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Abstract. The ejection of electrons from light target atoms by bare heavy projectiles is 
described by means of electron capture to the continuum. Calculations of the energy 
distribution of the electrons are performed within the semiclassical impulse approximation 
and compared with other theories. As special cases, collisions of Kr with H and Ar with 
He are considered. Experimental data of the electron spectrum in the forward peak region 
in (Ar, He) collisions can be well explained. 

1. Introduction 

With the advent of powerful heavy-ion accelerators the study of electronic processes 
initiated by fast highly-ionised heavy projectiles has become experimentally accessible. 
Until now, electron emission in fast collisions was mainly examined in light systems 
(Rudd et a1 1966, Dettmann et a1 1974, Folkmann et a1 1975), but recently heavy 
projectiles have also been used (Breinig et a1 1982) in order to investigate the influence 
of strong perturbing fields. The ionisation of target electrons caused by strong external 
fields can no longer be described by the first-order Born approximation. This was 
recognised long ago by Oldham (1967) in connection with the forward peak which is 
due to electrons that are ejected with a low velocity relative to the projectile. This 
peak can only be explained if the interaction with the projectile is included to all 
orders. Macek (1970) performed calculations retaining the first-order terms of the 
three-body Faddeev expansion (Faddeev 1961), and Band (1974) used a linear 
combination of atomic orbitals, including a projectile and target continuum state, 
which reduces to the first order Born theory at high collision velocities. Dettmann et 
a1 (1974) pointed out that the forward peak can be described by means of charge 
transfer to the continuum (CTC) indicating that a higher-order theory is necessary for 
a quantitative understanding. There have been several higher-order approaches, 
among them the second-order Born approximation (Dettmann et a1 1974, Shakeshaft 
and Spruch 1978, Miraglia and Ponce 1980), as well as a distorted-wave Born 
approximation (Salin 1969, Garibotti and Miraglia 1980) where the final electronic 
state is described by a product function of a projectile and a target eigenstate. In all 
these theories a high-velocity approximation is introduced to make their application 
feasible, at the expense of a restricted validity requiring asymptotically large collision 
velocities. 
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The calculations also included electron energies outside the forward peak region 
and, for the symmetric systems studied, there were again found deviations from the 
first-order Born theory (Salin 1969, Miraglia and Ponce 1980). However, the choice 
of a projectile eigenstate for the emitted electron, as done in the CTC theories, is only 
valid as long as the interaction with the projectile dominates. Recently, an approxima- 
tion based on the Faddeev theory has been suggested which includes a higher-order 
interaction of the electron with both the projectile and the target, thereby allowing 
for a projectile as well as a target final electronic state (Jakubassa-Amundsen 1981). 

For very asymmetric systems where a large region of the spectrum originates froin 
electrons which move predominantly in the projectile field, the impulse approximation 
may be applied (McDowell 1961, Briggs 1977), which includes the strong field to all 
orders and the weak field to first order and has been successfully used for charge 
transfer into bound states (Jakubassa-Amundsen and Amundsen 1980). This theory 
includes the second Born approximation but goes beyond it, which will be important 
for large perturbing fields. For very high collision velocities, the impulse approximation 
coincides with the second Born theory and thus has the right asymptotic behaviour. 

In this paper we apply the semiclassical impulse approximation (SCIA) to continuum 
charge transfer without introducing a high-velocity approximation. Section 2 contains 
the theoretical formulation valid for bare projectiles and one-electron target atoms, 
and in § 3 we extend the theory to arbitrary target atoms. The validity of the SCIA 

for target ionisation is discussed in § 4, and numerical results are presented in 0 5 .  A 
short conclusion follows (§ 6). Atomic units are used ( h  = m = e = 1) unless otherwise 
indicated. 

