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Abstract. For electron capture in asymmetric ion-atom collisions the projectile-target 
charge ratio is a natural expansion parameter. Recently Macek and Taulbjerg have claimed 
that the anomalies of the Coulomb T matrix introduce corrections to the impulse approxi- 
mation which do not depend on this ratio. We show that this is due to the approximations 
they introduced, and that more accurate estimates lead to a dependence of their correction 
on the charge asymmetry. This correction may nevertheless be important even for rather 
asymmetric systems. 

The problem of electron capture in asymmetric ion-atom collisions has received some 
attention lately, as it has become clear that this process may, after all, be quite well 
described by perturbation theory. If one carries out a systematic expansion of the 
scattering amplitude to the first order in the weaker of the two nuclear fields, retaining 
the stronger potential to all orders and also preserving the correct asymptotic behaviour 
of the initial- and final-state wavefunctions, one arrives at the so called ‘second-order’ 
Coulomb-Born (CB) approximation of Macek and Shakeshaft (1980). (The cor- 
responding ‘first-order’ amplitude in their approach, which is the Brinkman-Kramers 
amplitude, is actually cancelled by a ‘second-order’ contribution.) If we consider 
the transfer from a heavy target (with charge 2 2 )  to a light projectile (charge (Z I ) ,  the 
transfer amplitude can be written as an overlap between the matrix element for 
the target excitation to an intermediate off -shell continuum state and the (travelling) 
projectile final-state wavefunction. Since the amount the continuum state is off shell is 
proportional to the weaker potential, it is apparently consistent to replace the off -shell 
state by an on-shell one, which leads to the impulse approximation (IA) (McDowell 
1961, Briggs 1977, Jakubassa-Amundsen and Amundsen 1980). 

In the case of Coulomb potentials, however, Macek and Taulbjerg (1981) have 
pointed out that the replacement of the off-shell by an on-shell wavefunction may not 
necessarily be justified, because of the well known anomalies of the Coulomb amplitude 
at the energy shell (for a review see, for example, Chen and Chen 1972). By making a 
peaking approximation suggested by Briggs (1977), they found that there was a 
discrepancy between the CB and IA results which was independent of the lower nuclear 
charge Z1, thus casting doubt on the consistency of the impulse approximation. 

In the present letter we will investigate this problem further, making use of a less 
restrictive peaking approximation (Amundsen and Jakubassa 1980), which allows us to 
take into account both the discontinuous amplitude and the divergent phase of the 
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Coloumb T matrix more accurately. In the semiclassical (impact parameter) approxi- 
mation (with a straight-line path for the internuclear motion, R = b + u t ) ,  the transfer 
amplitude at an impact parameter b and the collision velocity U ( = ue,) can be written as 

af i (b)  =A J dt J dq exp[i/h(AE +$mu2 + hqu)t]cpTP(q) 
lh -m 

x ($;+mv,*(r)l VP(r -R)l$T(r)) exp(iqb). (1) 

In this expression I$?) is the initial electronic state of energy ET, cp; ( q )  is the projectile 
final-state wavefunction in momentum space (energy E;), A E  = EfP -ET and Vp is the 
projectile field. The only difference in (1) between the semiclassical Coulomb-Born 
(SCCB) and the corresponding impulse approximation (SCIA) lies in the choice of the 
state I$:). For the SCCB this is an off-shell target continuum state with momentum hk 
and energy 

Ef(k)  = EfP +hku -$mu2 

(Jakubassa-Amundsen and Amundsen 1980). In the SCIA this value is replaced by its 
on-shell value Ef(k) + h2k2/2m. 

While the amplitude (1) can be evaluated exactly in the SCIA theory (for final s 
states), the structure of the off-shell Coulomb waves makes the calculation of (1) within 
the SCCB rather unfeasible, and one has to resort to further approximations. In order to 
illustrate the difference between the peaking approximation applied by Macek and 
Taulbjerg (1981) and the present peaking approximation, we note that for capture into 
the K shell at b = 0 the transition amplitude can be written in both cases in a simple form 

where 

q o  = - (AE +bmv2)/hv +s,. 

