - U b ( f l ) U a ( f 2 )  T 3 ( t l  5 f 2 )  = v a ( t l ) U b ( f 2 ) -  v b ( t l ) V a ( t 2 ) *  

The sign of the quadratic potential is thus irrelevant for the construction of the 
propagator; it enters only into the differential equation for the auxiliary functions (2.7) 
or (2.20). 

3. Solutions of the oscillator equation for specific time dependencies 

The explicit time dependence of the propagator is obtained by solving the auxiliary 
differential equation: 

d2w 16QAi 1 i = 1 , 2  -+- w = o  
dt’ R ( t ) 3  -2 i = 3 .  (3.1) 
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Recalling that in the underlying physical problem, R( t )  describes the internuclear 
distance, we shall solve (3.1) for four cases: ( a )  straight-line trajectory with zero impact 
parameter, (b )  straight-line trajectory with non-zero impact parameter, (c) Coulomb 
trajectory with zero impact parameter, and ( d )  Coulomb trajectory with b # 0. 

3.1. Straight-line trajectory with b = 0: R = v/t l  

We include this simplest case of time dependence only for the sake of completeness, 
as it is closely related to the Wannier theory of threshold ionisation (Peterkop 1971, 
Feagin 1984) and has been solved previously (Meckbach et a1 1986). 

Making in (3.1) the substitution x =  l / t  and introducing p = 16QA,/v3 one obtains 

d2w dw 
dx dx  

x2  r+ 2x-+ PXW(X) = 0. (3.2) 

Its solution can be expressed in terms of the Bessel functions w(x)=  
/ ~ l - ” ~ Z , ( 2 ( p l x l ) ” ~ )  (Kamke 1967, p 440). Thus two linearly independent solutions are 

w,(t)  = I ~I”’J1(2(P/l t1)”2) W b ( t )  = It1”2Yl(2(P/It1)1’2) (3.3) 

J1 and Yl being Bessel functions of the first and second kind, respectively (Abramowitz 
and Stegun 1965, p 358). 

3.2. Straight-line trajectory with b # 0:  R = (b2+ v 2 t 2 ) ” *  

We introduce a new variable y = 1 - b/ R with the property y = 0 at t = 0 and obtain 
from (3.1) 

(3.4) 

with 6 = 16QAi/(v2b). This is a special case of Heun’s differential equation, which in 
its general form is (Kamke 1967, p 485) 

d2h d h  
y ( y  - l)(y - a )  -+{(a + p  + 1)y2- [a  + p  + 1 + a ( y +  8) - S ] y + a y )  - 

dY dY 

+ (aPy - q ) h ( y  1 = 0. (3.5) 

Its solution, the function h ( a ,  q ;  a, p, y, S ,  y )  depends on the parameters introduced 
in (3.5). This function resembles in many aspects the hypergeometric function (Kamke 
1967). 

For arguments lyl< 1 the first solution of (3.5), which will be termed the Heun 
function, is defined by the series representation: 

m 

h l b )  = h ( a ,  9 ;  a, P, 7, 6, v) = 1 + c cnyn cg=  1 CI = q / ( a y )  

= [ a ( r +  S + n - 1 ) +  a + p  - S + n + q / n ] n c ,  

- [ ( n  - l ) ( n  - 2 ) +  ( n  - l ) ( a  + P  + 1) + aP]c,-,  n a l  

(3.6) 
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if la1 2 1 and y # 0, -1, -2,. . . . The second solution of (3.5), which is linearly indepen- 
dent of (3.6), is for / y /  # 0, 1 , 2 , .  . . , given by 

h2(y)=lY11-Yh(a,q1; a - y + l , P - y + 1 , 2 - y ,  & Y )  
(3.7) 

q1 = q + ( a  - y +  1)(P - y +  1) -aP + S ( y -  1)(1 - a ) .  

If the argument lyJ 3 1 or / a ]  < 1, the solution to (3.5) is obtained from transformation 
formulas of the Heun function (Kamke 1967, p 486). 