2. Continuum charge transfer in the impulse approximation 

2.1. General theory 

Let us consider the ionisation of a one-electron target (with charge 2,) by a bare 
projectile (charge Zp). We use the semiclassical theory where the internuclear motion 
is described by a classical trajectory R( t ) ,  as it is somewhat easier to handle than 
the equivalent wave treatment. Generalising the theory for capture of a target electron 
by a heavy projectile (Briggs 1977) to the capture into the continuum of the projectile, 
the transition amplitude is in the semiclassical impulse approximation for 2, >>ZT 
given by 

where $Eq are projectile continuum states with momentum Kf and q, respectively, $7 
is the initial bound target state, and VT the target field. The projectile system has 
been chosen as frame of reference. As we consider fast collisions, the internuclear 
motion can be described by a straight line trajectory R = b +ut with impact parameter 
b and collision velocity U. Introducing the Fourier transform of VT and the translational 
factor of $?, (2.1) can be written as 

afi = $ dt dq qT(q + U )  exp(iq 6) 7 exp[is - (b  + ut)]  1: 
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where cpy(q+v) is the momentum representation of the target wavefunction, Ei is 
the initial and rf = ~ f / 2  the final electron energy as viewed from the projectile frame. 
This formulation contains the inelastic scattering matrix element for a projectile 
continuum state which implies that after ejection into the state JI,' by means of the 
strong projectile field, the electron is scattered by the target field into its final state. 
The formula is complicated by the fact that three different momenta occur, the 
momentum of the ejected electron, Kf, the momentum brought into the collision by 
means of the target field, s, and the momentum of the intermediate scattering state 
of the electron, q. 

The time integral in (2.2) can be immediately done, yielding 27r8(.5f-E, + u 2 / 2  + 
(q +s) . U ) .  As we are interested in the differential cross section with respect to the 
electron degrees of freedom, we have to integrate over impact parameter according to 

d 2 a  -- - Kf I d2b lufi12, 
dEf dflf (2.3) 

We now introduce the electron momentum after the action of the target field 

41 ' 4  +s ( 2 . 4 ~ )  

and by means of a variable shift from q to q1 the integral over b is easily performed. 
We are, however, interested in the double differential cross section in the laboratory 

frame. Thus we introduce the total momentum transferred to the electron, q2, and 
the final momentum of the electron, kf, in the target frame of reference via the relations 
(as illustrated in figure 1) 

(2.4b) 

and define the final electron energy Ef = kf2/2. For computational convenience we 
also transform the coordinate s to the variable so (which is identical to the old variable 
q )  by means of so =q1 -s. Then we obtain together with (2.4b): 

Figure 1. Relations between the electron momenta as viewed from the projectile and the 
target frame, respectively. 
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When Coulomb waves are inserted for I+& and $:o, the scattering matrix element 
can be calculated analytically, as it can be expressed as a derivative of a matrix element 
evaluated by Nordsieck (1954) 

(+P,Iexp(is 8 r ) Ido)  

= lim E -0 (- $) [ d r  $:: (r)r-l exp(is * r - Er)4:o(r) 

where 2F1 is a hypergeometric function, r the gamma function, vf = & / K ~ ,  vo = Zp/so 
and we have introduced the abbreviations 

CY = q;/2 p = K f  *q2-iE 
(2.7) 

y = s o  * q 2 - q 2 / 2 + i ~  2 8 =KfSo+Kf * (So-(12)fiE E +o.  

2.2. Peaking approximation 

Unless Kf = kf - U is parallel to U none of the five nontrivial integrals of (2.5) can be 
performed analytically, due to the complicated structure of M. In order to do any 
numerical evaluation of (2.5) we have to introduce a peaking approximation, in a 
similar way as we have done for bound-state charge transfer (Jakubassa-Amundsen 
and Amundsen 1980). As the Fourier transform cpT(so+u) is strongly peaked at 
so = -U the main contribution to the integral over so comes from the region around 
-U. Keeping in mind that the momentum transfer is mainly along the direction of U 
(which we take as z axis), we replace so by sOze, in the matrix element, thus putting 
the momentum components sol perpendicular to U equal to zero while allowing for 
a variation of the z component around --U. This approximation is better the smaller 
v i / v  is, where v i  is the electron orbiting velocity in the initial state. Note that, in 
contrast to the bound-state charge transfer, a peaking approximation where so is set 
equal to -U is not possible, as this would introduce a non-integrable singularity at y = 0. 

