
Proof Theory 
A selection of papers 
from the Leeds Proof Theory Programme 1990 

edited by 

Peter Aczel 
U n i v e r s i t y of M a n c h e s t e r 

Harold Simmons 
U n i v e r s i t y of M a n c h e s t e r 

and 

Stanley S. Wainer 
U n i v e r s i t y of Leeds 



Published by the Press Syndicate of the University of Cambridge 
The Pitt Building, Trumpington Street, Cambridge CB2 1RP 
40 West 20th Street, New York, NY 10011-4211, USA 
10 Stamford Road, Oakleigh, Victoria 3166, Australia 

© Cambridge University Press 1992 

First published 1992 

Printed in the Great Britain at the University Press, Cambridge 

B r i t i s h L i b r a r y c a t a l o g u i n g i n p u b l i c a t i o n d a t a a v a i l a b l e 

L i b r a r y o f C o n g r e s s c a t a l o g u i n g i n p u b l i c a t i o n d a t a a v a i l a b l e 

ISBN 0 521 41413 Xhardcover 



CONTENTS 

Preface vii 

Programme of lectures ix 

S. W A I N E R and L . W A L L E N 

Basic p r o o f theory 1 

W . P O H L E R S 

A short course i n o r d i n a l analysis 27 

H . S C H W I C H T E N B E R G 

Proofs as programs 79 

W . B U C H H O L Z 

A simplified version of local predicativity 115 

S. B U S S 

A noie on bootstrapping i n t u i i i o n i s t i c bounded arithmctic 149 

E . C I C H O N 

T e r m m a t i o n orderings and complexity characterisations 171 

S. F E F E R M A N 
Logics for t e r m i n a t i o n and correctness of f u n c i i o n a l programs, II. 
Logics of strength P R A 195 
D . H O W E 

Reflecting i h e semantics of reflecied p r o o f 227 

M . R A T H J E N 

Fragments of K r i p k e - P l a t e k sei theory with i n f i n i t y 251 

J . T U C K E R and J . Z U C K E R 
Provable computable selection functions on abstract structures 275 



A simplified version of local 
predicativity 

W. BUCHHOLZ 

Reproduced from 'Proof Theory' edited by Aczell, Simmons & Wainer. 
© 1993 Cambridge University Press 





A Simplified Version of Local Predicativity 
W. BUCHHOLZ 

Mathematisches Institut der Universität München 1 

The method of local predicativity as developed by Pohlers in [10],[11],[12] and 
extended to Subsystems of set theory by Jäger in [4],[5],[6] is a very powerful 
tool for the ordinal analysis of strong impredicative theories. But up to now 
it suffers considerably from the fact that it is based on a large amount of 
very special ordinal theoretic prerequisites. This is true even for the most 
recent (very polished) presentation of local predicativity in (Pohlers [15]). 
The purpose of the present paper is to expose a simplified and conceptually 
improved version of local predicativity which — besides some very elemen-
tary facts on ordinal addition, multiplication, and exponentiation — requires 
only amazingly little ordinal theory. (A l l necessary nonelementary ordinal 
theoretic prerequisites can be developed from Scratch on just two pages, as 
we wil l show in section 4.) The most important feature of our new approach 
however seems to be its conceptual clarity and flexibility, and in particular 
the fact that its basic concepts (i.e. the infinitary system RS°° and the notion 
of an W-controlled RS°°-derivation) are in no way related to any system of 
ordinal notations or collapsing functions. Our intention vvith this paper is 
to make the fascinating field of 'admissible proof theory' (created by Jäger 
and Pohlers) more easily accessible for non-prooftheorists, and to provide a 
technically and conceptually well developed basis for further research in this 
area. We think a good way to accomplish this goal is to apply our method to 
one particularly interesting (and strong) theory, namely the system K P i first 
analyzed by Jäger and Pohlers in [9], and to carry out the ordinal analysis 
for this theory in füll detail. Accordingly the whole paper is devoted to the 
proof of the following 

^ h e final version of this paper was written while the author was visiting Carnegie 
Mellon University during the academic year 1990/91. I would like to express my sincere 
thanks to Wilfried Sieg (who invited me) and all members of the Philosophy Department 
of C M U for their generous hospitality. 
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M A I N T H E O R E M 

// (f> i s a Y,\-sentence ( i n t h e l a n g u a g e C of set t h e o r y ) such t h a t K P i proves 

V x ( A d ( x ) —• <$>x ) then L V \= <t>, w h e r e v : = T/>n,(£i+i). 

We assume that the reader has some familiarity with Kripke-Platek set theory 
and with theories for iterated admissible sets like K P i . Therefore here we only 
add two short remarks concerning the significance of the above theorem. For 
extensive background information we refer the reader to [6],[8],[13],[15],[16]. 

1. The meaning of the formula V x ( A d ( x ) —• <j>x) is U L U C K (= and the 

ordinal v is in fact less than u^K. So the theorem gives a specific ordinal 

v < such that L V is a model of each Ei-sentences <p for which K P i proves 

that L W C K is a model of <j>. 

2. As shown in (Rathjen [19]) the above theorem implies that v is an upper 

bound for | K P i | , the p r o o f - t h e o r e t i c o r d i n a l of K P i defined by 

| K P i | := sup{| -< | : -< prim.rec.wellord. with K P i h u X is wellfounded"}, 

where | -< \ denotes the ordertype of 

(For the readers convenience we repeat the proof given in [19]. Suppose that -< 
is a primitive recursive wellorderingof u such that K P i h u X is wellfounded", 
and let <j>^ be the Si-sentence expressing that there is a function / : u —• On 
with f ( n ) = {/(m) : m ^ n } (VnGo;). Then by [8](Theorem 4.6) we have 
K P i h V x ( A d ( x ) —• ), and the Main Theorem yields L V (= 0^, i.e. there ex-
ists a function / G L V with dom(/) = UJ and f ( n ) = { / ( m ) : m -< n ) (VnGcj). 
But this implies | -< | = ran(/) G L V , i.e. | -< | < v . ) 

R e m a r k 
The method introduced in this paper can also be used to simplify consider-
ably Rathjen's [19] ordinal analysis of K P M , a theory much stronger than 
K P i . This will be carried out in a forthcoming paper [3]. For the sake of 
completeness we want to mention that another ordinal analysis of K P M has 
been obtained independently by T. Arai [1]. 
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1 The language CRS of ramified set theory 

Let C denote the usual first order language of set theory whose only nonlogi-
cal symbol is the binary predicate constant G. The language £.4d is obtained 
from C by adding the unary predicate constant Ad. The l a n g u a g e C R S of 
r a m i f i e d set theory is obtained from CAS. by adding a certain class T of in-
dividual constants, the so-called set terms or RS-terms. The definition of T 
will be given below. Before that we introduce some technical notions and 
abbreviations. In this context we use the letters u,v to denote both, indi-
vidual variables and RS-terms. Individual variables are indicated by tü, x, y, z. 

The a t o m i c f o r m u l a s of C R S are u G v , -»(u G u) , A d ( u ) , - ^ A d ( u ) . The 
f o r m u l a s of £RS are built up from atomic formulas by means of A, V, V, 3. The 
n e g a t i o n -<A of an £/?s-formula A is defined via de Morgan's laws. A quan-
tifier (occurrence) Vx [ 3x ] in a formula A is called r e s t r i c t e d (or bounded) 
if its ränge (i.e. the subformula following that quantifier) is of the form 
x G v —• S(x) [x G v A J3(x)] with x ^ v. A formula A is called a A 0 - f o r m u l a 
if it contains no unrestricted quantifier. The Ao-formulas of the language C R S 
are called RS-formulas. As usual the formula obtained from A by r e s t r i c t i n g 
every u n r e s t r i c t e d q u a n t i f i e r t o u is denoted by A u . 

From now on we use A, 5 , C to denote RS-sentences (i.e. c/osed RS-formulas), 
and A ( x i , . . . , x n ) , etc. to denote RS-formulas which have all their free vari­
ables among X i , . . . , x n . Correspondingly we use 6, \ b , <}>(xu . . . , x n ) , etc. to 
denote sentences and formulas of the language C ^ d - Finite sequences of vari­
ables are abbreviated by x, y , . . . . 