For the special case of our differential equation (3.4), the two solutions for y < 1 
are given by 

m 

n = O  

n 2 2 .  

For l t l+m one has y +  1, such that the transformation formulae have to be used. 
Equivalently, a variable transformation x = 1 - y = b/ R can be applied to (3.4), such 
that x + 0 for I tl + CO. The solutions valid for x < 1 are 

do(x)  = 1 + c dnx"  do= 1 d 1 -  - - L A  2 a  d-I = O  
m 

n = 1  

(3.9) 

[2( n - 2) dfl-3 - (2n - l)dfl- I + ( n  - 3)( n - 1) bn-2 - &bn-l] 
1 

bn=- 
n(n - 1) 

As the solution d,  corresponds to an integer parameter y, the function d b  had to be 
found as in the case of the hypergeometric differential equation from, for example, 
the method of Frobenius (Kamke 1967, p 82). 

In order to extend the solutions w,(y) and wb(y) to y + 1, they have to be expanded 
in the basis { d o ( l  - y ) ,  db(1 - y ) } ,  the expansion coefficients being obtained from the 
matching condition at two intermediate points (e.g. at y = 0.4,0.5). Figure 1 illustrates 
the behaviour of w,(y) for different values of the parameter &. w,(y) = 1 for y = 0 and 
diverges at y = 1 like (y - I)- '  in addition to a logarithmic singularity (cf (3.9)). The 
second solution w b ( y )  behaves qualitatively similar to w,(y), except that it is zero (and 
non-analytical) at y = 0. Increasing the modulus of the parameter & introduces more 
and more oscillations, together with an increase of the functional values at the extrema. 

It should be noted that the b = 0 case cannot trivially be obtained as a special case 
of the above solutions, since 6 enters as a scale parameter into (3.4). 

n z 2 .  
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Figure 1. The Heun function w , ( y )  = h(2 ,  - 6 ;  0,2,  $, 2, y )  for different values of the 

variable y is restricted to O s y <  1. 
parameter 6,  -.-: & = - I .  -: & = 2 ,  ---. . o? = 5 .  In the present context, the 

3.3. Coulomb trajectory with b=0:  R = d ( l + ~ c o s h ~ ) ,  t = ( d / v ) ( & s i n h T + ~ )  

The Coulomb trajectory in its parametric representation (-00 < T < 00) is characterised 
by the internuclear distance 2d in a head-on collision and by the eccentricity E which 
is unity for b = 0. 

Introducing the new variable p = R/2d = !( 1 + E cosh T ) ,  the differential equation 
(3.1) transforms into 

d’w dw 8QA. 
dP dp  dv2 

[p3-p2+$p(1 -&’)]--y+[;p-;(l-&’)]-+- w(p)=O. 

For zero impact parameter, i.e. E = 1, this equation reduces to 

2 d’w p d w  8QA. 
p ( p  - 1) 7+- -+-+ w (  p )  = 0. dp  2 dp du 

(3.10) 

(3.11) 

This equation is also of Heun type (3.5), but as we have the special case of the parameter 
a = 0, a further reduction of the Heun function to the hypergeometric function ’ F ,  is 
possible (Kamke 1967, p 470). The two solutions are 

(3.12) 

Since in our case a # P, the two functions w ,  and Wb are indeed linearly independent. 
For p 3 1, the appropriate transformation formulae have to be used (Abramowitz and 
Stegun 1965, p 559). 
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3.4. Coulomb trajectory with b # 0 

In this case we have to solve (3.10) for E > 1. This equation is related to Heun’s 
equation, as can be seen through a variable transformation 5 = (1 + E ) / ~ E  - p /  E = 
;( 1 -cosh T )  (Kamke 1967, p 487). The solution is 

* 0, -1,;, -1, - 2E 5) 16QAi w,(5) = h (” 
1 + E ’  dv2 (1 + E ) ’  l S E  

(3.13) 

16QAi 1 1 - E  --+- 
“ = d v 2 ( l + E )  4 2 ( 1 + ~ ) ‘  

For 1 2 ~ / ( 1 +  
have to be applied for the construction of the solutions. 

the transformed solution 

2 1, transformation formulae, as well as the method of Frobenius, 

The special case of b = 0 (i.e. E = 1) is easily recovered by using, instead of w,((), 

(3.14) 

which can be expressed as a linear combination of the solutions w,(p) and w b ( p )  
from (3.12). 