With the above approximation, the integration over the momentum components 
so,. can be performed. For a target 1s state, it yields 

with 
2 p ;  = z+ + ( soz  + - U ) 2  qo = ( 4 2 2  + k f Z  - 0  - S o J 2  
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Then (2.5) can be written in the form 

d q z =  m 
-=-- d2g 32 kfZ; 77f 
dEfdf& 7T3 u 2  1-exp(-2.rrqf) I,,,. q: Io d(pq 

m 2 

dSOz f o ( q 2 ,  soz) exp(-rvo/q)r( l  - im)M(q2, Sorez)  1 I!-, (2.9) 

where qmin = - q z 2  = (k;/2- Ei)/v. In order to get convergence, it is sufficient to 
integrate over a small region of soz around -U. The angle (p, appears in the product 
42 * kf  = kf(qzz cos 6f + (q; -qZz) sin 6f cos (p,) which is contained in both f o  and M. 
If the electron is ejected parallel to the beam direction (flf = O", 180"), the dependence 
on (p, disappears and the (p, integral is replaced by 7 ~ .  

2 112 

2.3. Properties of the scattering matrix element and the cross section 

The structure of the energy distribution of the emitted electrons can be extracted 
from (2.9) without further evaluation. For this aim we look for conditions for the 
momenta so and q2 where the integrand becomes very large. The matrix element 
M(q, ,  so) is singular for y = 0. Together with the choice so = -U where (pT is peaked, 
it follows from (2.7) 

(2.10) 

The z . component of q2 is determined by the energy conservation such that we have 

y = -U * q2-q;/2 = 0. 

where we have introduced the polar angle 6, of q2.  In order to obtain an equation 
determining kf,  i.e. to find a,, we use the fact that the Fourier transform of VT 
enhances small momentum components s. From (2.5) it follows (with so = -U) that 
for fixed q2, s has its smallest value when 42 has the opposite direction of k f :  

42 = -c& co>o (2.12) 

which means that cos 19, =-cos 6f. Inserting this into (2.11) we find the desired 
equation 

2~ COS' 6f = k:/2 - Ei. (2.13) 

For Ei << u2/2 we can neglect Ei in the above equation if kf is of the order of U, and 
obtain kf = 2u cos 6p Thus we find again the binary encounter peak from the first-order 
theory. 

In addition to this binary encounter peak the differential cross section shows 
the forward peak at Tf = 00, i.e. kf  = U which arises from the fact that the final state 
has been chosen as eigenstate to the projectile. There is an interesting phenomenon 
connected with the forward peak. Even if one removes the divergent normalisation 
factor of I&, there remains a discontinuity at kf = u for ar = 0 in contrast to the first 
Born approximation. This has been predicted by Lucas et a1 (1980) from the assump- 
tion of continuity of the capture amplitudes across the ionisation threshold of the 
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projectile. However, from this argument it is not clear why the first-order Brinkman- 
Kramers theory for capture (where $Fo in (2.5) is replaced by a plane wave), although 
dependent on q in an asymmetric way, does not show this phenomenon. 

The discontinuity originates from the matrix element M(q2,  so), Inorder to demon- 
strate this, we put so = -U and q2 = qzzez where the main contribution to the integrals 
comes from. Then it follows from (2.7) that y = 3v2/8 > 0 ,  while p = - v u K ~ / ~ ,  S = VKf/2 
if k f  > v and p = v ~ f / 2 ,  S = 3 v ~ f / 2  if kf < v where we retained only the leading terms 
in K? This means that p and S go simultaneously to zero for kf = v, When S + 0 and 
p +. 0 for qf + 00, the hypergeometric functions in (2.6) may be reduced according to 

(2.14) 

Thus, the hypergeometric function is approximately 1 for kf + v - 0, while it has a 
different value when kf approaches v from above. In addition, there is a discontinuity 
in the phase because 

( y  + ~ ) - ' " f =  exp[-iqf(ln y + s l y ) ]  (2.15) 

is different for kf > U  and k f < v .  For af # 0, qf is finite and the zeros of /3 and S do 
not coincide independently of the integration variables, such that the matrix element 
is continuous in that case. 

As has been pointed Qut by Lucas et a1 (1980) the discontinuity may be understood 
by means of a transformation to the projectile frame. In this frame, electrons with 
k f < v  are ejected into the backward direction (antiparallel to U, i.e. in the same 
direction as the target motion). Electrons with kf > U are ejected with a lower intensity, 
as they move in the opposite direction from the target (i.e. parallel to U). 