Abbreviations 
A(x) - » B ( x ) := - A ( x ) V B ( x ) 

VxGu5(x, y ) := Vx(x G v - > B { x , y ) ) (x ^ v) 

3x€vB(x.y) : = 3x(x G u A B { x , y ) ) (x ^ u) 

u C y := VxGu(x G ü) 
a = i ; : E u C v A v C u 
u v : = ~^(u G v ) 

a j£ v := ->(u = v ) 

tran(u) := VxGuVt/Gx(y G u) 

infinite(u) := 3xGu(x C x) A VxGu3yGu(x G y) 
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Definition 1.1 (RS-terms and their levels) 

1. For every ordinal a the constant L a is an RS-term of l e v e l a . 

2. If <j>(x, y u . . . , y n ) is an r^ - fo rmula vvhich contains at least one free 

occurrence of i , and if a i , . . . , a n are RS-terms of levels < a (where 

a > 0), then 

is an RS-term of l e v e l a . 

We denote the class of all RS-terms by T . and the class of all RS-terms of 
level less than a by TQ. 

In the following RS-terms are denoted by the letters a,6, c, s,t. 
Note that all variables occurring in an RS-term are bound. 

Definition 1.2 (Definition of k(0) and 
If 0 is an RS-term or RS-formula we set 

k(0) := { a E On : L a occurs in 6 } and |0| := max(k(0) U {0}) 

Here a l l occurrences of L a , i.e. also those inside of subterms of 9 are counted. 
(Example: k([x € U : € x] € Ly) = {a,ß,j}.) 

For technical reasons we also define k(0) := k( l ) := 0, |0| := |1| := 0. 

Remark 

For each t £ T we have l e v e l of t = \t\ G k ( t ) . 
Hence TQ = { t € T : \t\ < a } . 
Definition 1.3 
For RS-terms a . b with \a\ < \b\ we set 

We now are going to intoduce a semantics for the language CRS- For this we 
fix some class R of ordinals which will then be used for defining the mean-
ing of the predicate constant Ad. The intended Interpretation of A d is the 
class { L K : u; < n admissible }. Therefore we should take R as the class 
{K : LJ < AC admissible }. But for the purpose of this paper it is much more 
convenient to define R as a class of uncountable regulär c a r d i n a l s as we will 
do in section 4. For the meantime it suffices to make the following 

[x e U : < p l a ( x , a u . . . an)} 

and 
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Assumption: R i s a nonempty class of e-numbers. 

I n the f o l l o w i n g the l e t t e r s /c,7r,r a l w a y s denote elements o /R . 

Definition 1.4 (Semantics of CRS ) 
By recursion on \a\ we define, for each a G T , a set s(a) as follows: 

1. s ( l a ) : = s [ T a ) : = { s ( t ) : t e T Q } 

2. s([x G U : ö U ( x , a ! , . . . , a n ) ] ) : = 

{ s ( t ) : t e T a & ( s ( U ) , £ , A d J N ^ ( O i s C a O , . . . , ^ ) ) } , 

where A d a := {s(LK) : K < a}, 

and £ is the Standard membership relation. 

Now let M be the first order structure for CRS consisting of 

- the universe s[T] := { s ( t ) : t G T } , 

- the membership relation £ , 

- the class A d := {s(L*) : AC G R}, 

- the family (s(a)) a €x. 

Then for each £#s-sentence $ we set: (= $ M [= 

Obviously s[T] as well as all s(L a ) ( a G On) are transitive, and one easily 
verifies the following equivalences: 

(|=1) ] = A d ( a ) * = > 3/c < | a | ( h U = a ) 

(j= 2) )= a G 6 <==> 3 t e T ] b { ( \ = t e b A t = a ) 

(\= 3) h 3xG&A(x) 3*G^6|( (= * € 6A A(*) ) 

(For the proof of ([= 1) one has to use the fact that \a\ < K implies s ( a ) G s(L K ) 

and thus s(a) ^ s(L*).) 

Lemma 1.5 
L e t ( L a ) a e o n be the c o n s t r u c t i b l e h i e r a r c h y . 

Then f o r each C-sentence o a n d each 3 < min(R) we have 

\= o L* L 3 \= Ö. 

P r o o f 

For 3 < min(R) 

V5 < min(R)( AdQ 

let T f := { t G 

= 0 ) we obtain s[Tß] 

: Ad does not occur in t } . Using 

= s[7^], for all £ < min(R). Now 
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by induction on ß it follows that Lß = s[Tß] = s(L^). Hence 

t= <pl* <s> s[T] |= cr>L" <s> s ( l ß ) \= 0 Lß [= <t>. 

The next definition is motivated by ((= 1) — (|= 3). 

Definition 1.6 2 

To each RS-sentence A we assign a certain (infinitary) conjunction f \ ( A t ) t ^ j 

or disjunction \ J ( A L ) l £ j of RS-sentences and we indicate this assignment by 

writing A ~ A ( A J t 6 J > A ~ \ J { A t ) L £ j , resp. 

1. A d ( a ) : ~ V(* = a ) t € j with J := { U : K G R & K < \ a \ } 

2. a G 6 : ~ V(* I & A t = a ) t e J with J := 7j6| 

3. 3xG&A(x) : ~ V(* € f > A A ( i ) W with J := 7j6| 

4. ( A 0 V A 1 ) : - V ( ^ W } 

5. -«A : ~ A(~'^t)t€^i ^ A is one of the formulas under 1.-4. 

As an immediate consequence of ( \ = 1 — \= 3) we obtain the following lemma. 

Lemma 1.7 

(ii) (= V ( A t ) t € 7 3 i G J ( h 

In the formulation of the above lemma we have already used the following 
notational Convention to which we stick through the whole paper. 

Notational C o n v e n t i o n 

By w r i t i n g A ( ^ ) t e J [ V ( A t ) t € y , r e s p . } we i n d i c a t e a c e r t a i n RS-sentence A 

such t h a t A ~ / \ ( A t ) ^ j [A - \ f { A t ) t e j t r e s p . } . 

We now define a rank-function for RS-sentences in such a way that 

VtGJ ( rk(A t ) < rk(A)) whenever A ~ ^ ( A , ) t € j . 

Definition 1.8 (the rank of RS-sentences and RS-terms) 

The rank rk(0) of an RS-sentence or RS-term 9 is defined by induction on the 

2this elegant way of turning a formal language into a fragment of infinitary propositional 
logic I have first seen in an unpublished manuscript by W.W.Tait 
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number of symbols occurring in 0 as follows: 
1. rk (L a ) := u> • a 

2. rk([x G L t t : A(x)]) := max{w • a + 1, rk(A(L 0 ) ) + 2} 

3. rk(Ad(a)) := rk(-Ad(a)) := rk(a) + 5 

4. rk(a € b) := rk(a g 6) := max{rk(a) + 6, rk(6) + 1} 

5. rk(3xG& A(x)) := rk(VxG6 A(x)) := max{rk(6),rk(A(L 0 )) + 2} 

6. r k ( A A JB) := rk(A V B ) := max{rk(A), rk(5)} 4- 1 

Lemma 1.9 
L e t A ~ V ( A t ) t € j or A ~ f \ { A t ) ^ j . Then t h e f o l l o w i n g h o l d s . 
a) rk(A) = u • | A | + n , f o r some n G u; 

b) r k ( A t ) < r k ( A ) , / o r a / Z i € J 
c) k(0 C k ( A t ) C k(A) U k(t), /or a// t G J . 
d) rk(A) = w • a A = 3 x G L 0 5 ( x ) o r A = V x G L a 5 ( x ) 
e) rk(A) = r k ( - A ) 

P r o o f 
The easy proofs of a),c),d),e) are left to the reader. The proof of b) is ob­
tained by successively verifying the following propositions. 
(1) |c| < | A ( L 0 ) | = * rk(A(c)) = rk(A(L 0 ) ) 

(2) \c\<ß=> rk(A(c)) < max{u;./?,rk(A(Lo)) + 1} 

(3) |c| < |b| = > rk(c | 6) + 1 < rk(6) 

(4) rk(L 0 G L 0 ) = 6 and rk(L 0 G 6) = rk(6) + 1 for 6 ^ L 0 

(5) rk(L 0 = Lo) = 9 and 
rk(a = b) = max{rk(a), rk(6)} -f 4, if a =fi L 0 or b ^ Lo 

(6) |c| < |6| = > rk(c G 6 A c = a ) < rk(a G 6) and 

rk(c G 6 A A(c)) < rk(3xGfrA(x)) 

(7) K < \ a \ ==» r k ( U = a) = rk(a) + 4 

We close this section by some additional definitions and abbreviations. 