4. Calculation of the electronic wavefunction 

The wavefunction $(r ,  t )  can be represented by a linear combination of solutions to 
the Schrodinger equation (2.2), with expansion coefficients aK which are determined 
from the initial condition $ ( r ,  t )  = $(r ,  to)  at time to .  Thus it can be expressed in terms 
of the propagator 

$ ( r 9  ‘1 = f a K $ K ( r 9  ‘1 = dro K ( r ,  r o ,  to)$L(ro, lo) i (4.1) 

where the definitions from (2.10), (2.11) and (2.23) have been used, and K comprises 
the quantum numbers n and energies E.  Due to the Gaussian-type ro dependence of 
K,  this integral is easily evaluated. As a first example, we consider a wavefunction 
which develops from a plane wave 

1 
$ k ( r O ,  to)  =03/2 exp(ik ro) exp(-ik’to/2) (4.2) 

which is a solution to the Schrodinger equation at to+ --CC (apart from a Coulomb 
phase). With this, the wavefunction is calculated from (4.1) to be 
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with P2 = PI and T2 = T, from (2.16). If one employs, for example, the time dependence 
of a ( b  # 0) straight-line path, it is found that, for small times t = 0, the wave travels 
with a momentum different from k,  apart from a phase depending quadratically on 
the coordinates. At t + fco,  & ( r ,  t )  returns basically into the plane-wave form (4.2), 
having accumulated a Coulomb phase. 

As a second example we consider the motion of a Gaussian wavepacket, which 
has been investigated previously for a b = 0 straight-line path (Meckbach et a1 1986): 

$p(ro,  to) = (@/A)”’ exp(-$’ri) exp(-3i~*t, /2).  (4.4) 

From (4.1) we then obtain 

(4.5) 

Taking, for example, to = 0, it is found that, for large times t ,  the width of the wavepacket 
increases with t while the normalisation factor decreases with t-3’2,  which means that 
the electronic density distribution eventually spreads over the whole space, albeit 
differently in ( x , y )  and z direction (Meckbach et a1 1986). This does, however, not 
influence the norm of the wavefunction, which is unity. 

5. Concluding remarks 

In a reference frame fixed at the saddle point of the two-centre Coulomb potential, 
we have shown that the Schrodinger equation for an electron can be solved exactly 
for some classes of time dependencies of the internuclear distance, if the Coulomb 
field is expanded up to second order around the origin. The functional dependence 
of the corresponding propagator is found to be independent of the sign of the potential, 
such that the three spatial coordinates can be treated on the same footing. For an 
input time dependence of a straight-line motion or a Coulomb trajectory, the relevant 
function which governs the time dependence of the wavefunction is the Heun function, 
which in special cases reduces to the hypergeometric function. 

In a physical situation of interest, the wavefunction has to be known in the laboratory 
frame of reference, i.e. the target rest system. For collinear moving nuclei, e.g. for 
zero impact parameter trajectories, the target-centred wavefunction cLT( rT, t )  is simply 
obtained from the saddle-point-centred function $( r, t )  by a frame transformation, 
since the saddle-point frame coincides with the centre-of-mass frame (which is an 
inertial system) 

with $ ( r ,  t )  from (4.1). For a planar internuclear motion ( b  # 0), on the other hand, 
the saddle-point system has to be considered as a rotating reference frame, since the 
z axis is taken along the internuclear coordinate R. In this respect, the function $ ( r ,  t )  
is-in c2ntrast to the b = 0 case-only an approximate solution, because the centrifugal 
term eL, in the Schrodinger equation has been omitted. The transformation to the 
target frame includes a rotation, in addition to the translation (5.1). 
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