CHEMISCHE BERICHTE

GEGRÜNDET 1868 115. JAHRGANG

HERAUSGEGEBEN IM AUFTRAG DER GESELLSCHAFT DEUTSCHER CHEMIKER

VON

K. HAFNER · W. KIRMSE · H. MUSSO · H. NÖTH · J. SAUER · E. WINTERFELDT

UNTER MITWIRKUNG VON

H. A. BRUNE · W. LÜTTKE · G. SPITELLER

REDAKTION: H. ZAHN mit H. SCHILL, J. STREHLOW und A. WIELAND

D-6940 WEINHEIM

CONTENTS OF No. 10

PHYSICAL CHEMISTRY

Hellmann Goetz, Hellmann Siegried, Beckhaus Hans-Dieter, and Rüchardt Christoph: Thermolabile Hydrocarbons, XVI: Thermal Stability, Strain Enthalpy, and Struc- ture of Sym. Tetrasubstituted Ethanes	3364
INORGANIC CHEMISTRY	
Richter Felix and Vahrenkamp Heinrich: Chiral SFeCoM Clusters: Synthesis, Side Reactions, and Proof of Chirality	3224
Richter Felix and Vahrenkamp Heinrich: Chiral SFeCoM Clusters: Enantiomer Separ- ation and Determination of the Absolute Configuration	3243
Keçeci Ahmet, Rehder Dieter, Roose Wolfgang, and Talay Ridvan: Phosphane-bridged Dinuclear Complexes Containing Carbonyl-η ⁵ -cyclopentadienyl Transition Metal Fragments	3257
Maringgele Walter: Reaction of Metal and Metalloid Compounds with Polyfunctional Molecules, XXXVI: New Syntheses of Open-Chain and Cyclic N-Borylureas and -thioureas	3271
Schmidbaur Hubert, Deschler Ulrich, and Milewski-Mahrla Beatrix: Ylide Complexes of Alkali and Alkaline Earth Metals, V: Pyridine-substituted Phosphonium-bis-me- thylide Anions as Chelating Ligands for Sodium, Potassium, and Barium. Crystal Structure of a Binuclear Potassium Complex	3290
Sohn Dieter and Sundermeyer Wolfgang: Reaction of Pentafluoro-2-aza-1-propene with Perfluorinated Carbenes	3334
Köster Hajo and Weiss Erwin: Metal Alkyl and Aryl Compounds, XXVIII: Preparation and Crystal Structure of Allyllithium- N, N, N', N' -Tetramethylethylenediamine, $C_3H_5Li \cdot tmeda$	3422
Weidenbruch Manfred, <i>Flott</i> Hermann, <i>Fleischhauer</i> Jörg, and <i>Schleker</i> Wolfgang: Sili- con Compounds with Strong Intramolecular Steric Interactions, 13: Restricted Rota- tions in Tri- <i>tert</i> -butylsilanes	3444

ORGANIC CHEMISTRY

Leininger Hartmut, Kemmer Petra, Beck Karin, and Christl Manfred: 7-Thiatetracyclo- [4.1.0.0 ^{2,4} .0 ^{3,5}]heptane (Benzvalene Sulfide) – Synthesis and Reactions	3213
Maringgele Walter: Reaction of Metal and Metalloid Compounds with Polyfunctional Molecules, XXXVI: New Syntheses of Open-Chain and Cyclic N-Borylureas and -thioureas	3271
<i>Erker</i> Gerhard, <i>Wicher</i> Joachim, <i>Engel</i> Klaus, and <i>Krüger</i> Carl: (<i>s-trans-</i> η ⁴ -Diene)zirco- nocene Complexes	3300
<i>Erker</i> Gerhard, <i>Engel</i> Klaus, <i>Krüger</i> Carl, and <i>Chiang</i> An-Pei: Reactivity and Structure of (<i>s-cis</i> -1,3-Diene)zirconocene Complexes	3311
Roedig Alfred and Ritschel Werner: Reactions of 3,4,4-Trichloro-3-butenamides with Nucleophiles, I: Dimers and Alcohol Adducts of 1,1-Dichloroallenecarboxamides	3324

ISSN 0009-2940 · CHBEAM 115 (10) 3213 - 3452 (1982)