3. CTC from a screened target 

If the target has more than one electron, both the initial electronic wavefunction and 
the target potential have to be modified. These modifications can easily be incorpor- 
ated into our theory if the single particle approximation is used, implying that the 
motion of the active electron is described by an effective potential. The potential of 
an electron in the field of the target ion of (ionic) charge Zi may be approximated by 
(Nielsen and Dahler 1977) 

where the parameter d is determined such that the expectation value of the Hamil- 
tonian HT = -A/2 + VT(r) equals the experimental binding energy of the electron 
under consideration. 
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The electronic wavefunction may be expressed as a Slater determinant of one- 
electron orbitals, the space parts of which have the form (Clementi and Roetti 1974) 

where I and m denote the angular momentum quantum numbers of the initial state, 
and the parameters ci, ti and n (i = 1 , .  . . , n )  are determined from an analytical fit to 
a Hartree-Fock calculation. In the case of a helium target they are given in the 
appendix. 

The Fourier transforms of the wavefunction and the potential enter into the 
evaluation of the transition amplitude (2.3) 

He 
(3.3) 

The doubly differential cross section for electron emission can still be obtained from 
(2.8) with ZT set equal to 1 and f 0 ( q 2 , s o r ) ,  i.e. the integral in (2.8), replaced by 
f? (42, s o z )  which is derived in the appendix. 

The effect of using a screened, i.e. weaker, target field is generally a lowering of 
the cross section compared with the unscreened case, while the application of a 
modified wavefunction may have effects in both directions, depending on the magni- 
tude of the transferred momentum. Near the forward peak, i.e. for the production 
of electrons with energy of about v2/2, a large momentum has to be transferred, 
which implies that the small-r behaviour of I): enters the cross section. In the region 
of the binary encounter peak, however, the transferred momentum may be very small 
such that 4: at large r gives the dominant contribution. In the case of a He target, 
for example, a hydrogenic wavefunction with an effective charge of 1.75 can reproduce 
the forward peak intensity quite well. Note that for fast collisions the influence of 
the screening of the target field amounts to only a few per cent for Ef >> /Eil, as only 
the high Fourier components of VT play a role. 

4, Validity of the impulse approximation 

The impulse approximation (2.2) can be derived from the Faddeev theory (Faddeev 
1961) which provides an expansion of the exact two-potential scattering state $; 

($iI=($ol(l+ VTGT+ VpGp+ VpGpVTGT+ VTGTVpGp+ V ~ G ~ V T G T V ~ G ~ + .  . . )  
(4.1) 

in terms of the electron Green's functions GT,P of the target and projectile acting on 
a plane wave If all but the first-order terms in the weak target field VT are 
neglected in (4.1), and this approximation for 47 inserted into the transition amplitude 

m 

afi = -i dt ($7 / Vp/$T) (4.2) I_, 
one obtains an equation of type (2.2) with an off-shell continuum wavefunction in place 
of $: (Jakubassa-Amundsen and Amundsen 1980). Thus the SCIA theory (2.2) 
involves two approximations, retaining only first-order terms in VT and going on-shell. 
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As shown in Jakubassa-Amundsen (1981) the omission of higher-order terms is 
only possible as long as the motion of the electron is governed by the strong potential 
Vp. If the electron moves slowly with respect to the target ( k f  + 0), it will be in a 
target eigenstate which is included in (4.1) but not in (2.1). A target eigenstate at 
low energy is characterised by the divergence of its normalisation constant as k; l l2  
which mirrors the strong attraction and thus multiple interaction between electron 
and target nucleus. A theory like the impulse approximation which does not include 
the target field to all orders can not reproduce the k j ’  behaviour of the differential 
cross section dcr/dkf, and therefore does not lead to a non-zero value for du/dEf at 
kf = 0, as it should. 

However, for very asymmetric collision systems the range of validity of (2.1) 
extends to rather small values of k f .  For an estimate, we apply a classical picture and 
assume that the impulse approximation ceases to be valid when the potential energy 
of the electron in the projectile and target field becomes equal. As shown in figure 2, 
the electron which is ejected with momentum kf has moved a distance k p  after time 
7, while the projectile has moved a distance VT away from the target (for b = O ) .  

