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Within the semiclassical approximation (WKB) we present an estimate of the cross section 
for spontaneous and induced positron emission during the formation of a supercritical 
atom in a heavy-ion collision. Energy and width of the electron levels are taken from an 
analytical WKB formula. 

1. Introduction 

It is known [1-3] that the I sl/2 electron energy reaches 
the top of the negative energy continuum for the 
critical nuclear charge Zcr~170. By expanding the 
electronic wave function around Zcr it has been shown 
[4, 5] that the I s 1/z level dives into the continuum for 
Z > Z~r but remains localized in space. 
The degeneracy of the ls~/z level with the negative 
continuum leads to electronic transitions from the 
negative continuum into the 1 sl/2 state if the latter is 
vacant. The resulting holes in the continuum escape 
as free positrons. The rate of this spontaneous positron 
emission depends on the width of the IS1/2 level 
[6, 7]. 
Supercritical atoms ( Z > Z r )  can be produced in 
heavy-ion collisions only. The sum of the nuclear 
charges of target (Zr) and projectile (Zp) must exceed 
Zcr. Then, at a critical internuclear distance Rcr the 
1 s a~ level of the temporarily formed molecule reaches 
E =  - m c  z. For a U - U  molecule, Rcr is estimated to 
lie between 34 and 51 fm [-7, 8]. In close collisions at 
sufficiently high ion energies, R <R~r is possible and 
spontaneous emission of positrons will take place, 
provided there is a K-shell vacancy in the molecule. 
Collisions between very heavy ions and atoms whose 
relative velocity is nonrelativistic will always be 
adiabatic with respect to the motion of the inner shell 
electrons. However, nonadiabatic effects play an im- 
portant role. An electronic transition from the nega- 
tive continuum into the 1 sag state can be induced by 
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the time variation of the potential between molecule 
and electron. This induced positron emission [9] does 
not require degeneracy of the two states, and it can 
occur for an arbitrary R. 
It is the purpose of this paper to derive the positron 
decay rates within the semiclassical approximation, 
which are valid for any Z, not only for the region of 
low supercriticality as assumed in References 8 and 9. 
Our discussion emphasizes the physical ideas of the 
semiclassical method in connection with positron 
emission, and it leads to simple analytical formulas. 
We calculate in Section 2 the energy and the width 
of the 1S1/2 level in supercritical atoms from the 
resonant behaviour of the phase shift [t0], applying 
the WKB approximation. In Section 3 the cross 
section for the spontaneous positron emission is 
discussed. 
Starting from an adiabatic basis we derive in Section 4 
an estimate for the induced positron emission cross 
section. 

2. Energy and Width of the K-shell 
in Supercritical Atoms 

A K-shell vacancy in a nucleus with Z > Zcr is unstable 
against pair creation. From the definition of the 
vacuum as the state of minimum energy [11] it 
follows that an empty bound state in the negative 
continuum represents a quasibound positron. This 
positron can escape by tunneling through a potential 
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barrier. As has been pointed out by Zeldovich and 
Popov [3], this barrier comes from the effective, 
energy-dependent potential of a Schr6dinger-like 
equation into which the single-particle Dirac equation 
can be transformed. Although the barrier appears 
for all s states with negative energy their width, i.e. the 
tunneling probability, is non-zero in the supercritical 
region only (E < -mc2). 

2.1. Wave Function 

In the case ofs states the WKB approximation should 
also be reliable. We insert 

F = a  exp(iS/h); G = b  exp(iS/h) (2.1) 

into the radial Dirac equation where F(r)/r stands for 
the large and G(r)/r for the small component of the 
i Sl/2 state: 

( E - m c  2 -  V) F + h c G '  + h c / r G = O  

(E + m c  2 -  V) G -  hc F' + hc/r F = O .  (2.2) 

If only zero order terms in h are considered one finds 

S' = p = [ ( E - m c  2 -  V)(E + m c  2 -  V)]1/2/c 

-- [ 2 m ( W -  U)] 1/2 (2.3) 

with W=(E 2 -  m 2 c4)/2mc 2 the effective energy, and 
U = ( E V - v Z / 2 ) / m c  2 the effective potential. By reason 
of simplicity the nuclear potential V is chosen to be 
constant inside the nucleus with radius R 0 

V , ,  ~ - Z eZ /r, r > R o 
t r ) = ~ - Z e Z / R o ,  r < R  o. 