Schaumann Ernst, Bäuch Hans-Günther, Sieveking Stefan, and Adiwidjaja Gunadi: Cycloaddition Reactions of Heterocumulenes, XXV: Cycloadducts and Rearrange- ment Products from the Reaction of Isothiocyanates with Ketene Acetals	3340
Neidlein Richard and Zeiner Hartmut: Syntheses of Some Unsaturated Carboxylic Acids of 1,6-Methano[10]annulene and the Bridged Dicyanopseudophenalene-fulvene	3353
Hellmann Goetz, Hellmann Siegried, Beckhaus Hans-Dieter, and Rüchardt Christoph: Thermolabile Hydrocarbons, XVI: Thermal Stability, Strain Enthalpy, and Structure of Sym. Tetrasubstituted Ethanes	3364
Heuschmann Manfred and Quast Helmut: Three-membered Ring Heterocycles, 14: α-Halogenation of Tertiary Phosphane Oxides	3384
Auchter Gerhard and Hanack Michael: Vinyl Cations, 38: Synthesis and Solvolysis of 3-Substituted 1-Cyclobutenyl Nonaflates	3402
Cetinkaya Bekir, Binger Paul, and Krüger Carl: Metallacycloalkanes, V: Preparation of a Rhodacycloheptane by Oxidative Coupling of 3,3-Dimethylcyclopropene to Rhodium(I) Complexes	3414
Welt Günther, Wolf Elisabeth, Fischer Peter, and Föhlisch Baldur: [4 + 2] Cycloadducts with Alternate Structure from 7,7-Difluoro- and 7,7-Dialkoxy-1,3,5-cyclohepta- trienes and 4-Phenyl-1,2,4-triazoline-3,5-dione	3427
Rumiński Jan K. and Przewoska Krystyna D.: Synthesis and Reactivity of 2-Aroylbenzoic Acids, II: 2-(4-Hydroxy-3-isopropylbenzoyl)benzoic Acid	3436
Weidenbruch Manfred, Flott Hermann, Fleischhauer Jörg, and Schleker Wolfgang: Sili- con Compounds with Strong Intramolecular Steric Interactions, 13: Restricted Rota- tions in Tri-tert-butylsilanes	3444
Zander Maximilian: Reaction of Carbazolylpotassium with 9-Bromoanthracene and Nitrobenzene	3449

AUTORENREGISTER

Adiwidjaja, G. s. Schaumann, E	3340
Auchter, G. und Hanack, M.	3402
Bäuch, HG. s. Schaumann, E	3340
Beck, K. s. Leininger, H	3213
Beckhaus, HD. s. Hellmann, G.	3364
Binger, P. s. Cetinkaya, B	3414
Cetinkaya, B., Binger, P. und	
Krüger, C	3414
Chiang, AP. s. Erker, G.	3311
Christl, M. s. Leininger, H	3213
Deschler, U. s. Schmidbaur, H	3290
Engel, K. s. Erker, G 3300,	3311
Erker, G., Engel, K., Krüger, C. und	
Chiang, AP.	3311
–, Wicher, J., Engel, K. und	
Krüger, C	3300
Fischer, P. s. Welt, G.	3427
Fleischhauer, J. s. Weidenbruch, M	3444
Flott, H. s. Weidenbruch, M.	3444
Föhlisch, B. s. Welt, G.	3427
Hanack, M. s. Auchter, G.	3402
Hellmann, G., Hellmann, S.,	
Beckhaus, HD. und Rüchardt, C.	3364
Hellmann, S. s. Hellmann, G	3364
Heuschmann, M. und Quast, H	3384
Keçeci, A., Rehder, D., Roose, W.	
und <i>Talay</i> , <i>R</i>	3257
Kemmer, P. s. Leininger, H.	3213
Köster, H. und Weiss, E.	3422
Krüger, C. s. Cetinkaya, B	3414
- s. Erker, G 3300,	3311
Leininger, H., Kemmer, P., Beck, K.	
und <i>Christl, M</i>	3213

Maringgele, W	3271
Milewski-Mahrla, B. s. Schmidbaur, H.	3290
Neidlein, R. und Zeiner, H	3353
Przewoska, K. D. s. Rumiński, J. K	3436
Quast, H. s. Heuschmann, M	3384
Rehder, D. s. Keçeci, A	3257
Richter, F. und Vahrenkamp, H 3224,	3243
Ritschel, W. s. Roedig, A.	3324
Roedig, A. und Ritschel, W	3324
Roose, W.s. Keçeci, A.	3257
Rüchardt, C. s. Hellmann, G	3364
Rumiński, J. K. und Przewoska, K. D.	3436
Schaumann, E., Bäuch, HG.,	
Sieveking, S. und Adiwidjaja, G	3340
Schleker, W. s. Weidenbruch, M	3444
Schmidbaur, H., Deschler, U. und	
Milewski-Mahrla, B	3290
Sieveking, S. s. Schaumann, E.	3340
Sohn, D. und Sundermeyer, W	3334
Sundermeyer, W.s. Sohn, D.	3334
Talay, R. s. Keçeci, A	3257
Vahrenkamp, H. s. Richter, F 3224,	3243
Weidenbruch, M., Flott, H.,	
Fleischhauer, J. und Schleker, W.	3444
Weiss, E. s. Köster, H	3422
Welt, G., Wolf, E., Fischer, P. und	
Föhlisch, B	3427
Wicher, J. s. Erker, G.	3300
Wolf, E. s. Welt, G	3427
Zander, M	3449
Zeiner, H. s. Neidlein, R	3353

Chem. Ber. 115, 3470-3478 (1982)

Ab-initio-MO-Studie Methyl- und Phenyl-substituierter Allenyl-Kationen

Herbert Mayr* und Reinhard Schneider

Institut für Organische Chemie der Universität Erlangen-Nürnberg, Henkestr. 42, D-8520 Erlangen

