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THE J O U R N A L O F SYMBOLIC LOGIC 
Volume 43, Number 1, March 1978 

P R O V A B L E W E L L O R D E R I N G S O F F O R M A L T H E O R I E S 
F O R T R A N S F I N I T E L Y I T E R A T E D 

I N D U C T I V E D E F I N I T I O N S 

Introduction 

By [12] we know that transfinite induction up to ©en^iO is not provable in 
I D N , the theory of N-times iterated inductive definitions. In this paper we will 
show that conversely transfinite induction up to any ordinal less than ©en^iO is 
provable in IDjy, the intuitionistic version of I D N , and extend this result to 
theories for transfinitely iterated inductive definitions. 

In [14] Schütte proves the wellordering of his notational Systems X ( N ) using 
predicates 93 k(a) : e ( a £ M k A {X E M k : x < a } is wellordered) with M k : = {x E 
2(N): ^ ( K o x ) A * • • A Sk-iCKfc-jx)}1 and 0 < k < N. Obviously the predicates 
93o,.. .,93N-I are definable in ID ' N with the defining axioms: 

where P r o g [ M k , X ] means that X is progressive with respect to M k , i.e. 

Prog [ M k , X ] : ~ V x E M k ( V y E M k ( y < x -> X(y ) ) -> X ( x ) ) . 

The crucial point in Schütte 's wellordering proof is Lemma 19 [14, p. 130] 
which can be modified to 

(I) T I [ M k + 1 , a ] , Sb = k, 93k(fc)=> 93k((a,fc)), for 0 < k < N - l , 

where T I [ M k + i , a ] is the scheme of transfinite induction over M k + i up to a2. 
Checking the proof of (I) it turns out that besides (93 kl) and (23k2) 
(0 < k < N - 1) only finitary methods (including mathematical induction) are 
used. Since the proof uses "excluded middle" only for decidable formulas it is 
formalizable in ID' N . Following the proof of Lemma 17 in [14] one gets 

(II) IDiv h 930(1) A • • • A ® N - i ( n N - , ) and 

(III) I D J v h T I [ M N , a N ] . 

From (III) one derives in the well-known way (due to Gentzen [5]) 

(IV) ID'„ h TI [ M N , cn ] for each n £ J V , 

Received January 5, 1976. 
1 K n x is a finite set of subterms of x . 93„(K„x) means Vy € X„x(93„(y)). 
2 For an exact definition see notational Convention (5), page 3 of the present paper. 

W. B U C H H O L Z and W. P O H L E R S 

(83*1) 

(93k2) 

Prog[M k ,93 k ] , 

Prog [ M k , m - > V x (93k (x) - + g[x ]), 

118 
© 1978, Association for Symbolic Logic 



WELLORDERINGS OF FORMAL THEORIES 119 

where C 0 :={1N, c n + 1 : = ( l , c„ ) . By (I), (II), (IV) and the facts that M 0 = S ( N ) 
and, 93 fc(a) implies T I [ M k , a ] one gets 

(V) I D ' N h TI [2(N), ft[cn, 0]] for each n E JV, 

where ft[c„, 0] :=((•• • (c„, n N_i), . . . , Hj), 1). Since s u p „ e N fi[c„, 0] = 
n [ ( l # l , f t N ) , 0 ] and the order type of {JC E £ ( N ) : X <f t [ ( l # l,nN),0]} is 
0£n^iO 3 , t r a n s f i n i t e i n d u c t i o n up to any o r d i n a l less than 0£n^ iO is p r o v a b l e i n 
IDjs/, which we will abbreviate by I D N I - T I [ < ©en^iO]. 

Similar considerations apply to the wellordering proof of the System @({g}) 
given in [2]. We will prove the following results: 

(A) I D > T I [ < ©erv-iO] for any countable v E @({g})\ 

(B) ID ,

< *hTI [<0en n i + iO] 5 , 

where IDt and ID<. are the intuitionistic versions of the theories I D V and ID<. de-
fined in [4, pp. 307-308] (see also the last paragraph of page 3 of the present paper). 