Definition 1.10 
1. A formula which contains no unrestricted universal quantifier is called a 
E i - f o r m u l a . 
2. The set of all RS-sentences A = 6 l * { a ) with <p(x) G E i and a G TK is 

denoted by E(/c). 
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3. For A = 6 l * { a ) G E(/c) we set A { U > K ) := ö u ( a ) , and we abbreviate A L * by 

A 0 , and A<L**> by A ( * K ) . 

Definition 1.11 
1. T 0 ' 1 := T U {0,1} and J \ a := {* € J : |t| < a} for J C T 0 , 1 . 

2. We use 0 to denote finite sequences consisting of RS-sentences and ele-

ments of T ° ' \ and for 0 = ( 9 U ..., 6n) we set k(0) := k(0i) U . . . U k (0„) . 
3. Finite sequences of RS-sentences are called RS-sequents and indicated by 

the letters T, V. For T = ( A 0 , . . . , A N ) we set (= T :<^h= A 0 V . . . V A n . 

Definition 1.12 

The letters a, /?,7, <5, / i , <7, £, 77, £ always denote ordinals. On denotes the class 

of all ordinals, L i m the class of all l imit numbers, and V ( O n ) the class of all 

subsets of On. Every ordinal a is identified with the set {£ G On : £ < a} of 

its predecessors. For a < ß we set [a,ß] := {£ : a < £ < ß} and [a,/?[:= {£ : 

a < £ < /?}. A n ordinal a with uQ = a is called an e-number. a#ß denotes 

the n a t u r a l sum of a and /?, in particular c j a i # . . . #uan = u** 1) + . . . 4 - u ) a * n ) , 

where p is a permutation of {1,. . . , n ] with a p(i) > . . . > a P( n)-

In this section we introduce an intermediate infinitary proof system RS* which 
is just strong enough to prove all axioms of K P i . In section 3 we will embed 
RS* into another infinitary system R S 0 0 which so to speak is the main system 
of this paper and for which we will prove a cut-elimination and collapsing 
theorem. The main advantage of RS* is that here we need not to keep con-
trol over the lengths of derivations, since the complexity of the endsequent of 
a derivation d always provides a sufficiently good upper bound for the length 
of d. Before starting with RS* let's give the complete list of KPi-axioms. 

Axioms of K P i 

For each ordinal a we set 

2 A n intermediate Proof System 

(Ext) VxVyVz[x = y (x G 2 y G z) A ( A d ( x ) A d ( y ) ) ] 
(Found) Vz[Vx(Vy€x q > ( y , z ) —> <j>(x,z)) —* Wx<i>(x.z)} 
(Pair) \/x\/y3z(x G z A y G z) 
(Union) Vx3zVyGxVuGy(u G z) 
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(Ao-Sep) Vz Vtt;3y[VxGy(x G w A <£(x, z)) A Vxew(<f>(x, z ) - > x G y)](</> G A 0 ) 
(Ao-Col) Vz Viü[VxGw3t/<?i>(x, y, z) —• 3iüiVxGw3yGwi < £ ( x , y , z ) ] (<f> G A 0 ) 
(Ad. l ) Vx[Atf(x) —• tran(x) A 3tüGx infinite(tz;)] 
(Ad.2) VxVy[Acf(x) A 4 % ) ( x G y V x = y V ? / G x ) ] 
(Ad.3) Vx[Ad(x) —• ^ x ] , for every instance %l> of 

(Pair),(Union), (A 0 -Sep) , (A 0 -Col ) 
(Lim) \ / x 3 y ( A d ( y ) A x G y) 

The system K P i without (Ao-Col) is called K P i . 

D e f i n i t i o n 2.1 

1. For each sequent V = ( A \ , . . . , A n ) we define its n o r m llrll bv 

llrll #u,*A"\ 

2. For X C On we set := X U {w} U {£ + 1 : £ G X ) U { £ R : £ G X } . 

D e f i n i t i o n 2.2 (The infinitary system RS*) 

We define RS* as the collection of all derivations (i.e. wellfounded trees of 

RS-sequents T) generated by the following five inference rules (where the last 

two are just axiom schemes): 

. . . T . A . M ) 

r ,A (A . ) . € J 

r , v (A) . € j 

. . . r , ß ( U ) . . . ( « < |a|) 
(Ad)* — — " 

T , A d ( a ) - ß ( a ) 
(Ref )* T M — 3 * E L K / l ( z ' ' c ) if A € S(ic) and K € R 

(Found)* r , 3 i€L 0 (Vy€x / l (y ) A ->i4(x)),Vx6L„i4(x) 

In RS* we identify sequents which differ only with respect to the order of 
their elements. So actually we are working with multisets of RS-sentences. 
The formula B { a ) in (Ad)* is called the p r i n c i p a l f o r m u l a of the respective 
inference. 
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Remarks 
1. Note that every formula A ~ / \ { A t ) t £ j with J = 0 (e.g. A = a g L 0 ) is 

derivable in RS* simply by an application of (A)*-

2. Note that in (V)* some of the formulas A t 0 , . . . , A l n may be identical, so 

that for example VlApAJ^ß'B and ^ ' B ^ B

B are instances of (V)*-

3. If V is a premise of an RS*-inference with conclusion T then Hfll < llrll. 

Definition 2.3 

' there exists an RS*-derivation d of T such that 
i) v k ( B ( a ) ) < p holds for every I* r 

\ P 
principal formula B { a ) of an (Ad)*-inference in d 

, ii) if p = 0 then d contains no application of (Ref)* or (Found)* 

I- r i f r 

(So |— T means that T is derivable by means of (A)* and (V)* alone.) 

Lemma 2.4 (Derived rules of RS*) 

(Weak) | f r ^ | f r , c 

(A /V) v t€J( If r , A t , B t ) k J C J' | f r, A(A.) . € j , v(ß.). 6 J»• 

(TND) \-^A,A 

(TND') | f I \ £ =* | f r , - A , A A ß 

(V) V(€T^( | f r , A ( t ) ) = • | f I \ Vx€L„A(x) 

(3") | f T,A(<) k t£T0 k k(t) C k ( I \ A ( x ) ) * If r, 3 x 6 1 ^ ( 1 ) 

Proof. The proofs are almost trivial. We just give some short hints. 

ad ( A / V ) : Here one uses the fact that k(t) C k(A,) . 

ad (TND): This is proved by transfinite induction on r k ( A ) using (A/V)-

ad (3Ö): We have 3x€lpA(x) ~ V(< € l p A A ( « ) ) ( € T ( J with 

(i I L„) = (i £ U ) ~ A ( . . . ) i e 8 . 

Lemma 2.5 

a) \*-b$b 

b) \ - a C a 

c) | - b^a.be a, if \b\ < \ a \ . 

d) | ± a ^ M = a 

file:///-aCa
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e) | - a G Lp a n d |- a G L ß , if \a\ < ß 

f) F t r a n (U) 

g) |— 3xGLainfinite(x) , if a > u> 

h) | - A d ( l K ) , f o r e v e r y /c £ R . 

P r o o f 
a) This is proved by transfinite induction on rk(6) as follows. B y L H . (in­

duction hypothesis) we have |— t g t for all t € T\b\. From this we obtain 

P t% b , t G 6 A t $ t (by (TND') ) and then \-t°£b, 3xG&(x g t ) (by (V/)*). 

Now by two more applications of (V)* we get |— t £ b —v t ^ b (V< G ^|6|), 

and then (by (A)*) ^ b g b. 

From now on such simple proofs will be given in a more Condensed form, 

namely just by a (horicontal or vertical) sequence of Statements 4|-^y T' such 

that every but the first Statement in the sequence follows from its immediate 

predecessor(s) by means of one or two instances of the rules (A)*> (V)*» (Ad)*, 

(Re f )* , (Weak) , (A /V) , (TND) , (TND , ) , (V^) , (3 / ? ) . The above proof would 

then look like this: 

( L H . ) l - t g * \±t%b,tkbAt#t \-t£b,3xeb{xgt) \±t£b,t^b 

I* t°e b - t± b (vt e 7[6,) p 6 £ 6. 

b) Induction on rk(a): (LH.) \ - b C b |± 6 = b |* b £ a, 6 I a A b = b 

P* 6 k a, 6 € a (V6 G 7f a |) | - VxGa(x G a). 

c) This follows from the above proof of b). 

d) Obvious. 

e) Since (a £ L 0 ) ^ A(^i)i€0> w e ^ a v e l ~ a ^ L 0 , i.e. |— a G L^. From this 

and b) we obtain |— a G L# A a = a and then by (V)* |— a G Lp. 

t)\-t£ U (V6GT a, *G7jfe|) pt VxGUVyGx(y G U ) . 