Eingegangen am 1. März 1982

An den Methyl- und Phenyl-substituierten Allenyl-Kationen 3-12 (Tab. 1) wurden ab-initio-MO-Berechnungen unter Verwendung des STO-3G Basissatzes durchgeführt. Die berechneten Bindungslängen und Ladungsverteilungen zeigen Delokalisierung der positiven Ladung an, wie in Formel 1 gezeigt. Mit Hilfe isodesmischer Reaktionen werden Stabilisierungsenergien von Substituenten in 1- und 3-Position ermittelt. Diese Werte ermöglichen in Kombination mit der experimentell bekannten Bildungswärme des Stammkörpers 2 die Bestimmung von ΔH_f^0 sämtlicher Allenyl-Kationen 3–12. Der Vergleich dieser Daten mit einigen experimentell bestimmten Bildungswärmen zeigt Übereinstimmung innerhalb von 2 kcal/mol. Es werden Voraussagen für das Reaktionsverhalten gegenüber n-Nucleophilen und π -Systemen gemacht.

Ab initio MO Study of Methyl and Phenyl Substituted Allenyl Cations

Ab initio MO calculations at the STO-3G basis set level have been performed for the methyl and phenyl substituted allenyl cations 3-12 (Table 1). The calculated bond lengths and charge distributions indicate delocalization of the positive charge as indicated in formula 1. Stabilization energies of substituents in 1- and 3-position are derived on the basis of isodesmic reactions. These values and the experimentally known heat of formation of the parent allenyl cation 2 allow evaluation of ΔH_f^0 of all allenyl cations 3-12. Comparison of these data with some heats of formation from experimental sources show deviations of less than 2 kcal/mol. Finally, predictions for the reactivity of allenyl cations with n-nucleophiles and π -systems are made.

Allenyl- bzw. Propargyl-Kationen 1 lassen sich sowohl als konjugierte Vinyl-Kationen wie auch als ungesättigte Allyl-Kationen beschreiben.

Sie wurden als reaktive Zwischenstufen bei der Solvolyse von Allenyl- und Propargyl-Derivaten nachgewiesen und als stabile Spezies in superaciden Medien beobachtet¹⁻⁵. Ihre Additions- und Cycloadditionsreaktionen mit Olefinen und Dienen wurden von uns in den letzten Jahren untersucht⁶.

Frühere theoretische Arbeiten befaßten sich mit der Ladungsverteilung und Struktur Methylund Fluor-substituierter Allenyl-Kationen $^{7-9}$.

© Verlag Chemie GmbH, D-6940 Weinheim, 1982 0009 – 2940/82/1111 – 3470 \$ 02.50/0 Energetische Aspekte blieben bei diesen Studien unberücksichtigt. Wir ergänzen diese Untersuchungen nun durch Phenyl-substituierte Systeme, die für unsere experimentellen Arbeiten⁶⁾ von Interesse sind, und präsentieren erstmals quantitative Daten über die Stabilität unterschiedlich substituierter Allenyl-Kationen.

1. Methode

Die Bestimmung zuverlässiger Energieunterschiede verschiedener Carbenium-Ionen mit Hilfe von ab-initio-MO-Methoden erfordert üblicherweise die Verwendung eines großen Basissatzes¹⁰). Derzeit können damit jedoch nur relativ kleine Teilchen analysiert werden. Am Beispiel von Allyl-¹¹) und Vinyl-Kationen¹²) haben wir allerdings demonstriert, daß schon Rechnungen mit dem minimalen STO-3G-Basissatz¹³) ausreichen, um die relativen Stabilitäten *innerhalb einer Klasse von Carbenium-Ionen* mit einer Genauigkeit wiederzugeben, die der von Gasphasen-Experimenten vergleichbar ist. Daher führten wir in dieser Studie ebenfalls ab-initio-MO-Berechnungen unter Verwendung des STO-3G-Basissatzes¹³) und der "Gaussian 70"-Programme¹⁴) durch.

Die Geometrie der Methyl-substituierten Allenyl-Kationen **4**–**7** wurde mit Ausnahme der CH-Bindungslängen und -winkel in den Methylgruppen vollständig optimiert; für die CH₃-Gruppen wurden CH-Bindungslängen von 1.09 Å sowie Tetraederwinkel vorgegeben. Bei den Phenyl-substituierten Allenyl-Kationen **8**–**12** wurden nur die C¹C²- und die C²C³-Abstände optimiert. Der C¹C²C³-Winkel wurde gleich 180° gesetzt, da bei **2**–**7** die Abweichung von der Linearität 0.5° nie überschritt. Für die Phenylringe wurde Standardgeometrie angenommen (CC = 1.40 Å, CH = 1.08 Å, Winkel = 120°)¹⁵⁾. Der dadurch eingeführte Fehler sollte klein sein, da selbst beim 1-Phenylvinyl-Kation, in dem der Phenylrest wesentlich stärker deformiert sein muß, Optimierung des Aromaten nur mit einem Energiegewinn von 3 kcal/mol verbunden ist¹²⁾. Der C¹– Phenyl- und C³– Phenyl-Abstand wurde für die Kationen **8** und **9** zu 1.41 Å berechnet und für die übrigen Systeme übernommen.