P- 

Figure 2. Coordinate system showing the distances of the electron and the projectile from 
the target at time T after the collision. 

Equating the electron’s energy in the projectile and target field, we find 

Z T  Z P  

kfr ~ [ ( v  - kf  cos af)’ + k:  sin2 8fI1/* * 

-= (4.3) 

For asymmetric systems (ZT/Zp<< 1) this leads, independently of the angle 6f, to the 
condition 

(4.4) 
Z T  

Z P  
’-V k f  ,.- 

which excludes only the low-velocity part of the electron spectrum. Note, however, 
that (2.1) fails to describe the total cross sections as they are dominated by this region. 

The effect of off-shell wavefunctions has been investigated for charge transfer to 
bound states, where the exact off -shell function is approximated by the Coulomb wave 
I,$: times a constant normalisation factor (Okubo and Feldman 1960, Jakubassa- 
Amundsen and Amundsen 1981, Macek and Alston 1982). The corrections thereby 
introduced are at most of the order of u e / v  for v ue, where ue is the electron orbiting 
velocity of the heavy particle (projectile) bound state, and they are no larger for 
L-shell than for K-shell capture. As v e / v  decreases when the continuum threshold 
is approached, one expects that the off-shell effects may be neglected for continuum 
charge transfer. This is supported by the fact that the off-shell function is, like the 
Coulomb wave, asymptotically normalised to a plane wave. 



Electron emission in asymmetric collisions 1775 

When the off-shell function is approximated in the same way as for bound-state 
charge transfer, the integral over the momentum soL (cf (2.8)) has to be done numeri- 
cally. We have performed test calculations for the case of 1 9 ~  = 0 and found that the 
on-shell results were overestimated in the region of the forward peak by 20-60%; 
however, much more around the binary encounter peak. The failure of the sim.ple 
renormalisation to describe the off -shell correction for CTC may be explained by 
recalling that considerable contributions to the scattering matrix element ($;I VTI$:) 
come from large r, where the off-shell function is not correctly described by a 
renormalised Coulomb wave. 

5, Numerical results and comparison with other theories and experiment 

We have evaluated the doubly differential cross section for electron emission in (Kr, H)  
and (Ar, He) collisions at 20 MeV/N and 8.18 MeV/N, respectively. The numeri- 
cal evaluation of the integrals in (2.9) is rather tricky and we point out the main 
difficulties. As mentioned above, one can safely avoid dealing with the singular and 
rapidly oscillating integrand at soz = 0 (where qo + CO) by restricting the integration 
limits to values close to --U ; the choice of smin = -2v and smax = - u / 4  is sufficient for 
a good convergence. Further, the matrix element diverges for y = 0, i.e. soZ =SO = 
-q;/(2qmJ like yiqf-iqo-l ; this may be circumvented by separating the divergent part 
from the slowly varying rest of the integrand and treating it analytically: 

F (soz 1 dSOz y i q f - i q o - ~  

where f i 0  = qo(So).  Near the forward peak where qf becomes very large, the remaining 
integral is still badly behaved. We performed a coordinate transformation which can 
be applied when the integrand has a branch point singularity (Wadehra et a1 1981): 

which makes the integrand zero at y = 0. Further we used an expansion of the 
hypergeometric functions in the matrix element for Jy /  < 0.1 (and I y / ( y  +a) /  <0.3) 
up to first order in y. Otherwise, these functions are calculated by means of their 
series representations and analytical continuations, respectively (Abramowitz and 
Stegun 1965). For the evaluation of the integral over the angle cp4 (for 8f > 0) it is 
important that in the region of the binary encounter peak the integrand is sharply 
peaked at (pq = T as, according to (2.12), q2 has preferably the opposite direction of 
kf (which lies in the plane cp = 0). We estimate the accuracy of our calculations to be 
about 5 YO, 

Figure 3 shows the electron spectrum at I9f = 0 for the ionisation of H by Kr. Due 
to the high collision velocity, the binary encounter peak extends over many orders of 
magnitude. At  Ef = 10.9 keV, the forward cusp is seen, and at very low energies, the 
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E i  I k e V I  

lo6 1 Kr-H 

E' I k e V )  

Figure 3. Cross section for electron emission in col- 
lisions of Kr with H at a collision velocity of u / c  = 
0.2065 as a function of electron energy at zero 
emission angle. The full curve denotes the SCIA 

theory (equation (2.9)),  the broken curve is the first 
Born theory and the chain curve is the Miraglia- 
Ponce approximation (equation (5.4)). 