g) p 6 g L , f c | + 1 p 3 z G U ( 6 G r) (V&GTJ p V y G U 3 z G U ( y G z) 

P infinite(U) | - 3iü€L0infinite(iü). Note that k ( L J = {UJ} C k( . . .)*. 

h) F L „ = u l - M U ) . 
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Abbreviation 

I\[a # b] : = T , - a C 6, - 6 C a 

Lemma 2.6 
P [ a ? b ) t [ L r ^ a ] , if \b\ < 7 

P r o o f by i n d u c t i o n o n 7. Let a := \ a \ , ß := |6| < 7. 

| i [5 # t] , {Lp * s] (by I.H.) 

p - t k b ^ t ^ s , [Lp ± s] {VteTp) 

\- s <£b , [ I p ^ s ] 
, o o 

|- 3 x e a { x # b) , s % a , 5 ^ U (Vs€7;) 

|* [a ^ 6] , BxGL 7 (x g a) 

P [a ^ 6] , [L, ^ a] 

Lemma 2.7 
/ / A ( x i , . . . , x n ) i s a n R S - f o r m u l a such t h a t every x t (z = 1, n) /las a£ mosi 

one /ree o c c u r r e n c e i n A ( x ) t h e n 

\- [Si ^ . . . , [ S n ^ i n ] , . . . , 3„) , A ( i i , . . . ,* n) 

Corollary 

| * s ^ ->v4(s), , /or every R S - f o r m u l a A ( x ) . 

P r o o f of t h e c o r o l l a r y . 

Given A(x) , there is a formula B ( x \ , . . . , x„) such that A ( x ) = i ? ( x , . . . , x) 

and every x t occurs at most once in B ( x i , . . . , x n ) . By the lemma we have 

|— [5 ^ t ] , . . . , [5 ^ t] , ->ß(5 , . . . , s ) , B ( t , . . . , t ) , and from this we get 

, .4(0 by (V)*. 

P r o o f of t h e l e m m a by i n d u c t i o n o n rk(y4(.s))#rk(A(t)) 

( C A S E 1) A ( x u x 2 ) = i i € x 2 -

F M ^ M . [S^<], . i = <! (byl.H.) 

I* [s\ ^ h ] , i £ t7 V i # s . 5 # s i , t k t 2 A t = t1 (V<€7j,2l i 
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[51 ^ U] , 3 I 52 A S <jt t2 , 3 £ S2 V 5 ^ 5X , h £ t2 (^S£TM) 

| - [5i # ti] , [52 7̂  <2] , 5! £ 52 , * i G *2 

( C A S E 2) A(x) = Ad(x). 

F [ 5 ^ ] , U ^ , U = < (V/c < min { M , |*|}) (by LH. ) 

f N t h U ^ , A d ( t ) (V/c < min{|5| 5 |t|}) 

l ' M ^ U ^ , Ad(t) (V/c < |5|) [ by 2.6 |* [5 jk t], U # 5 (V/c> | i | ) ] 

pt [ 5 ^ ] , - iAd( 5 ) , Ad(i) . 

( C A S E 3) A(x) = 3y£xlB{x2,..., x n , y): similar to C A S E 1 . 

The remaining cases are easy. 

Lemma 2.8 

|* 6 £ a , b | a. 

Proo/. 

|~ ^ a , f ^ 6 , 6 G a 

| - f $ a V * ^ 6 , 6 4 a 

| - 6 ^ a , 6 4 a 

Theorem 2.9 
a) F o r e v e r y l i m i t o r d i n a l X we h a v e 

|± (Ext ) A A (Found)A A (Pair) A A (Union) A A (A 0 -Sep) A . 

b) F o r e v e r y K £ R we h a v e \~ (A 0 -Co l )* . 

c) F o r e v e r y l i m i t o r d i n a l X such t h a t V a < A3/cGR(a < K < X) w e h a v e 

\ j (K?£)x , i . e . \ j h o l d s f o r e v e r y a x i o m <p o f K P L 

Proof. 
a) (Ext): 

By 2.7 we have |— a ^ 6, a g c, 6 G c and |— a ^ 6, - i A d ( a ) , A d ( b ) , for all 

a,b,c£T. Hence |— (Ext) A . 

(Found): trivial. 

(Pair): 
Let a . b e T x and 8 := max{|a|, |6|} + 1 

Then |— a € U A b £ U from which we get | - 3 r G L A ( a G z A 6 G r), since 

(by 2.7) 

(V«E7|a |) 
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<5G (k(a)Uk(6))* and 6 < A. 

(Union): 

For every a G T A we have 

p s G L | B , (V5G7j a |) 

| * V x G * ( x G L, B | ) (Vt€7f f l |) 

VyGaVxGy(x G L | a | ) 

| - 3zGLAVyGaVxGy(x G 2) 

(Ao-Sep): 

Let <p(x, z i , . . . , 2 n ) G A 0 and a, c i , . . . , c n G T A . We have to prove 

P 3yGLA(z/>i(y, a i c ) A ^ 2 ( y , a, c)) , 

where i/>i(y> c) := VxGy(x G a A <j!>(x, c)) 

and i p 2 ( y , a , c ) := VxGa(<£(x,c) —• x G y). 

For this let <5 := max{|a| , | c i | , . . . , |c n |} + 1, and d := [x G U : x G a A<£(x, c)]. 

Then d G T A and k(d) C k(V>i(y,a, c))*. 

Therefore it suffices to prove (1) |— i p i ( d , a , c ) and (2) |— ̂ ( d , a , c ) . 
o 

But (1) follows immediately from the fact that t G d = t G a A 4 > ( t , c ) and 

therefore |* « G d -> t G a A <£(*, c) (V*GT 5). 

And (2) is obtained as follows: 

| * t £ a , * G a 

\- t% a , c) , 2 G a A c) 

| - * £ a , -<?(*, c) , t e dAt = t 

| - * £ a , ^ ( < , c ) , * G d (Vt€7ff l|) 

| - VxGa(0(x,c) —> x G d) 

b) is an immediate consequence of (Ref)*. 

c) 1. If 6 is an instance of (Ext),(Found),(Pair),(Union),(Ao-Sep), then |— <̂>A 

holds by a). 

2. Suppose that o is an axiom ( A d l ) or (Ad3). Then <p = Vx(Ad(x) —> \'(x)) 

with x(x) G A 0 , and by 2.5 f,g and 2.9 a,b we have |y x ( U ) for all « G R . 

Since VaGT A (rk( X (a)) < u;A = A), by (Ad)* we get VaGTA( | ^ A d { a ) - + y(a)) 

and thus |4 i x . 
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3. In the same way as under 2. we obtain ( A d 2 ) A . 

4. Now we prove |* (Lim) A . Let a € T\ and K := \ a \ R . Then \ a \ < K < X , 

K G k ( 3 y G L A ( A d ( y ) A a € y))* and | - A d ( L K ) A a G U (by 2.5). From this we 

get 3y€L\(Ad(y) A a € y) by (3 A). 

3 7^-controlled derivations 
In this section we introduce the infinitary proof system RS°° and the notion 
of an 7 i - c o n t r o l l e d RS°°-derivation. We then prove that every RS*-derivation 
can be transformed into an W-controlled RS°°-derivation and that the class 
of W-controlled RS°°-derivations is closed under predicative cut-elimination. 

D e f i n i t i o n 3.1 (The infinitary system R S 0 0 ) 
We define RS°° as the collection of all derivations (i.e. wellfounded trees of 
pairs T: Q ) generated by the following inference rules 

. . . T , A , : a t . . . { i G J ) 
( A ) (ctt < a ) 

r , / \ { A t ) i e J : a 

(V) r w^V Q ° ( a o
 <°^oe J , Uo| < a ) 

^ *\ L , ~ i C : a 0 T , C : Qp 
(Cut) ( a 0 < a ) 

T : a 

(Ref) - ~7~~\ ( a 0 + 1 < Q , A G £ (« ) ) 

In R S 0 0 we identify every RS-sequent T = ( A i , . . . , A n ) with its underlying 

set { A i , . . . , A „ } , so that for example ^ ' ^ v B - a ^ i 1S a n i n s t a n c e °f (V)-

The c u t - r a n k of an RS°°-derivation d is defined as the least ordinal p such 

that rk(C) < p for all cut-formulas C in d. 
If T : a is the bottommost pair of d G R S 0 0 we call d a d e r i v a t i o n o f T : a or a 
d e r i v a t i o n of T w i t h o r d i n a l a . 

We write T to express that there exists an RS°°-derivation of T : a with 

cut-rank < p . 