For this case Figure 1 shows the effective potential 
U(r) together with the two classical turning points. 
From the boundary condition F = G = 0  at r = 0  we 
obtain in WKB approximation 

F = a l s i n  h 1 pdr  (pc) 1/2 (2.4) 

U(r)  

rmi n rma x r 

Fig. 1. Effective potential U(r) and effective energy W for the Cou- 
lomb problem with Z > 170 

valid for r< rmin=ZeZ/(me 2 -  E). In the barrier region 
rmi n < r < rm, x = - Z e2/(m c 2 + E) we have 

The constant a I follows from normalization. The 
small component is given by 

G = i [ ( E -  m c 2 - -  V)/(E + m c 2 - V)] 1/2 F. (2.5) 

For vanishing potential the WKB solution (2.4) goes 
over into the exact free solution of the Dirac equation. 
It therefore is an exact solution in the nuclear interior 
for the cut-off potential defined above. 

2.2. Energy 

The shape of the effective potential implies that there 
are bound states in the continuum which can decay 
via tunneling through the barrier into free states of 
the negative continuum. This means that the quasi- 
stationary bound states appear as resonances in the 
scattering phase shift. These resonances were obtained 
[10] from a phase shift analysis of the exact negative 
continuum solutions of the Dirac equation in a super- 
critical field. 
In WKB approximation the calculation becomes very 
simple. One starts from the semiclassical expression 
for that part of the phase shift which is relevant to the 
resonance [-12] 

61 = - a r c  tan [ 1/4 T 2 cot(q5 - 7z/2)], (2.6) 

where T is the tunneling amplitude 

rma x ) 
T=exp  - h  -1 ~ [pldr (2.7) 

rmln 

and ~b is the classical action 

groin 
c~=h ' ~ pdr.  (2.8) 

0 

As usual, the energies E, result from the poles of 
cot(qS- it/2): 

~b = rt(n + 1/2) (2.9) 

with n = l, 2 .. . .  the principal quantum number. From 
this condition together with (2.8) and (2.3) one obtains 
the eigenvalue equation 

(m c2)1/2/(h e n) ~ b a 1/2/2 In 
( 

2 a rmin + b 
2(al) 1/2 + 2 aR o + b 

2d/rm~ . + b t 
- d 1/2 In 2(dl)a/2/R ~ + 2d/R ~ + b 

= n +  1/2 (2.10) 
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Fig. Z Energy and width of the ls,~ z state in the WKB approxi- 
mation. Full lines without, broken lines with centrifugal potential 

with 

a = 2 W ;  b=2ZeZE/mc2;  Ro =ti~Z1/3; 

d=Z2e4/mc2;  l = a R ~ + b R o + d .  

The parameter r o is taken to be 1.425 fin so that 
E ~ = - m c  z f o r Z = Z c ~ = t 7 0 .  
In the nonrelativistic limit one must replace n + l / 2  
by n in order to obtain the hydrogen energy. The 
reason for this change of quantization is that the 
nuclear potential remains finite when r goes to zero, 
which is essential for Z >  137 but not for Z <  137. 
The ISU2 eigenvalues El are shown in Figure2 as a 
function of Z. 

2.3, Decay Width 

Here r 1 is the "knocking frequency" of the positron 
in the bound region r < 1],in : 

rmin 
r = 2  y m/pdr=2h(meZ)l/2/(hc) 

0 

{ 1 �9 R21 1/2-11:2/a_ba 3"2/21n 2(al)l..2+2aRo+b �9 

(2.13) 

The last two terms in (?4fl?E result from the energy 
dependence of the effective potential. 
When E 1 approaches - m c  2 the outer turning point 
r .... goes to infinity and F~ vanishes exponentially [13]. 
The width increases with IEll despite the increasing 
barrier height, because the tunneling distance rma x -- rmi" 
becomes smaller. In Figure 2 the width F~ (Z) is plotted. 
For comparison, energy and width of the lsl/z state 
calculated from a modified effective potential U s [3] 
are also shown. This potential contains a centrifugal 
term 

~i~ = U + (hc)2/(2 m c 2 I "2) (2.14) 

which appears if the l/r terms in the Dirac equa- 
tion (2.2) are treated as if they were of zero order 
in h [14]. The modification leads to a third turning 
point q, with 0 < q < R o. The eigenvalue equation is 
similar to (2.10), where n=0 ,  1, 2 . . . .  is now the radial 
quantum number. It follows from (2.2) that the centri- 
fugal term may be important if the small component 
is dominant. 
It turns out that the K-shell energy obtained with 
(2.14) decreases faster with Z than predicted in the 
literature [5, 10]. This is a hint to omit, as we have 
done, the centrifugal term for s~/~ states. The WKB 
energy obtained from (2.10) lies above the energy 
calculated by Greiner and coworkers and below the 
value found by Popov. The width is by a factor of ~ 3 
larger than Greiner's result. 