2. Geometrie

Bindungslängen: Mit 1.215 Å (Tab. 1) liegt der C¹C²-Abstand des unsubstituierten Allenyl-Kations 2 zwischen der berechneten (STO-3G) Länge der Dreifachbindung des Propins (1.170 Å) und der Doppelbindung des Allens (1.288 Å)¹⁸⁾. Die C²C³-Bindungslänge (1.360 Å) ist gegenüber der CC-Einfachbindung des Propins (1.484 Å)¹⁸⁾ verkürzt und gegenüber der Doppelbindung des Allens verlängert. Damit ist die Schreibweise des Allenyl-Kations mit einer 2 1/2fach-Bindung zwischen C¹ und C² und einer 1 1/2fach-Bindung zwischen C² und C³ gerechtfertigt.

Methylierung an C¹ verlängert den C¹C²-Abstand um 0.07 – 0.09 Å (Ausnahme $9 \rightarrow 12$), während gleichzeitig der C²C³-Abstand um 0.012 – 0.015 Å verkürzt wird. Der Einfluß von Methylgruppen an C³ ist etwas größer: Je Methylgruppe wird C¹C² um etwa 0.01 Å verkürzt und C²C³ um etwa 0.02 Å verlängert. Phenylgruppen verschieben im gleichen Sinn, doch ist ihr Effekt größer. Methyl- wie Phenyl-Substituenten verlängern somit die benachbarte und verkürzen die entfernte Bindung des Allenylsystems. Der gleiche Effekt wurde auch bei Allyl-Kationen gefunden¹¹.

$\mathbf{R}^{*} - \underbrace{\mathcal{L}}_{1} = \underbrace{\mathcal{L}}_{3} - \underbrace{\mathcal{L}}_{3} \mathbf{R}^{3}$								
	R ¹	R ²	R ³	Gesamtenergie	C^1C^2	C ² C ³		
· 2 ¹⁶⁾	н	н	н	- 113.56390	1.215	1.360		
317)	CH3	н	Н	- 152.17978 ^{a)}	1.222	1.348		
4	Н	CH3	Н	-152.17618 ^{a)}	1.203	1.380		
5 ⁹⁾	CH3	CH ₃	Н	- 190.78708	1.212	1.365		
6	Н	CH ₃	CH3	-190.78256 ^{a)}	1.196	1.398		
7	CH3	CH3	CH3	- 229.39157 ^{a)}	1.203	1.383		
8	Ph	Н	H	- 340.38512	1.241	1.325		
9	Н	Ph	н	- 340.38984	1.196	1.410		
10	Ph	CH3	Н	- 378.98410	1.230	1.340		
11	Ph	CH3	CH3	- 417.58286	1.217	1.359		
12	CH3	Ph	Н	- 378.99480	1.196	1.399		

Tab. 1. Berechnete Gesamtenergie (a. u.) und CC-Bindungslängen (Å) substituierter Allenyl-Kationen (ab initio, STO-3G)

+ R²

Konformation der Methylgruppen: Nach ab-initio-Rechnungen ist das Konformere 13 des 2-Propenyl-Kations um 0.1 kcal/mol stabiler als 14¹⁹. Infolgedessen wurde für 1-Methyl-substituierte Allenyl-Kationen die Konformation 15 vorgegeben. Die Rotationsbarriere sollte hier noch kleiner sein als bei Vinyl-Kationen.

Die Vorzugskonformation von 3-ständigen Methylgruppen wurde am Kation 4 ermittelt. Da 4' um 0.66 kcal/mol stabiler berechnet wurde als 4'', wurde auch für 5 und 10 C_s -Symmetrie vorgegeben.

Am Kation 6 wurde gezeigt, daß die Methyl-Rotationsbarriere 3,3-dimethylsubstituierter Allenyl-Kationen kleiner als 0.5 kcal/mol ist. Die gefundene Vorzugskonformation 6' des 3,3-Dimethylallenyl-Kations wurde entsprechend für die Kationen 7 und 11 übernommen.

Konformation der Phenylgruppen: Phenylgruppen an C¹ treten bevorzugt in Konjugation mit dem Allylsystem, nicht mit der ungeladenen Doppelbindung: Das planare

Kation 8' ist um 20 kcal/mol stabiler als das orthogonale Kation 8". Dieser Unterschied entspricht der Rotationsbarriere des Phenylrests und beträgt etwa 80% des für das 1-Phenylvinyl-Kation (16) errechneten Wertes (24.7 kcal/mol)²⁰⁾.

Die größere Phenyl-Rotationsbarriere des 3-Phenylallenyl-Kations 9 (35 kcal/mol) ist auf den größeren LUMO-Koeffizienten an C³ der Allenyl-Kationen sowie auf das völlige Fehlen von π -Konjugation in der orthogonalen Konformation zurückzuführen.