Figure 4. As figure 3 but for emission angle 4f = 10". 

cross section shows a steep rise, indicating that the main contribution to the total 
cross section comes from this region. We have compared our results with the first-order 
Born theory 

and the formula of Miraglia and Ponce (1980) 

d2CrMP 2 V f  d2aB 
dEf dRf - 1 - exp(-2.rrqf) dEf dRf 
-- (5.4) 

which includes higher-order contributions from the projectile field by means of the 
normalisation constant of the projectile wavefunction, and compares well with the 
second Born approximation for symmetric systems. As seen from figure 3, the theory 
(5.4) explains the forward peak, but otherwise overestimates the cross section consider- 
ably. While the first Born approximation fails in the region kf = U ,  it describes the 
binary encounter peak very well. This may be explained by recalling that this peak 
has a classical origin, as its position corresponds to the maximum energy which can 
be transferred to an electron at rest in a binary collision with the projectile. Any 
correct quantum mechanical theory should thus give a result close to the binary 
encounter approximation, which already holds for the first Born theory. Further, the 
shape of the peak is given by the momentum distribution of the target electron in its 
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initial state, and should therefore be independent of the kind of interaction with the 
projectile one includes in the theory. The behaviour of the differential cross section 
is very similar if the emission angle is increased to 10" (figure 4). However, for this 
angle, the forward peak has nearly disappeared. 

In order to make the differences to the other theories more visible, we have plotted 
in figure 5 the cross section ratios between the impulse approximation and the 
Miraglia-Ponce formula in the forward peak region. As the Coulomb wave normalisa- 
tion is divided out, the discontinuity of the SCIA cross section for 8f = 0 at kf  = U is 
clearly seen. It leads to a large asymmetry of the forward peak, with a much higher 
intensity on the low-energy side. Note that this is in contrast to the shape of the 
forward peak produced by projectile electrons, where the high-energy side is enhanced 
(Jakubassa-Amundsen 1981). The discontinuity is not only visible in the cross section, 
but also in the structure of the q2-dependent integrand (after the soz integral is done). 
The value q,, where the integrand has its largest value, is much greater than qmin if 
kf < U, increasing slightly when kfz U .  For kf > U, q, is always equal to qmin (which 
increases monotonically with k f )  such that a plot of qm against Ef has a similar shape 
to the 1 9 ~  = 0 curve. For af slightly larger than 0, the values drop in a narrow region 
when kf is increased beyond U. For angles 19~3 lo", the asymmetry with respect to 
kf = U becomes very weak. 

C '  I l l  I I I J  

0.2 I 
8 10 12 1L 

Et I k e V l  

Figure 5. Cross section ratio for electron emission in (Kr, H) collisions at 20 MeV," 
calculated with the impulse approximation and the Miraglia-Ponce approximation (MP). 
The ratio is shown as a function of electron energy for various emission angles Irt, 

Figure 6 shows the ratio of the cross sections calculated with the impulse approxima- 
tion and the Born theory in the region of the binary encounter peak. It is seen that 
the ratio is approximately one near the peak energy E ,  = 2v2 cos2 af, a little hump 
marking its position at the different emission angles 8f. There is also a slight asymmetry 
introduced by the higher-order theory, enhancing the binary encounter peak at the 
low-energy side. At higher energies, the Born theory overestimates the impulse 
approximation, indicating that even at this collision velocity the projectile influence 
is non-negligible for Ef > E ,  (note that ZP/2v = 0.64). 