By expanding ~b around the eigenvalue E one obtains 
the well known Breit-Wigner denominator 
( E  - E ) -  iF,/2 for the scattering amplitude�9 The width 
F of the resonance is given by [12] 

F = T 2 ( E , ) / ( 2  #,~b ( E ) )  (2.1t) 

With (2.7) and (2.8) we obtain for the cut-off Coulomb 
potential 

~ = r E/(2 hm c 2) + Z e2/(hc(m c2) 1/2 ) 
OE 

2armin+b 1 (2.12) �9 R o l - 1 / 2 + a - t / 2  In 2(al)l /2+2aRo+ b . 

3. Spontaneous Positron Emission During 
the Ion-Atom Collision 

In an adiabatic collision the time dependent mole- 
cular potential causes the electronic I sag state to 
change with time. Whenever the distance R of the 
two nuclei is less than Rcr, the distance at which the 
l srrg state dives into the negative continuum, the 
quasibound positron (electron hole) can escape to an 
unbound continuum state. We do not touch the 
delicate question of how to produce the hole in the 
K-shell. If the hole is generated at the beginning of 
the collision it will in general live long enough to 
survive the collision�9 In the following we assume a 
hole to be in the l s% state during the collision, and 
we treat the decay in perturbation theory. 
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The probability for the spontaneous emission of a 
positron with fixed energy lEvi is given by the tunneling 
probability per unit time multiplied by lhe interval 
of time dt in which the energy E:(t) of the quasibound 
I sag state coincides with E, [8]. The differential cross 
section is 

b m a x  

da -27r ~ bdb2F~(E~)/h dt . (3.1) 
d Igi[ o dEf E, 

The integration over the impact paramelers b is 
restricted to close collisions. At b =b . . . .  the distance 
of closest approach Ro(b) equals Rr and trajectories 
with b>b~,~x do not contribute to the spontaneous 
positron emission. 
Taking into account the finite width of the quasibound 
state and approximating its energy distribution by a 
gaussian with width A = F~ (E:(t), t)/2 we find 

d o "  b m a x  + oo 

-2re  I bdb ~ dtF~(E~,t) 
dlEil o -o~ 

�9 exp [ -(Ei - E:(t))Z/A 2]/(hn~/z A). (3.2) 

The normalization is chosen in such a way that we 
obtain (3.1) in the limit A-~0. 
Near the turning point the energy Ey(t) depends 
almost linearly on R(t) [7], We therefore take 

t ; : (R) = + a e/AR (3.3) 

where E. is the K-shell energy of the united atom with 
Z = Zp + Z T. The other two quantities are 

A E = - m c  z - E , ,  and AR=Rr 

We expand R(t) around the turning point of the 
Rutherford orbit with impact parameter b: 

R(t) = Ro(b ) + R~ (b) t 2. (3.4) 

The constants R o and R~ depend on the parameters 
of the internuclear orbit. 
The decay width F~ is a function of energy and of the 
time dependent nuclear two-center potential. Since 
Rr lies inside the K-shell radius of the united atom, 
we approximate the two-center potential by its mono- 
pole term [4] and we introduce a time dependent 
charge 

V (R, r) = - Z(R ) e2 /r. 

Near the turning point 
possible 

Z(R) = Ze+ Z r -  RAZ/AR 

(3.5) 

a linear interpolation is 

(3.6) 

with A Z =  Ze+ Z r - Z e ~  and AR=Rcr.  
Figure 3 shows the cross section (3.2) for spontaneous 
positron emission in a (U, U) collision. Rer is chosen 
to be 34fro. The cross section is peaked at E ~  
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Fig, 3. Cross section for spontaneous positron production per 
vacancy for a (U, U) collision at two different projectile velocities 

E:(Ro(O)) because the region near the turning point 
is passed through slowly and also because the decay 
width increases with I Ei[. We find a strong increase of 
the cross section with projectile velocity v. 