According to Lemma 1.7 the rules (A)> (V)> (Cut) are correct with respect to 
our Standard semantics of C R S . This gives us the following lemma. 
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Lemma 3.2 (Truth-Lemma) 

K = min(R) & k(r) c , c & | f r = * h r 

Note that — apart from the restrictions '|t 0 | < a' in (V) and c t to+l < a' in 

(Ref) — the just defined notion of RS°°-derivation is completely S t a n d a r d . 

Therefore, according to (Tait [20]), R S 0 0
 a l l o w s predicative cut-elimination, 

i.e. every derivation of T : ß with cut-rank < u j a can be transformed into 

a derivation of T : (paß where all cut-formulas are of the form ^z£LKA^z,K^ 

with K < ua , A G S(/c). Moreover it is fairly obvious that every RS*-

derivation of T can be transformed into an RS 0 0-derivation of T : llrll. But 
of course these facts are not sufficient to establish nontrivial upper bounds 
for the proof theoretic ordinals of K P i , K P i or similar theories. In order to 
get such bounds we introduce the concept of H-controlled RS^-derivations. 
Compared to the already existing methods this concept has the great advan-
tage of being entirely independent from any system of collapsing functions or 
ordinal notations. Collapsing functions are now localized very sharply just 
to that part of the story where they really show up in the formulation of the 
result(s), i.e. the Collapsing Theorem. 

We continue with some preliminaries to the definition of H-controlled R S 0 0 -

derivations. Let SEQ be the class of all RS-sequents. We identify each RS°°-

derivation in the usual way with a function d : dom(d) — • SEQ x On where 

d o m ( d ) is a subset of { ( i 0 , . . . , t n _i) : n £ LÜ & L 0 , ..., t n - i G T 0 , 1 ) closed 

under initial S e g m e n t s . The elements of dom(d) are called the nodes of d, and 

the empty sequence ( ) G dom(d) is called the bottom node or root of d. For 

s G dom(d) and d ( s ) = (T : a ) we call T (a, resp.) the sequent (ordinal, resp.) 

at node s, and set k(d(s)) := k(T) U {a}. 

(To avoid a possible misunderstanding we point out that the index of the 

premise T, A l 0 of an (V/)-inference is 0 and not at all t0. So, if the conclusion 

of an (V)-inference is at node s, then its premise is at node s *(0).) 

Definition 3.3 (H-controlled RS°°-derivations) 

Functions H : T^On) — • V ( O n ) are henceforth called O p e r a t o r s . 

Let H be an Operator, and d : dom(d) — • SEQ x On an RS^-derivation. 

We say that d is 7 i - c o n t r o l l e d if, and only if 

k ( d ( s ) ) C H(k(s)) for all s G dom(d). 
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The intuitive idea behind this definition is that, for each node s of d, 7 i teils 
us which ordinals are allowed (or available) at s. 

Definition 3.4 
Let H be an O p e r a t o r and 0 a finite sequence of RS-sentences and elements 

of T 0 , 1 . Then we define the O p e r a t o r H[Q] : P (On) — • T>(On) by 

H [ 0 } ( X ) : = H ( k ( 0 ) U X ) . 

Abbreviations 
Let H be an Operator and / some ordinal function. 

a G H :<=> et G W(0) 

X C H :<S> X C W(0) 

H C A' :̂ > W(0) C A' 

H is c/osed u n d e r f :<s> VXG'P(On)[ H(AT) is closed under / ] 

Remarks 

1. Note that 4 a G H[©] ' ( 4 X C W[©]\ resp.) is synonymous with c a G 

W(k(9)) ' ('-Y C H ( k ( © ) ) \ resp.). 

2. We always have H [ 0 , © ' ] = W[0][©']. 
In order to come up with a smooth theory of H-controlled derivations we will 
from now on restrict our considerations to Operators 7 i which satisfy certain 
minimal closure conditions. These Operators wil l be called n i c e . 

Definition 3.5 (Nice Operators) 

i) A set X C On is called n i c e ifF 

O e X & VnGuA/cto,... , a n ( . . . # u Q n G A' & { a 0 , . . . . a n } C X ) 

ii) An Operator 7 i is called n i c e ifF the following holds for all X , X ' G 'P(On): 

(H. l ) H ( X ) is nice. 

(H.2) A' C H ( X ) 

(H.3) A " C H ( X ) H ( A ' ) C W(A') 

Lemma 3.6 

// r i i s a n i c e Operator then t h e f o l l o w i n g h o l d s f o r a l l 0 . 

a) W[0] i s n i c e . 

b) k(0) C 7 i = > H[Q] = H 

c) VA' , A"€P(On)[ X ' C X = » W(A") C H ( A ) ] 

d) H is c l o s e d u n d e r a d d i t i o n . m u l t i p l i c a t i o n a n d e x p o n e n t i a t i o n t o base u \ 
e) I f H i s c l o s e d u n d e r £ i—• then X * C W(A') /or a// A' G P ( O n ) . 
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Definition 3.7 
V 3 W-controlled RS 0 0-derivation of (r : a ) with cut-rank < p 

Abbreviation: r, (-»)C 7 i \ f T ^ C k H \ f T , C . 

The following Theorem provides a characterization oi T by transfinite 

recursion on a which as well could be taken as the definition of H\^p T. 

Actually in what follows we are always working with this derivability relation 
and not with specific derivations. 

Theorem 3.8 

*H\*p r if, a n d o n l y if, [ a ] U k(T) C 7 i a n d o n e of t h e f o l l o w i n g cases h o l d s : 

(A) M A W ^ r k H [ i ] \ f r , A , k a t < a ( V i € J ) 

(V) V ( A t ) t 6 J € r k H | - ^ r , A l 0 k a 0 < a & i0 G J \ a 

(Cut) r k ( C ) < p k H | - ^ r , ( - ) C k a 0 < a 

(Ref) 3 z e l K A ^ e T k H f j * T , A k a 0 + l < a k A G E(/c) 

General Assumption 
I n t h e f o l l o w i n g 7 i a l w a y s denotes some nice Operator. 

Now we are going to prove the three main results of this section, i.e. the Em-
bedding Theorem, the Predicative Cut-Elimination Theorem, and the Bound-
edness Lemma for H-controlled RS°°-derivations. 

Lemma 3.9 

a) H \ f r k a < a ( G H k p < p' k k(T') C H = > T, H 

b) H \ f T , A V B = > H \ f T , A , B 

c) n \ ^ v y x e i K A { x ) kß<Kkßen=> n \ ^ v y x e i 0 A ( x ) 

Proof by induction on a. 

Lemma 3.10 

I f H i s c l o s e d u n d e r £ H-> £ R , t h e n || T i m p l i e s H [ T ] ^ T. 

Proof. 
Abbreviation: H\±T H [ T ] ^ T . 
We prove that Ti.\-^ is closed under the inference rules of RS*. 
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1. Suppose that T = T',A with A ~ A { A t ) i e J and 7i\^ P , A t for all i G J . 

Let OL := llrll , a t := I I P , A j l . Then a t < a G W[r] and W[P , A t } \ ^ P , A t 

for all t G J . Since k ( P , A t ) C k ( T , 0 , the latter implies W[r][i]|^ P , A t for 

all t G J . Hence H [ T ] \ f T by (A). 

2. Suppose that T = P , A with A ~ V ( A t ) l 6 j and H\± P . A t 0 , . . . , A t n 

where t 0 , . . . , £ n £ «/ and k(to» •. •, ^n) Q k(T)*. Let a := llrl l and ao : = 

| | r , A t 0 , . . . , A 4 n | | . Since k ( P , A t 0 , . . . , A l n ) c k ( r , «>,.. • ,*n) c k ( H * C 

H[r ] , the assumption yields WpT]!-^1 P , A t 0 , . . . , A t n . From this and the fact 

that Q 0 + w < a G ^ [ L ] we obtain H[r] | -^ T by n+1 applications of (V). 

(Note that \ n \ < llAll < llrll = a . ) 

3. Suppose that T = P , Ad(a) B(a) with r k ( ß ( a ) ) < p and P , 5 ( L K ) 

for all /c < \ a \ . Let a := llrl l , a 0 := IIP,-A<f(a), B(a) , 5(a)l l . Then we have 

a 0 , a G H p ] , V/c < |a | ( | |P, jB(Lk)H < ct0) and P , ß ( L K ) for all 

/c < \ a \ . By 2.7 we have \- l K ^ a, - * B { L K ) , B { a ) . By 1. and 2. above 7Y|^ is 

closed under (A)* and (V)*. Hence H [ T , l K } \ ^ l K ^ a , - £ ( U ) , B { a ) , for all 

/c < |a|, and by (Cut) we get W[T, U ] | - ^ ^ P , U # a . ß ( a ) , for all K < \ a \ . 