In this expression 2i = Zie2m/h2 and 

fB(40) = 8 (40) 

fIP(q0) =2d(2? + q y  
(3) 

the superscripts denoting the Briggs' peaking (B) and the impulse peaking (IP), 
respectively. Physically Briggs' peaking essentially consists of neglecting the momen- 
tum distribution of cpfp entirely, while in our treatment only the transverse momentum 
transfer (with respect to v )  is neglected. The peaking applied by Macek and Taulbjerg is 
thus rather insensitive to the phase of the wavefunctions due to the simple structure of 
$, and they also loose the Z1 dependence of ufi that is introduced by the width of (pfp in 
momentum space. Both problems are, at least partially, amended by the IP 
approximation. Although the differences in these approximations are most easily seen 
for b = 0, the argument is actually valid for all b, as the difference between f "  and f" is 
qualitatively the same for all b. 

For large momentum transfer, the ionisation matrix element will mainly depend on 
the short-range part of $:(r) .  The exact outgoing off-shell wavefunction at r = 0 is 
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given by (Okubo and Feldman 1960) 
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(4) 

where 
71 = 22(2mEf(k)/h2)-''* 

and 

k = q + mv/h and p measures the amount the wavefunction is off shell. The on-shell 
limit of this expression is 

where r is the gamma function. We have compared (4)  and ( 5 )  for values of the 
parameters that are relevant for the present discussion (Zl = 1 ,  hv /e2  = Z2 = (10 ,18) )  
and found very good agreement in amplitude and a few per cent deviation in phase for 
the values of q that contribute significantly to the transfer amplitude. The phase 
agreement can be improved at the expense of the absolute value by replacing qo in ( 5 )  
by ql. The difference between (4 )  and ( 5 )  decreases as we approach the on-shell limit, 
i.e. as z1 or Z2/Z1 increases. Following Macek and Taulbjerg (1981) we can thus 
introduce 

NO = $ap(O)/$T+mu/h(O) = ( 4 / ~ ) - ~ ~ ~ r ( i  -im) exp(-b.rrqo) (6 )  
as an off-shell correction factor for the $;f+,,/h state. We note that there should be no 
further renormalisation of $T+mu/h as the off-shell Coulomb wavefunctions are well 
behaved (Okubo and Feldman 1960). 

For the evaluation of the transition amplitude we follow closely Amundsen and 
Jakubassa (1980). When introducing the off -shell correction No into ( 1 )  and making the 
peaking approximation which consists of replacing q by its z component in the 
continuum wavefunction one should, however, keep in mind that the neglect of the 
transverse components of q is not possible in the numerator of p, 

2Ef (k ) -h2k2 /m = - h 2 ( q 2 + 2 : ) / m  

(for a 1s final state), as 21 is of the same order. The q integration then gives 

d4(p7(q)(q2+2?)-'" exp(iqZ?) =47r r ( 2  + iq) (7) 

where q = 2 z / l q o z I ,  qoz = q O + m v / h ,  and K ,  is a modified Bessel function. After 
introducing the Fourier transform of the Coulomb field Vp, the time integral can also be 
carried out analytically 

m 

dt exp(-iqout)R1/2fiq~1/2+in (&R) 



L708 Letter to the Editor 

Thus the off-shell correction can easily be included in the transition amplitude which 
again can be written as a two-dimensional integral 

O0 r 1  
bZ1(&&)5/2 Io ds J dxJo(sb(l - x 2 ) ’ / ’ )  

16ie2 
Ufj =- 

ThV -1  

with 

N =2; + S’ +q;, -2sxqo2 x = cos 6,. 

Note that the singularity of the impulse approximation integrand at qOz = 0 has 
disappeared. On the other hand it is difficult to include the correction NO in the full SCIA 
theory (without peaking) as one of the angular integrals (over ps) can no longer be 
carried out analytically, and one would thus be left with four integrals that have to be 
done numerically. 

In figures 1 and 2 the energy dependence of the capture cross section from the K 
shell of Ne and Ar into the hydrogen ground state is shown, and the present results are 
compared with the previous on-shell calculations. Also shown are the SCIA calculations 
in order to estimate the accuracy of the impulse peaking approximation. Again, 
Slater-screened hydrogenic wavefunctions and experimental binding energies were 
used. While for collision velocities higher than the target K-shell orbiting velocity the 
Coulomb-Born theory gives larger capture cross sections than the impulse approxi- 
mation, they are reduced for lower velocities. 