4. Induced Positron Emission 

The time dependent molecular potential induces 
transitions from the quasibound l So-g state into 
continuum states with a different energy [9], An 
adiabatic basis will be used because the ion velocity 
is much srnaJler than the orbital velocity of the quasi- 
bound state~ The exact time dependent solution of 

theDiracequa t ionOwi th i t s rad ia lpar t  (F) canbe 

expanded in terms of the stationary solutions 0,(R) 
which depend on the internuclear distance R(t): 

( ' t O(t)=~'A,( t )O,(R)exp - i h  -~ fE,(t ' )dt '  . (4.1) 
n 0 

In first order perturbation theory the amplitude for 
lhe transition into a continuum state with fixed energy 
E~ is giver~ by 

"" [ i  q A : i = -  ~ dtexp ih -1 d t ' (E:( t ' ) -E  i 
- -  c t 3  

In the energy exponent we omit the imaginary part 
F~/2 of the bound state energy E:. In the case of (U, U) 
collisions this decay term would only lead to a correc- 
tion of the order of < 10 -2. For E:=t=E i the transition 
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operator can be written 

_ O V  

t (E: (t) - E,). (4.3) 

We next evaluate the time integral (4.2) by contour 
integration. The poles are given by the zeros of 
E y ( t ) -  E v Bearing (3.3) and (3.4) in mind, level crossing 
will occur at 

t=  + to=  +_[(Ei- E - Ro(b) AE/AR)  AR/(AE R,(b))] ~/2. 
(4.4) 

In the classically forbidden region, Ei<Ey(Ro(b)) , 
t o is imaginary. For large values of [tl the argument of 
the exponent in (4.2) behaves like i (Ey(ov)-E~)t /h  
where E : ( ~ )  is the 1S1/2 energy of the target (for 
Z r > Z p ) .  Therefore, one can close the contour (4.2) 
by a semicircle in the upper half plane and then calcu- 
late the residue at t o . In the classically allowed region 
t o is real and we obtain half the sum of the residues at 
t = + t o. Together with (3.5) we find 

+~' [ t  ] e Z d Z / d t  
A f i - ~ -  ~ dtexp ih-~ ~dt'(Ey(t')-Ei)o Ey ( t ' ) -E ,  M 

= - (e 2 m dZ/dt), ~ i ~ So/t o (4.5) 

with 

AR 
So = A E R  1 (b) 

( ' i  ) .[cos( h -~ d t ' ( E f ( t ' ) - E i ) ,  toreal 

exp ih -1 ~ d t ' ( E : ( f ) - E i )  , t o imaginary 
\ 0 / 

M = M F + Mo is the transition matrix element. 
The integration over space will be performed by the 
saddle point method. For monopole transitions, the 
large component of the continuum state IF/) is given 
by its s-wave part 

[ Fi~ = ai(Pi c)- 1/2 sin(ki r) (4.6) 

with Pi =h k i = ( E ~ -  m 2 c4)1/2/c. It will turn out that the 
point of stationary phase lies outside the barrier 
where the plane wave approximation (4.6) holds. 
A possible phase shift for large r is of no consequence 
for the transition probability. By means of (2.4) and 
(4.6) we find for the contribution M v of the large 
components 

M F-- (F:(R)[ 1/r iFi(R)) 

=ai/2(pic) -1/2 ~ dr af(pfc)  1/2 r 1 cos~o(r)  
0 

(4.7) 

r 

with ~p(r)=h-- lSp: .dr-ki  r, and we considered only 
0 

the slowly oscillating part of the integrand. We recall 
that the index f refers to the bound 1 sl/2 state which 
gets filled while a positron escapes. 
The phase ~p(r) is stationary at py= hk~ which means 
that the saddle point 1 b is given by 

r o = Z(R) e2/(Ei-  El(t)). (4.8) 

It follows from (4.4) that Co(to)>> rm, x. This implies that 
for t = t  o the main contribution to the transition 
matrix element comes from the outer region, if one 
bears in mind the orthogonality of initial and final 
state. The slowly varying part of the integrand in (4.7) 
is taken out of the integral at r = r  o. Expanding ~o(r) 
up to second order in r - r  o we find, retaining the 
exponentially decreasing term only 

M r = a i a r/4(p i c)-1 exp(i q~(ro) ) 