3. Molekülorbitale und Elektronenverteilung

Die π -Molekülorbitale (STO-3G-Wellenfunktionen) des unsubstituierten Allenyl-Kations 2 sind in Abb. 1 dargestellt²¹⁾. Die Orbitale rechts entsprechen dem Allylsystem. Links sind das bindende und antibindende MO der orthogonalen Doppelbindung gezeigt; die kleinen Koeffizienten an den Wasserstoffen ergeben sich durch hyperkonjugative Wechselwirkung mit den CH₂-Orbitalen.

Abb. 1. π -Molekülorbitale des Allenyl-Kations 2

Das für die Reaktivität gegenüber Nucleophilen maßgebliche tiefste unbesetzte Orbital (LUMO) ist Teil des Allylsystems. Abb. 1 und Tab. 2 zeigen, daß in diesem Orbital der Koeffizient an C³ größer ist als an C¹. Nach Tab. 2 vergrößern Phenyl- und in geringerem Maß auch Methyl-Substituenten an C³ das Verhältnis C³/C¹ der LUMO-

Koeffizienten, während Substitution an C¹ diesen Quotienten verkleinert. Gleichfalls erhöht 3-Substitution die relative Elektronendichte an C¹, während 1-Substitution die Elektronendichte an C³ steigert. Über entsprechende Effekte an Allyl-Kationen haben wir früher berichtet¹¹).

Tab. 2. LUMO-Koeffizienten (obere Zahlen) und π -Ladungsdichten (Gross orbital charges, untere Zahlen) in Allenyl-Kationen

	$\mathbf{R^{1}-\overset{+}{\underset{l=2}{\overset{-}{\underset{l=2}{\overset{-}{\underset{l=3}{\atop}}{\underset{l=3}{\overset{-}{\underset{l=3}{\overset{-}{\underset{l=3}{\atop}}{\underset{l=3}{\overset{-}{\underset{l=3}{\atop}}{\overset{-}{\underset{l=3}{\atop}}{\underset{l=3}{\atop}}{\overset{-}{\underset{l=3}{\atop}}{\overset{-}{\underset{l=3}{\atop}}{\overset{-}{\underset{l=3}{\atop}}{\underset{l=3}{\atop}}{\overset{-}{\underset{l=3}{\atop}}{\overset{-}{\underset{l=3}{\atop}}{\underset{l=3}{\atop}}{\overset{-}{\underset{l=3}{\atop}}{\overset{-}{\underset{l=3}{\atop}}{\underset{l=3}{\atop}}{\overset{-}{\underset{l=3}{\atop}}{\underset{l=3}{\atop}}{\overset{-}{\underset{l=3}{\atop}}{\overset{-}{\underset{l=3}{\atop}}{\underset{l=3}{\atop}}{\overset{-}{\underset{l=3}{\atop}}{\underset{l=3}{\atop}}{\overset{-}{\underset{l=3}{\atop}}{\underset{l=3}{\atop}}{\underset{l=3}{\atop}}{\underset{l=3}{\atop}}{\underset{l=3}{\atop}}{\underset{l=3}{\atop}}{\underset{l=3}{\atop}}{\underset{l=3}{\atop}}{\underset{l=3}{\atop}}{}}{}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$									
	R ¹	R ²	R ³	C ¹	C ²	C ³	C ³ /C ¹			
2	Н	Н	н	-0.611 0.462	- 0.079 1.129	0.798 0.409	1.31 0.89			
3	CH3	Н	Н	- 0.626 0.460	-0.107 1.128	0.776 0.473	1.24 1.03			
4	Н	CH3	Н	-0.572 0.547	-0.041 1.135	0.816 0.396	1.43 0.72			
6	Н	CH3	CH3	-0.538 0.611	-0.013 1.135	0.829 0.376	1.54 0.62			
7	CH ₃	CH3	CH3	- 0.558 0.587	-0.042 1.148	0.812 0.418	1.46 0.71			
8	Ph	Н	Н	-0.592 0.582	- 0.010 1.099	0.631 0.651	1.07 1.12			
9	Η	Ph	Н	-0.415 0.727	- 0.027 1.099	0.695 0.588	1.67 0.81			
10	Ph	CH3	Н	- 0.587 0.585	-0.067 1.130	0.679 0.581	1.16 0.99			
11	Ph	CH3	CH3	-0.560 0.621	-0.039 1.147	0.712 0.530	1.27 0.85			
12	CH3	Ph	н	-0.431 0.700	-0.052 1.116	0.694 0.591	1.61 0.84			

4. Energie

Stabilisierungsenergie: Die Stabilisierung von Allenyl-Kationen durch Methyl- und Phenylgruppen kann durch die isodesmischen Reaktionen (1) – (14) definiert werden. ΔE läßt sich aus der berechneten Gesamtenergie von Ethan (– 78.30618 a. u.)²²⁾, Propan (– 116.88642 a. u.)¹⁸⁾ und Phenylethan (– 305.05415 a. u.)²³⁾ sowie den in Tab. 1 tabellierten Werten der Allenyl-Kationen 2–12 ermitteln.