In figure 3 we compare the off-shell correction, i.e. the ratio of the cross sections 
calculated from (9) and from the corresponding on-shell theory, as a function of 
v2 = Z 2 e 2 / ( h u ) .  We also show the analytic correction factor of Macek and Taulbjerg 
(1981) 

lMI2 = 2/{(1 + v m  +exP(-2TTz)I) (10) 
which only depends on the ratio & / U ,  and not on the asymmetry Z1/Z2. It is seen that 
our results do indeed depend on Z1/ZZ,  and at high collision velocities the off-shell 
correction becomes less important for the more asymmetric system (p, Ar), which is 
consistent with the standard argument for the impulse approximation. The correction 
in this region appears, however, to be even larger than predicted by (10). Although the 
off -shell effect has the right sign for reducing the discrepancies between theory and 
experiment (see figures 1 and 2), it is rather large. Since the correction is dependent on 
2 1 / 2 2  it is, however, doubtful whether it makes sense to include this correction alone, 
without discussing other terms from the next order in the perturbation expansion. 
Furthermore, it is uncertain how much error is introduced by estimating the off -shell 
effects by $=JO) (or tLap(0)), as the off-shell wavefunctions are not proportional to the 
on-shell ones. Taking $(rad), where the ‘adiabatic’ radius is defined by rad= 
hv/ (AE +;mu2),  might be more appropriate, but even then the spatial variation of the 
off -shell wavefunction would be neglected. 
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Figure 1. The cross section for the capture of Ne K- 
shell electrons by protons as a function of projectile 
energy. The full curve denotes the present SCCB 
result, the broken curC;e is the SCIA peaking approxi- 
mation, and the chain curve shows the full SCIA. The 
data are from Rbdbro et a1 (1979) ($) and from 
Cocke et al (1977)(@). 
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Figure 2. The cross section for the capture of Ar K- 
shell electrons by protons as a function of projectile 
energy. The full curve denotes the present SCCB 
result, the broken curve is the SCIA peaking approxi- 
mation, the chain curve shows the full SCIA and the 
dotted curve is the CB result from Macek and Taul- 
bjerg (1981). The data are from MacDonald et al 
(1974). 

At  lower collision velocities, around the maximum of the cross section, the off -shell 
corrections become smaller than predicted by the Macek-Taulbjerg formula (10). In 
this energy region that formula is, however, hardly applicable, as Briggs' peaking ceases 
to be valid (Jakubassa-Amundsen and Amundsen 1980). It is actually fortunate that 

Figure 3. Ratio of capture cross sections calculated 
with the SCCB and the SCIA peaking theory, respec- 
tively, as a function of ~2 = & e 2 / ( h v ) .  The full 
curves are the present results for K-shell capture 
from Ne and Ar by protons, and the broken curve is 

(1981). 
0 0 5 1.0 2 the universal factor lMI2 from Macek and Taulbjerg 
, 

Ti2 
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the dependence on the continuum wavefunction seems to be so small in this region, 
because the approximations are rather crude at these collision velocities. The 
significance of the fact that the correction for Ar appears to be larger than for Ne in this 
region is thus hard to evaluate. Only the fact that the ratio of the SCCB and the SCIA is 
smaller than indicated by (10) seems to be assured. 

We also studied the impact parameter dependence of the capture probability 
calculated with off -shell and on-shell wavefunctions, respectively. For all collision 
energies the difference in the shape of the impact parameter distributions was found to 
be small, with the off-shell calculations falling off somewhat more slowly at large b. 

We conclude that although an improved wavefunction for the intermediate state 
may change the capture cross section by up to a factor of two in the energy range where 
the impulse approximation should be valid, it is not justified to consider the off -shell 
correction in isolation without taking other higher-order corrections into account, as 
they arise from a second-order expansion in terms of the weak field. 

We would like to thank K Taulbjerg and M Kolsrud for useful discussions. 
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