�9 [(1/2 + C(x)) + i(1/2 + S(x))]/x (4.9) 

with 

x 2 = ~p"(r 0) r2/~=Z(to)e2/(hc)IEil/(=pic). (4.10) 

We note that x is independent of Jb- The transition 
matrix element (4.9) contains the tunneling amplitude 
because of 

r n a a x , j  

im((o(ro))=h 1 5 [pyldr. (4.11) 
r l~ in ,  f 

This reflects the obvious fact that for induced positron 
emission the positron must also tunnel through the 
barrier as in the case of spontaneous emission. It is 
consistent with the semiclassical approximation to 
replace the Fresnel integrals C and S by their asymp- 
totic values 1/2. In our case this is accurate to a few 
percent. 
The small component G deviates from F only by a 
preexponential factor, and we obtain the same phase 
dependence of both matrix elements in (4.2). 
The differential cross section is given by 

do-= 2~ ~ b db ]A fi]2 dki/(2~) 3 . (4.12) 

The integration over the direction of the emitted 
positron with energy IEi] is readily performed since A:~ 
is isotropic. Inserting (4.5), we find with (4.9) and (2.5) 

do- 
= e2/(hc) Z -  1 7z2/8(E 2 _ m z c4)/(hc) 

dlE,I 

�9 (. b db I N~f(dZ/dR dR/dt)t ~ S O Tri O I 2 . (4.13) 

The normalization factor is given by 

Ni,.=aiay(pic)-l(1 +(Ei -mcZ) / (Ei+mc2))  (4.14) 

where a:  is obtained from the condition that, in the 
interior of the potential well, the final continuum 
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Fig. 4. Cross section for induced positron production per vacancy 
for a (U, U) collision at the same velocities as in Figure 3 

function is normalized to one particle, 
rmih 

dr(lFfl2+lGII2)= 1, (4.15) 
0 

while the initial continuum function is normalized to 
plane waves. The last bracket on the right hand side 
of (4.14) contains an enhancement factor from the 
small component G. This factor almost cancels in Ni~ 
and we may approximate N~I by taking only the 
contribution from the large component F: 

N i ~ = (4 rc h c/ki) 1/2 (4 m c2/(c T)) 1/2 (Pic)- 1. (4.16) 

The positron emission cross section is shown in 
Figure 4 in the case of (U, U) collisions. It vanishes 
exponentially at the threshold energy levi = m c  2. The 
differential cross section increases with ion velocity v. 
The same is true for the total cross section for which 
we obtain 4barn (v/c=O.15) and 1 barn (v/c=O.1) 
respectively. This is about one order of magnitude 
larger than the values obtained by Greiner and co- 
workers. 

5. Conclusion 

We have derived simple expressions for energy and 
width of the 1 s~/2 state in a supercritical atom. The 
width is due to the tunneling of the vacuum electrons 
into the empty K-shell. 
In the second part we considered spontaneous and 
induced positron emission. We showed how to treat 
the dynamic coupling between nuclear motion and 
electronic levels. 
Within the semiclassical theory one finds the following. 
If the charge of the united system is smaller than the 
critical value 170 there is only induced positron 
emission. Its cross section is, however, very small and 
positrons with energies near the threshold mc 2 are 

favoured. When the united charge is overcritical and 
the internuclear distance smaller than RCr, spontaneous 
positron emission becomes possible. While its differ- 
ential cross section, d~p/dlEi[,  is sharply peaked 
around the minimum energy of the quasibound 1 sl/2 
state, the cross section doind/d IEi[ for induced positron 
emission is centered at much higher energies and has a 
very broad peak. In the case of (U, U) collisions the 
total cross section ~i,a is two orders of magnitude 
larger than O'sp in agreement with Greiner's [9] 
result. 
The cross sections given in this paper must be multi- 
plied with the vacancy production probability for the 
K-shell to obtain the experimental yields. Preliminary 
estimates [16] of this vacancy production in very 
heavy-ion collisions yield very small probabilities 
(~  10-5). 
It has to be noted that pair creation will also originate 
from various background effects [6, 15].  Their 
mechanism does not require a K-shell vacancy. 
A discussion of many-particle effects in supercritical 
atoms is far outside the scope of this work. Estimates 
may be found, for example, in Reference 3. 

We are thankful to the Munich Tandem Group who directed our 
interest to this field. 
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