Nach Gl. (1) bewirkt 1-Methylierung des unsubstituierten Allenyl-Kations eine Stabilisierung von 22 kcal/mol. Wie erwartet, ist dieser Wert größer als beim Allyl-Kation (17 kcal/mol)¹¹⁾, aber kleiner als beim Vinyl-Kation (30 kcal/mol)¹²⁾. Die Stabilisierungsenergie durch 1-Methyl ist um so kleiner, je besser die positive Ladung durch 3-Substituenten delokalisiert ist (Gl. 2, 3). Wie bei gesättigten Carbenium-Ionen und Vinyl-Kationen¹²⁾ ist der Effekt eines Phenylrests etwa doppelt so groß wie der eines Methylrests (Gl. 1 – 3 und 10 – 12).

1-Methylierung					Δ <i>E</i>	(STO-3C ccal/mol	3)
H-C=C-CH ₂	+ C ₃ H ₈	->	CH ₃ –C=C–CH ₂	+	C_2H_6	-22.4	(1)
н–С=С–Сн(Сн ₃)	+ C ₃ H ₈	→	Сн ₃ -С=С-Сн(Сн ₃)	+	C ₂ H ₆	-19.2	(2)
H-C=C-CH(Ph)	+ C ₃ H ₈	→	CH ₃ -C=C-CH(Ph)	+	C₂H ₆	-15.5	(3)
3-Methylierung							
H-C=C-CH ₂	+ C ₃ H ₈	→	н–С=С–Сн(Сн₃)	+	C_2H_6	-20,1	(4)
CH3-C=C-CH2	+ C ₃ H ₈		СН ₃ С=С-СН(СН ₃)	+	C_2H_6	-17.0	(5)
$Ph-C=C-CH_2$	+ C ₃ H ₈	→	Ph-C=C-CH(CH ₃)	+	C_2H_6	-11.8	(6)
н–С=С–Сн(Сн ₃)	+ C ₃ H ₈	→	H–C=C–C(CH ₃) ₂	+	C_2H_6	-16.4	(7)
СH ₃ С=С-Сн(СН ₃)	+ C ₃ H ₈	->	CH ₃ -C=C-C(CH ₃) ₂	+	C_2H_6	-15.2	(8)
Ph-C=C-CH(CH ₃)	+ C ₃ H ₈	→	Ph-C=C-C(CH ₃) ₂	+	C_2H_6	-11.6	(9)
1-Phenylierung							
нсн,	+ Ph−C ₂ H ₅		Ph-C=C-CH ₂	+	C₂H₅	-46.0	(10)

$$H-C=C-CH(CH_3) + Ph-C_2H_5 → Ph-C=C-CH(CH_3) + C_2H_6 - 37.6 (11)$$

$$H-C=C-C(CH_3)_2$$
 + Ph-C₂H₅ → Ph-C=C-C(CH₃)₂ + C₂H₆ - 32.8 (12)

3-Phenylierung

$$H-C=C-CH_{2} + Ph-C_{2}H_{5} \rightarrow H-C=C-CH-Ph + C_{2}H_{6} -48.9$$
(13)
$$CH_{3}-C=C-CH_{2} + Ph-C_{2}H_{5} \rightarrow CH_{3}-C=C-CH-Ph + C_{2}H_{6} -42.1$$
(14)

Einführung einer Methylgruppe in 3-Position hat einen umso größeren Effekt, je geringer die Donorfähigkeit des 1-Substituenten ist (Gl. 4–6). Die zweite 3-Methylgruppe stabilisiert um einen etwas geringeren Betrag (Gl. 7–9). 3-Phenylreste haben einen mehr als doppelt so großen Effekt wie entsprechende Methylgruppen (Gl. 13, 14).

Zunächst überrascht der Befund, daß 1-Methylierung eine größere Stabilisierung bewirkt als 3-Methylierung (Gl. 1 und 4), da aufgrund des größeren LUMO-Koeffizienten an C³ das Gegenteil zu erwarten wäre. Nach der hier gewählten Definition der Stabilisierungsenergien reflektieren diese Zahlen aber außer der Stabilisierung der positiven Ladung zusätzlich den Energieunterschied, um den 2-Butin stabiler ist als 1-Butin (nach STO-3G 7.1 kcal/mol²⁴). Berücksichtigt man diesen Betrag, so erhält man die erwartete Reihenfolge. Phenyl-Substitution hat in Position 3 einen größeren Effekt als in Position 1. Wiederum dürfte die relative Energie der korrespondierenden Kohlenwasser-

stoffe dafür verantwortlich sein, daß nach dieser Definition der Unterschied relativ klein ist.