This yields W[r]|^±* p , - A d ( a ) , ß ( a ) and then H[r] | -^ P , A d ( a ) — B(a) , 

since a 0 < a G L im. 

4. Let A G S(/c). By 2.4 we have | - - A . A and therefore ' H [ A } \ ^ -»A. A 

with a 0 := I h A , A l l . From this by (Ref) and (V) we get H [ C ] \ ^ Q with 

C := A —• 3 r G U A ^ " > . 

5. Suppose that T = P , C. V x G U A ( x ) with C = 3x€La(Vy€xA(y) A ^ A ( x ) ) . 

Let 7t := | |C | | -j-tj|£|. By induction on \ a \ we prove H[C,a]ffL C . V x < E a A { x ) 

for all a € T with \ a \ < a . This yields W[r]|-^- T. since k(C, L a ) C k(r) and 

||C||+w|L a| < ||r||. So let \a\ < a . By LH. we have (1) H [ C , t ] f j f - C . V y € t A ( y ) 

for all t G 7j„|. By 1. and 2. above we have (2) H [ A { t ) ] \ & - - > A ( t ) , A ( t ) 

with Q, := lh^(<), .4(0ll . Since k ( A ( t ) ) C k ( C , i ) and a, < 7 f for * e T«, 
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from (1) and (2) we obtain n [ C , t ] f ^ C , t 1 U A V y € M ( y ) A - > A { t ) , A ( t ) 

for all t G 7| a | . By (V) we get W[C,*]p*p- C,A{t) for all * € 7[ a ! . Hence 

W[C, a ] | ^ C \VxGaA(x) . 

Lemma 3.11 
Lei A 6 W. Tften f o r every l o g i c a l l y v a l i d sequent A(£) of C A d ' f o r m u l a s t h e r e 

u »A+m 

is an m < u> such t h a t H [ a \ \ (jJX— A A ( a ) f o r a l l a € 7A. 

Proo/. Abbreviation: H h A ( f ) 3m < w Va 6 TA[ ^ 1 1 ^ * " A A ( a ) ]. 

It suffices to prove that ' H h ' is closed under the rules of Tait's (cutfree) 

calculus for first order predicate logic. 

1. By 2.4 and 3.10 for every atomic formula <p(x) and a G 7A we have 

H [ a ] \ ^ ^ ( a ) , < p \ a ) . 

2. Suppose that Vy<£(x, y) € A(x ) and W h A(x),<£(x, y) with y {£} . Then 

for some a = u H m w e have (*) H [ a , b } \ ^ A A ( a ) , <£A(a, 6) (Va, 6 G T A ) . 

Let a G 7Ä be fixed. 

2.1. Suppose that Vy is unrestricted. Then (Vy<£(a, y)) A = Vy€\-\<f>x(a,y) and 

from (*) we get W [ S ] p g ^ A A ( a ) , VyGL A 0 A ( a , y). 

2.2. Suppose that <p{x,y) = y G xt- —• t/>(x, y). In this case (Vy<^(a, y)) A = 

\/y£ai<t>x(a,y), and from (*) we get W[a,6] |££ A A ( a ) , 6 £ at-, r/>A(ö\ 6) for all 

6 G T A . By 2.5c and 3.10 we also have H [ a , b ) \ ^ b G a t , 6 £ a t for all b G 7J a,|. 

By (Cut) we obtain H[a,b}\±Q^- A x { a ) , b £ a t-,^A(a, 6) (V&€7j a.,). Now we 

apply (V) and (A) and get H [ a \ \ ^ A A ( a ) , VyGa t 0 A (a , y). 

3. The case of an 3-inference is treated similarly to case 2. 
4. The A - and V-cases are easy. 

From 2.9, 3.10 and 3.11 we get the following theorem. 

T h e o r e m 3.12 (Embedding) 

Suppose t h a t X G H w i t h X G R & V a < A3/cGR(a < K < X), a n d t h a t 7 i 

is closed under £ £r. Then f o r each theorem o of K P i t h e r e is an m < UJ 

such t h a t 6X. 
1 A 4- m 
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We now turn to the Predicative Cut-Elimination Theorem. 

Lemma 3.13 (Inversion) 

« l ^ r , A ( A e W k L 0 e j = > H [ L 0 ] \ f r , A 1 0 

Proof by induction on a. 

Lemma 3.14 (Reduction) 
Suppose t h a t C ~ V(Cc)teJ a n d rk(C) = p £ R . T/ien i/ie f o l l o w i n g h o l d s : 

n \ ^ r ^ c k n\£r,c=> H | ö L ± ^ r ; , r . 

P r o o f by i n d u c t i o n o n 0. 
We treat only the crucial case where T, C is the conclusion of an (V)~inference 

with principal part C . So assume that I \ C , C t 0 with t 0 G and 

ßo<ßeH. Then by L H . we have (1) W | ^ ^ o r ? r ^ ^ 

We also have /?<> € W , ~ A(" , C ,

t ) t € j , k(*0) C k ( C t 0 ) C W. The 

latter yields H [ i 0 ] = H . Therefore by 3.13 and 3.9a from H \ & H, -»C we 

get (2) H \ Q +

p

8 ( > T , r , - C t 0 . Now we apply (Cut) to (1),(2) and obtain 

r O r ^ - P , T, since r k ( C J < rk(C) = p and a + ß 0 < a + ß € H . 

Note that. since rk(C) £ R, C cannot be the main part of a (Ref)-inference. 

Definition 3.15 (The Vehlen function <p) 
ipaß := ipa(ß) , where p Q is defined by transfinite recursion on a as the 

ordering function of the class { u 0 : ß € On k V£Ea( (p^[yj0) = c o 0 ) } 

Corollary (Basic properties of <p) 
(V?.l) <pQß=u0 , <plß = eQ 

(<p.2) i,n<vctß = > £ + n<tpaß 
(^.3) /?0 < ö ==> s?a/?o < ŝ a/? 
((^.4) a 0 < a = > tpao(pcxß) = paß 

Theorem 3.16 (Predicative Cut-Elimination) 
If H, i s c l o s e d u n d e r t h e V e h l e n - f u n c t i o n (p t h e n t h e f o l l o w i n g h o l d s : 

^ J ^ T k [ p , p + u°[nR= 0 k a e n = > n \ ^ - v . 
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P r o o f by m a i n i n d u c t i o n o n a a n d s u b s i d i a r y i n d u c t i o n o n ß. 
Again we only treat the crucial case. 

A s s u m e H | ^ _ ( - ) C , r k ß0 < ß G H k r k ( C ) < p + u ; a . 

Then by S.I.H. we have (1) H \ ^ f ^ H C T . 

From a,ß e W w e get (2) tpaß G H . 

C A S E 1: rk(C) < p . In this case we apply (Cut) to (1) and use the fact that 

tpaßo < vaß G H . This gives us H \ ^ - Y. 

C A E S 2: rk(C) = p + uQl + ... + u*" with n > 0, a > a T > . . . > a n . 

From k(C) C W it follows that rk(C) G W and thus a u . . . , a n G W. 

The Reduction-Lemma applied to (1) yields (3) W | ^ % L S 2 2 ! Ä l r ? 

and from this we obtain (4) W|-^£y T, since <paßo + ycxßo < ^cxß G H . 

Now using ö i , . . . , a n G 7 i , rk(C) = p + c j a i + . . . + u ; Q n and (pcxi(tpaß) = 

c^a/J (i = 1, . . . , n ) by n applications of the main L H . we get H\^®ß T. 

Corollary 

«Ipfr r & ^ R => r 

Lemma 3.17 (Boundedness) 

H \ ^ T , C k a<ß < K k c e s(/c) k ß e n = > n \ f r , 

P r o o f by i n d u c t i o n o n a . 

1. Suppose that C ~ M C t ) i € j and H [ L ] \ ^ - I \ C\ C t with a t < a G for 

all L G J . Then, since C G S(/c), we have C ^ K ) ~ A { C ^ K ) ) L € J . B y (two 

applications of) the L H . we obtain H [ t } \ ^ T, C ( ^ } , C^-** (VtGJ) and from 

this T, C * ^ by an application of (A). 