We also performed calculations in the forward peak region for the (Ar, He) system, 
where experimental data are available (Breinig et a1 1982). In order to compare with 
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E, ( k  eV)  

Figure 6.  Cross section ratio for electron emission in (Kr, H) collisions at 20 MeV/N 
calculated with the impulse approximation and the first Born approximation (B). The 
ratio is shown as a function of electron energy for various emission angles ls, 

the experimental spectrum one has to average over the angular resolution (being 1.7") 
and the energy resolution AEf (being 3.4%) of the detector according to 

sin 8f d8f- ( 5 . 5 )  d2u ) 
1.7" 

dEf(,l -cos(1.7") l o  dEf dflf mf Er- A E f / 2  

1 1 Ef+AEf12  =-I 
where it is from a numerical point of view important to average first over the angle 
as the integrand is finite at af = 0 because of the phase factor sin 1 9 ~  Due to the peak 
asymmetry, this shifts the maximum from kf = 18.1 down to 18.04, and the average 
over energy shifts it further down to 18.0 in agreement with the experimental peak 
position (figure 7). Unfortunately the absolute cross section has not been measured 
such that we had to normalise the data to our calculation. Clearly, the large asymmetry 
of the peak is seen, and our curve compares well with the experimental shape. Actually 
this is also true for a second-order Born calculation (Breinig et a1 1982), so that one 
cannot give preference to one theory by merely comparing the relative values. 

6. Conclusion 

We have calculated the doubly differential cross section for electron emission from 
light target atoms by using the semiclassical impulse approximation which is valid for 
heavy projectiles and can be applied to the evaluation of the electron spectrum except 
at Ef + 0, Ef being the electon energy in the laboratory frame. Although a peaking 
approximation is applied in the numerical calculations, it does not restrict the applica- 
bility to very high velocities U >>ut as is the case for other higher-order theories 
discussed in the literature. Rather, the use of a straight-line path for the internuclear 
motion may invalidate the present formulae at low collision velocities. 

The results of the present theory differ largely in absolute magnitude from the 
first-order Born approximation except at the binary encounter peak, and they differ 
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Figure 7. Averaged cross section for electron emission in collisions of Ar with He at a 
collision velocity of 18.1 au (marked with arrow) as a function of momentum (or energy) 
near zero emission angle. The full curve denotes SCIA calculations and the experimental 
data (which are normalised to theory) are from Breinig et a1 (1982). 

also from a simple approximation to the second-order Born theory. There are very 
few experimental data presently available on electrons from fast and asymmetric 
collisions, but so far they can be explained by the SCIA. More data on electron spectra, 
especially including absolute cross section measurements, would be welcome in order 
to distinguish clearly between the existing theories. 

Appendix 

We present in this appendix the explicit forms of the wavefunction, as well as the 
integral over the momentum components sol of the product of the Fourier transforms 
of wavefunction and target potential, which appears during the evaluation of the 
transition amplitude, in the case of a helium target. 

For the He Is wavefunction we take (Clementi and Roetti 1974) 

1 $ y e ( r )  = =(2.5925 exp(-1.41714r) + 1.6377 exp(-2.37682r) 
J4T 

+ 0.75254 exp(-4.39628r) 

- 0.3315 exp(-6,52699r) +0.103 exp(-7.94252r). ('4.1) 

As the target is screened, the integral (2.8) has to be replaced by 

1 1 ot 27r 
H e  '-lo dsoL lo d'so((q2+kf-u - s o ) 2 + ( q 2 + k f - u - ~ o ) 2 + d - 2  

1 
d2[(q2 + kf - U + 

+ d - 2 ] 2  
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where the Fourier transform (pHe is taken from (3.4) with the parameters defined by 
comparison of (3.2) and (A.1) .  From the binding energy Ej  = -0.91795 one obtains 
with ( A . 1 )  the parameter d = 0.3045. Recall that all parameters are in atomic units. 

In order to perform the cpso integration, we split the momentum into its components 
parallel to U and perpendicular to it, such that 

(‘4.3) 

and define (pso  as the angle between q2- + kf, and soi. The integration is done with 
the help of the formulae 

2 2 (42+kf-u -SO)’= (q2z +kfz -0 - s o z )  +(qz1+kt.l-soJ 

The remaining integral over sol is straightforward. The result is 

(A.5) 
3/2  5 / 2  He 1 = 2  Z T  f0 ( q 2 ,  S O z )  
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