Berechnung von Bildungswärmen: Aus den berechneten ΔE -Werten und den experimentellen ΔH_1^0 -Werten des Allenyl-Kations 2^{25} , Ethan (-20.2 kcal/mol), Propan (-24.8 kcal/mol) und Ethylbenzol (+7.1 kcal/mol)²⁶ lassen sich nun die Bildungswärmen der Allenyl-Kationen 3 - 12 berechnen (Tab. 3). Außer für 2 sind auch für die Kationen 3 (255)²⁷, 4 (257)²⁷ und 6 (≈ 234)²⁸⁾ experimentelle Bildungswärmen bekannt. Die hervorragende Übereinstimmung kann sowohl als Beweis für die Zuverlässigkeit dieser Abschätzungen wie auch als Bestätigung der internen Konsistenz des experimentellen Datensatzes angesehen werden. Eine früher angegebene Bildungswärme von 254 kcal/mol für Kation 2^{29} läßt sich aufgrund dieser Berechnungen mit Sicherheit ausschließen.

Tab. 3. Berechnete Bildungswärmen $(\Delta H_f^o)^{a}$ der Allenyl-Kationen 2 – 12 (kcal/mol)

2	281 ^{b)}	5	232.5	8	262.3	11	229.8	
3	254.0	6	235.3	9	259.4	12	239.2	
4	256.3	7	212.7	10	246.0			

a) Dezimalstellen werden mitgeführt, um Fortpflanzung von Rundungsfehlern zu vermeiden. –
 b) Referenzverbindung (Lit.²⁵).

5. Konsequenzen für das Additions- und Cycloadditionsverhalten von Allenyl-Kationen

Wie bereits aus experimentellen¹⁻⁵⁾ und früheren theoretischen Untersuchungen⁷⁻⁹⁾ gefolgert, sind beide Resonanzstrukturen **1a** und **1b** am Grundzustand von Allenyl-Kationen beteiligt. Substitution an C¹ begünstigt die Allen-, Substitution an C³ die Alkin-Grenzstruktur.

Reaktionen mit n-Nucleophilen: Der Angriff harter Nucleophile auf Allenyl-Kationen sollte durch die Ladungsverteilung in 2 - 12 determiniert werden. Sieht man von den 1-monosubstituierten Kationen 3 und 8 ab, ist nach Tab. 2 die positive Ladung an C³ stets größer als an C¹. Damit ist zu erklären, daß Allenyl-Kationen von n-Nucleophilen primär an C³ angegriffen werden, so daß unter kinetisch kontrollierten Bedingungen vorwiegend Propargylderivate entstehen (Gl. 15a). Dagegen ist die vielfach beobachtete Bildung von Allenylderivaten (Gl. 15b) im allgemeinen auf thermodynamische Produktkontrolle zurückzuführen³⁰.

$$R-C \equiv C - C - X \xrightarrow{R}_{(a)} R - C = C - C \xrightarrow{R}_{(b)} R \xrightarrow{X}_{(b)} X \xrightarrow{X}_{(c)} C = C = C \xrightarrow{R}_{(c)} R \xrightarrow{(c)}_{(c)} R \xrightarrow{(c)} R \xrightarrow{(c)}_{(c)} R$$

Reaktionen mit π -Nucleophilen: Nach der Störungs-MO-Betrachtung sollten π -Systeme (weiche Nucleophile) ebenfalls bevorzugt an C³ angreifen (Gl. 16a), weil nach Tab. 2 der LUMO-Koeffizient an dieser Position am größten ist. Natürlich gilt diese Erwartung nur, wenn C³ sterisch nicht stark abgeschirmt ist; ist dies der Fall, muß auch mit C¹-Angriff gerechnet werden.

Die PMO-Methode ist nur auf Reaktionen mit frühem Übergangszustand anwendbar. Führt man nun im Allenyl-Kation 1 zunehmend elektronenliefernde Substituenten ein, was nach Abschnitt 4 zur Stabilisierung von 1 führt, wird bei konstant gehaltenem Nucleophil die Reaktion (16a) zunehmend weniger exotherm. Der Übergangszustand, der zunächst Edukt-ähnlich ist (frontier orbital control), wird allmählich Produkt-ähnlich. Reaktionsweg (16a), bei dem der stabilisierende Effekt der Substituenten $\mathbb{R}^1 - \mathbb{R}^3$ verlorengeht, wird dabei unattraktiver. Dagegen gewinnt Reaktionsweg (16b) an Bedeutung, weil hier die Substituenten $R^1 - R^3$, die zunächst das Allenyl-Kation stabilisieren, auch im Produkt einen stabilisierenden Effekt ausüben können.

Es ist daher zu erwarten, daß wenig stabilisierte Allenyl-Kationen nach Gl. (16a) reagieren, und daß bei zunehmender Donorfähigkeit von $R^1 - R^3$ Weg (16a) von (16b) abgelöst wird. Als Grenzfall des Reaktionstypus (16b) lassen sich die Diels-Alder-Reaktionen von Alkinylamidium-Ionen mit Cyclopentadien (Gl. 17)³¹⁾ wie auch die Lewis-Säure-katalysierten Additionen von Propiolsäureestern an Olefine (Gl. 18) auffassen³²⁾.