2. Suppose that C ^ V ( C t ) t € j and T. C, C, 0 with <0 G J | a and a 0 < 

Q G W . Then C * ^ - \ f { C ^ K ) ) i e J I with J ' = J ov J ' = J\ß. Since a < 5 

and i 0 G J|ct, we also have t 0 G J l \ a . Therefore by L H . and (V) we obtain 

T, C { ß < K ) as in the first case. 

3. Suppose that C = 3 z e i K A ^ K ) and H ^ f T . C , A with .1 G E(/c) and 
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c*o + 1 < a E H . Then by two applications of the L H . we obtain 

(1) H \ ^ f r , C^K\ A l * * ' * l We also have (2) H ) ? f I \ C^K\ L O 0 £ L 0 . 

By (A) from (1),(2) we get (3) r ^ U 0 £ L 0 A A<«°^. 

Now observe that C ( ^ k ) ~ V U £ U A A ^ ) ^ , and that for t := L a o we 

have t G J | a and A ^ K ) = A*" 0 '**. Therefore by (V) from (3) we obtain 

4. In all other cases the assertion follows immediately from the L H . . 

4 The Collapsing Theorem 

In this section we can no longer do with the extremely weak assumption 
that R is just a class of £-numbers, but we have to assume much stronger 
closure properties for the elements of R. The most natural approach would 
be to define R as the class of all admissible ordinals > w. But from the 
technical side it is much more convenient to assume that the elements of R 
are uncountable regulär cardinals. Under this assumption one can prove much 
more easily that the functions ipK (K € R) defined below are indeed collapsing 
functions, i.e. that i p K a < K holds for all a G On, K G R. Moreover using 
regulär cardinals instead of admissibles does not afTect the size of the ordinal 
v which we will obtain as an upper bound for the proof theoretic ordinal of 
K P i . 

D e f i n i t i o n 4.1 

ft0 : = 0 , n a : = K for a > 0. 

We assume the existence of a weakly inaccessible cardinal, i.e. a regulär 
fixpoint of a i—• V i a , and set 

I := m i n { < T : a regulär k Q,a = a } 

R := {er : LÜ < er < I k a regulär} = {1} U : er < 1} 

As before we use /c, r , r to denote elements of R. 
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Def in i t i on 4.2 (The collapsing functions i p K ) 
By transfinite recursion o n a w e define ordinals iJjKa and sets C(a,/3) C On 
as follows 

rl>Ka : = min{ß : K € C{a,ß) k C{a,ß) 0 K C ß} 

n t a \ _ / ^ e c l ° s u r e of /? U {0,1} under the functions 
L ( a , p ) : - | + t ^ t ^ ^ fiffi ^ ^ < a , ff € R) 

(Note that by L H . i / ^ is already defined for all £ < a, IT 6 R.) 

We then set x/;K : On — • On, T/>*(a) := ^«cr-

Def in i t i on 4.3 (The O p e r a t o r s Ti^) 

K y { X ) : = f]{C(a,ß) : A' C C(a,ß) k f < a } 

The remainder of this section i s devoted to the proof o f the following theorem, 
called C o l l a p s i n g T h e o r e m or I m p r e d i c a t i v e C u t - E l i m i n a t i o n T h e o r e m . 

Woi- j^ r & r c E ( n , ) | | r with ß-.= t/> n ,(u, I + 1 + o) 

This theorem i n combination with 3.12, 3.16, 3.17, 3.2, 1.5 then yields the 
final result that | K P i | < 0n,£i+i . 

The above defined functions X/JK (K £ R) constitute a Subsystem o f the system 
( $ K : K < A 0 ) introduced i n (Jäger [7]) which o n the other hand was obtained 
by extending our system (ipK : K < fi^) from (Buchholz [2]). Actually the 
above definition looks a little bit different from that i n (Jäger [7]), but nev-
ertheless, restricted t o K < I, both definitions are equivalent. 

Before proving the Collapsing Theorem w e have t o prove some basic proper-
ties o f the functions \pK and the sets C(a,ß). 

A b b r e v i a t i o n : C K ( a ) : = C ( c x , i p K a ) . 

L e m m a 4.4 

a) ß < T: = > cardinality(CT(a,/3)) < TT 

b) C(a,ß) = \ J r } < 0 C ( a , 7 ] ) , f o r each l i m i t o r d i n a l 3 

c) K € C ( a , K ) 

d) C K ( a ) H K = x b K a 

P r o o f . A l l S t a t e m e n t s are immediate consequences o f definition 4.2. 
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Lemma 4.5 
a) xpKa < K k \ p K a £ C K { a ) 

b) a 0 < cx k a 0 £ C K { a ) = > xpKa0 < i p K a 

c) y > K a £ { n a : c r < V t a } U {0} k V£, rj < ^77 < </>Ka ) 

d) ft„ G C(a, /?) = » ^ C ( a , / ) ) 

e) c > # . . . # t > € C ( a , / 9 ) = > {Zo,.-.,tn}QC(a,ß) 
f) K = = > < < 

g) fl*7a = ^ / a 

h) fi, < 7 < Or+i & 7 € C(a,/3) ==> <j £ C(a, /?) 

i) a 0 < OL = > i / j K a 0 < xbKcx k CK(a0) C C K ( a ) 

Proo/. 

a) Let ß0 := min{r/ : K G C ( a , 77)} , / 3 n + 1 := min{ry : C(a , /3 n ) Pl /c C 7?} 

and ß := sup{/?n : n G w}. Using 4.4a) we obtain \/n£uj(ßn < ßn+\ < K). 

Hence ß < K, K e C{a,ß) and C(a,ß) D K = \J{C{a,ßn) 0 K : n £ u } C 

\J{ßn+i : n £ u } = ß. By definition of r p K a this yields tpKcx < ß < K. From 

CK(a) Pl /c = V>Ka < /c it follows that \pKct g C K ( a ) . 

b) ao < a & ao G CK(cx) together with K £ CK(a) implies i p K a 0 £ C K ( c t ) . 

Using a) and 4.4d) we obtain ipKcxo € CK(a) Pl K = t/>Ka. 

c) Let us assume that \bKcx — Qa with o — 0 or <7 < Q.a. Then by definition 

of C K { a ) we would have y K a £ C K { a ) which contradicts a). — The second 

part is an immediate consequence of \ l ) K a = CK(a) D K and the fact that K 

and CK(a) both are closed under 9 . 

d) Let us assume that a < Vta and a £ C(a,ß). Then ft^ 0 U {0,1} 

and, aecording to c), Qa ^ (V£,7r). Moreover we have V^,7y( Vta £ 

{£ + ^ V ^ } ^<7 G {£,??} )• Therefore the set C(a,ß) \ {fi^} contains 

ß U {0,1} and is closed under + , ( , ( £ , TT) 1—> (f < a, 7r G R) . By 

definition of C ( a , /?) this implies C ( a , /3) C C ( a , /?) \ {O,}, i.e. fi„ £ C ( a , /?). 

e) This is proved in the same way as d), now using the fact that the ordinals 

Qa and iL\£ are closed under p . 

f) From Q a + i = K £ CK(a) it follows by d) and e) that o £ C K ( a ) . Hence 

f l r € CK(a) C\K = iDKcx. 
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g) Let üa < il>\a < fi<r+i. Then < I and therefore f^+i C i ( c x ) , since 
fi<7+i £ V\& — C \ ( a ) fl I. It follows that a £ C\(cx) and thus \D\ct < o~ < fl^. 

h) We assume er £ C(a,ß). Then also n^ f^+x £ C(a,ß). Obviously 

ßU {0,1} C Y : = C ( a , /?) \ [O,, fi<r+i] and V is closed under +, <p, ( ^ ftc. By 

f) and g) it follows that Y is also closed under (f, 7r) H-> (£ < a, 7r G R). 

Hence C ( a , /?) C C ( a , ß) \ i.e. C ( a , /?) n [O,, = 0. 

i) By f) it follows that AC G C ( c x o , w K a ) . We also have C ( c x o , i p K a ) fl AC C 
C(a,u>Ka) Pl AC = u>*a. By the definition of t p K a o from AC G C(ao,0«a) and 
C ( a 0 , w K a ) Pl AC C 0 Ka it follows that ipKcxo < i p K a . 

As an immediate consequence of the above lemma we get the following which 
summarizes the basic closure properties of the O p e r a t o r s Tiy. 