ήB

Es läßt sich nicht generell voraussagen, bei welchem Substitutionsgrad der Wechsel zwischen Reaktionsweg (16a) und (16b) erfolgt, da dies außer von $R^1 - R^3$ auch vom Nucleophil abhängig ist.

Wir danken Herrn Prof. P. v. R. Schleyer für Diskussionen und die zur Verfügung gestellte Rechenzeit, der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für finanzielle Unterstützung.

- ³⁾ P. J. Stang, Prog. Phys. Org. Chem. 10, 205 (1973).
- ⁴⁾ M. Hanack, Acc. Chem. Res. 9, 364 (1976).

¹⁾ H. G. Richey und J. M. Richey in Carbonium Ions (Herausg. G. A. Olah und P. v. R. Schleyer), Bd. II, Kap. 21, Wiley Interscience, New York 1970. ²⁾ G. Modena und U. Tonellato, Adv. Phys. Org. Chem. 9, 185 (1971).

⁵⁾ P. J. Stang, Z. Rappoport, M. Hanack und L. R. Subramanian, Vinyl Cations, S. 246-270, 486-489. Academic Press, New York 1979.

- ⁶⁾ H. Mayr, Habilitationsschrift, Univ. Erlangen 1980. Siehe auch nachstehende Publikationen und dort zitierte Arbeiten.
- ⁷⁾ D. Mirejovsky, W. Drenth und F. B. van Duijneveldt, J. Org. Chem. 43, 763 (1978).
- ⁸⁾ D. Mirejovsky, W. Drenth und F. B. van Duijneveldt, Rec. Trav. Chim. Pays-Bas 98, 388 (1979).
- 9) M. Dorado, O. Mó und M. Yánez, J. Am. Chem. Soc. 102, 947 (1980).
- ¹⁰ K. Raghavachari, R. A. Whiteside, J. A. Pople und P. v. R. Schleyer, J. Am. Chem. Soc. 103, 5649 (1981).
- ¹¹⁾ H. Mayr, W. Förner und P. v. R. Schleyer, J. Am. Chem. Soc. 101, 6032 (1979); 102, 3663 (1980).
- ¹²⁾ H. Mayr, R. Schneider, D. Wilhelm und P. v. R. Schleyer, J. Org. Chem. 46, 5336 (1981).
- 13) W. J. Hehre, R. Ditchfield, R. F. Stewart und J. A. Pople, J. Chem. Phys. 51, 2647 (1969).
- 14) W. J. Hehre, W. A. Lathan, R. Ditchfield, M. D. Newton und J. A. Pople, QCPE Programm Nr. 236, Indiana University, Bloomington, Indiana.
- ¹⁵⁾ J. A. Pople und M. Gordon, J. Am. Chem. Soc. 89, 4253 (1967).
- 16) L. Radom, P. C. Hariharan, J. A. Pople und P. v. R. Schleyer, J. Am. Chem. Soc. 98, 10 (1976).
- 17) J. Chandrasekhar und P. v. R. Schleyer, unveröffentlichte Ergebnisse.
- 18) L. Radom, W. A. Lathan, W. J. Hehre und J. A. Pople, J. Am. Chem. Soc. 93, 5339 (1971). 19) L. Radom, P. C. Hariharan, J. A. Pople und P. v. R. Schleyer, J. Am. Chem. Soc. 95, 6531 (1973).
- ²⁰⁾ Y. Apeloig, P. v. R. Schleyer und J. A. Pople, J. Org. Chem. 42, 3004 (1977).
- ²¹⁾ Plotting-Programm: W. L. Jorgensen, OCPE Programm Nr. 340, Indiana University, Bloomington, Indiana.
- ²²⁾ W. A. Lathan, W. J. Hehre und J. A. Pople, J. Am. Chem. Soc. 93, 808 (1971).
- ²³⁾ Eigene Berechnungen mit Standardgeometrie.
- ²⁴⁾ W. J. Hehre und J. Pople, J. Am. Chem. Soc. 97, 6941 (1975).
- ²⁵⁾ F. P. Lossing, Can. J. Chem. 50, 3973 (1972).
- ²⁶⁾ J. D. Cox und G. Pilcher, Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York 1970.
- ²⁷⁾ Privatmitteilung von Prof. Lossing an Prof. Schleyer, Januar 1977.
- F. P. Lossing und J. C. Traeger, Int. J. Mass Spectrom. Ion Phys. 19, 9 (1976).
 K. W. Egger und A. T. Cocks, Helv. Chim. Acta 56, 1516 (1973).
- ³⁰⁾ T. L. Jacobs und D. M. Fenton, J. Org. Chem. 30, 1808 (1965).
- ³¹⁾ J. S. Baum und H. G. Viehe, J. Org. Chem. 41, 183 (1976).
- ³²⁾ B. B. Snider, D. J. Rodini, R. S. E. Conn und S. Sealfon, J. Am. Chem. Soc. 101, 5283 (1979).

[52/82]