Lemma 4.6 
a) 7-£y a n i c e O p e r a t o r . 
b) Tty i s c l o s e d u n d e r (f. 

c) Z < 7 & £,?r € H , ( X ) = • 1>„{ G 

d) n a < o < n „ + 1 & a € H y ( X ) ==» ( l „ , f i f + 1 6 H , ( A ' ) 
e) 7 < Ä => H^A') C 

Abbreviations 

K := {Ö, : <r < 7} with H , := ( V 1 i f € . R 

— i l a otherwise 

4 ( 0 ; 7 , * ^ ) peK k 7 , K , / i € W 7 [0] & k(0) C f | C T ( 7 + 1) 

Lemma 4.7 
Suppose 4 ( 0 ; 7 , /c, / i) . T/ien £/ie f o l l o w i n g h o l d s : 
(41) £ G 7^[0] = 7 + =» V € 7^(0] & V K 7 ' € Wy[0] 

(42) £ G W^[0] k 7 + < 77 = > ^ ( 7 + ^ ) < il>Kri 

( A 3 ) K < T = > 7^(0] H r C ^ r ( 7 + 1) 

(.44) 7 ' < 7 + uß+Q k p! + a ' < p + a = > 7' + < 7 + u ' M + a 

Froo/. 

1. From f ,7 , /x G ?£v[0] by 4.6a) it follows that 7' G %y[0]. From 7'. AC G 

7iy[0] 4: 7 < 7 ; w e get ^ 7 ' G Wy[0] by 4.6c),e). 

file:///D/ct
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2. Let V := 7 Then 7' € 7^(0] (by (41)), and 7^[0] C C « ( 7 + 1), 

since k(0) C CK{~f + 1). By 4.5b),i) from 7' G C«(7 + 1) and 7 < 7' < 77 it 

follows that ^ 7 ' < ^«77. 

3. 7 ^ 0 ] O r C C T ( 7 + 1) fl r = ^ T ( 7 + 1). 

4. Obvious. 

Remark 
In (42) above the crucial interplay between H y and \ b K shows up most clearly. 

Assuming 4 ( 0 ; 7, AC,/Z) the function £ *-* t/>K(7 + u>M+*) provides an o r d e r pre~ 

s e r v i n g map from 7£y[0] into AC. 

Theorem 4.8 (Collapsing and impredicative cutelimination) 

A ( Q ; f , K , p ) k r C E ( « ) & H ^ [ Q } \ f r = * 

P r o o f by m a i n i n d u c t i o n on p a n d s u b s i d i a r y i n d u c t i o n on a. 

Abbreviation: H \ & T T i \ % T. 

First note that from 4 ( 0 ; 7, AC,/Z) and a G 7£y[0] by ( 4 1 ) , (42) we get: 

(1) l M * € « s [ 0 ] 

(2) 4 ( 0 ' ; 7,«,/^) & a 0 G 7^(0'] k a 0 < a => ^ a j < 0 K a. 

Now we distinguish cases according to the last inference of 7^(0] T: 

1. Suppose that A ~ A ( A L ) t e J G T and 7^(0] [i] I \ A t with aL < a for all 

t G J . Since A G T C E(AC), there is a ß G k ( A ) H AC such that G J( |*| < .5). 

Since k ( A ) C 7^(0], by (43) it follows that V r > *(ß < z/>T(7 + 1)) and thus 

Vt G J V T > /c(k(0 £ C r ( 7 + 1)). Hence 4 ( 0 , i\ 7,AC,^) and therefore (by 

S.I.H.) n-[e)[i} p, A t for a l U G J . From this we obtain H- [0 ] | ^ T 

by (A) and (1),(2). 

i. buppose that V ( A , ) . 6 J € T and 7i,[0] I \ A , 0 with ( 0 € J and ao < cx. 

By S.I.H. we obtain W~ o[0] T. A £ 0 and then 7^[0] T using (V), 

(1), (2) and k( i 0 j C k ( A t 0 ) n AC C 7^(0] fl AC C ^ ( 7 + 1) C i p K a . 

3. If the last inference was an instance of (Ref) then the assertion follows 

immediately from (1), (2). and the S.I.H. . 
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Before treating (Cut) we prove the following proposition. 

(•) Assume 7 < 7' < S k 7' € Wy[0] & rk(C"),/? < TT < p. a n d 

«V[Ö] |4 r, H C " . T/ien W-[0] | ^ I \ 

Proo/. Let p := max{rk(C"),/3} 4- 1 and er G On such that < p < fl<r+i. 

Then for p ! := ft, we have [ p ' , p ' + u p ] fl R = 0 and / / G Wy[0] (since p G 

Wy[©])- B y (Cut) we obtain H y [ 0 ] [ ff * l

p T, and then by the Predicative 

p, -y Lü 

Cut-Elimination Theorem H y [0] K r with 0 / : = <pp(ß+l). From p ! G ? M © ] 

together with 7 < 7' G Wy[0] and 4 ( 0 ; 7,/c,/z) we obtain 4 ( 0 ; 7 ' , « , / / ) . 

Since / / < we can now apply the M . I . H . and obtain HQ»[Q] [^*Q T with 

a* := 7' + u > ß ' + Q ' . Since /z' + 0 / < 7r < ^ & 7' < a . we have a m < a and 

< 0K5. Hence W-[0] | ^ T. 
4. ouppose that 7^(0] ffi T, (-i)C with a 0 < a and rk(C) < p . 

P 
4.1. rk(C) < K . 

Since k(C) C Ky[0 ] , we then have rk(C) G Hy[0] 0 /c C ^ « ( 7 + 1) C x p K a , 
and the assertion follows immediately from the S.I.H. 
4.2. K < rk(C) £ R. 

Let TT := r k ( C ) R . Then /c < rk(C) < TT < p k ~ G 7^(0] . Hence 

4 ( 0 ; 7,TT,M). Since C , - C G E(TT), the S.I.H. yields W~[0] | ^ t t I \ ( - ) C . 

From 7 ,0:0,// G %y[0] & 7 < So we obtain So G W ^ [ 0 ] . Now the assertion 

follows by ( • ) . 

4.3. K < rk (C) = TT. 

W.l.o.g. we have C = 3 x G U A ( x ) G S(TT). We also have K < TT G W^[0] and 

thus 4 ( 0 ; 7, i r , p ) . Now the S.I.H. gives us H ~ 0 [ Q ] \ 4 F , C with ß : = t/^SS. 

By the Boundedness-Lemma from this we get 

(3) H ? o [ Q ] \ & T , 3 x e L 0 A ( x ) . 

Now we apply Lemma 3.9c) to the premise W 7 [0] T. ->C. 

Since ->C = VxGL 7 r -^A(x) and ß G W~ o[0] fl TT. this gives us 

(4) w ^ i e i l ^ r . v i e u - v U s ) . 
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From 4 ( 0 ; 7,TT,/0 and 7 < a 0 € ^ [ 0 ] we get 4 ( 0 ; a 0 ,7r,^). Therefore we 

can apply the S.I.H. to (4) and obtain 

(5) K v [ 0 ] | ^ ^ r , V x G L ^ - A ( x ) with 7' : = a 0 + 

For C : = 3x€LßA(x) we now have 

7 < y < s & y € w y [0] k r k ( c , ) , ^ y < - < ^ & w y [0] i%^r, H C \ 

Hence by ( • ) we obtain H - [ Q ] r. 

Corollary 

W o l f ^ r k r c S ( f l . ) = > \JTmthß:=Mcol+l+°). 

Theorem 4.9 ( M A I N T H E O R E M ) 

L e t v : = T h e n f o r e a c h T,\-sentence <p of C we h a v e : 

K P i h V i ( A d ( x ) - ^ ) ==> L v \ = 4 > . 

Proof. 
Suppose that K P i h V i ( A<f(x) —• <#x ). Then we get successively 

, ,I+m 
(1) ^ o | i i ^ r VxGLi( - <bx ) , for some m G IN [ by 3.12, 4.6 a,d ] 
(2) Wol^tJS1 Lfi, | L i , - A d ( L n i ) , [ by 3.9b. 3.13. fi, € H 0 } 

, I+m _ o 
(3) ^ o P r ^ T ), ö"> [ since L n , £ L, ~ V( /U.e« ] 
( 4 ) ^ o l 0 - " ' ^ 1 [ by 2.5h, 3.10. (Cut) ] 
(5) Woh^fr with Q < £ I + 1 [ by 3.16 (Corollary) ] 
(6) | f <pu> with 3 := ^ n i ( w I + 1 + 0 ) [ by 4.8 (Corollary) ] 
(7) | f [ by 3.17 ] 

(S) L t . \ = o [ by 3.2. 1.5, 4.5i ] 

As shown in the introduction 4.9 together with [8](Th.4.6) yields 

Corollary. | K P i | < 0n, ( s I + 1 ) . 
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