ID<„ is defined to be the theory U € < V I D { . By ID^we mean the theory of 
autonomously iterated inductive definitions (i.e. if I D h T I [ y ] thert.ID„ C I D ) . 
For a theory Th we take | T h | := sup { £ E O n : T h h T I [ £ ] } . There are the 
following ordinal theoretic relations: 

(1) ©£n a i +i0 = © £ n n | + i 0 and @en,+i0 = @€n,+i0 for v<@aill0. (So the 
above derived results on transfinite induction in ID ' N ( N < a>) are special cases 
of (A).) 

(2) eSlv0 = sups<v Öen^iO for limit v < @a f t l0. 
(3) 01X0 = v for v = © a n i o . 
(4) @ ü n i 0 = s u p „ e N ^ n with v 0 : = l , ivn := 0ft»* 0. 
By (A), and [13] (cf. footnote 4) we get the equations: 

(AI) | I D , | = | IDt | = ee n ^i0 for v < @fl n i 0. 

(A2) | ID<„ | = | ID!c„| = 0^,0 for limit v < ©ft^O. 

(A3) _ _ 
HD l&n^ol = l I D ( 0 l = ®nn,0 and I D ( 0 has the same theorems as IDi&n^o. 

Preliminaries. In the sequel we assume an arithmetization of the notational 
System @({g}), such that all relevant ordinal sets, functions and relations of [2] 
(as S£, K u a , S, + , 0, < , etc.) become primitive recursive6. We will identify 
ordinal notations and their arithmetizations. 

Though we presume some familiarity with [2], we will give a short 
d e s c r i p t i o n of the System 0({g}). ©({g}) is a set ST of ordinal notations ordered 
by a r e l a t i o n < . Each element of £ has the shape 0, a + b, @ab or gab with 

3 Cf. [3]. Note that the System 2(N) in [3] is a slight modification of that in [14]. In [3] the first 
element of X(N) is 0 instead of 1. 

4Recently the second author [13] was able to show I D „ / T I [ Ö e n „ + i 0 ] . 
5Kino's wellordering proof for her ordinal diagrams Od(J) [8] is formalizable in ID'<.. Hence 

IOlc-hTI[||Od(/), <-||]- But as remarked in [2] ||Od(/),<~||<Oa n |(r + 1)<0(n n , + 1)0< 
0e ^ , 0 for || / | | = 1 + r < e(nn, + 1)0. 

6 For a Subsystem of 0({g}) such an arithmetization will be carried out in [15]. 



120 W. B U C H H O L Z A N D W. P O H L E R S 

a, b E ST. The Symbols + (ordinal sum), 0 and g denote 2-place ordinal 
functions. So each term a E St canonically represents an ordinal | a |, for 
example |©00 | = 1, | © 0 1 | = a>, | ©101 = e0. For the order relation < we have 
a < b * * \ a \ E \ b \ . Terms of the shape & a b or g a b a r e called main terms; they 
represent ordinals closed under + . Ä is the set of all terms g a b E St\ the 
elements of Si represent initial ordinals > o). There is a primitive recursive 
order isomorphism a »-» C l a from 2T onto Ä 0 := {0} U Ä with f l 0 = 0 and | fta | = 
f l | a | for a ^ 0. For each a E ST there is exactly one x E St with C l x < a < H x + ] ; 
we dehne Sa: = C l x and call it the level (Stufe) of a . For all a , b E St we have 
S@ab = Sfc, h e n c e 0 a O < f t , . We dehne M 0 :={x E S T : Sx =0} = {x E S~: x < 
fli}. M 0 represents a Segment of the countable ordinals, i.e. 

(1) { £ E O n : £ < |a |} = {|x|: x E M 0 A X < a ) for a E M 0 . 
For a E S" and w E Ä 0 , is a finite set of main terms with levels < u. The 

sets K u a have the following properties: 
(2) If Sa < u, then iCMa is the set of components of a 7. 
(3) K u b C K u ( a + b ) C K u a \ J K u b . 
(4) w < ü A c e K v a -» K w c C X w a . 
(5) v < ( l a - * K v a , a C K v a C K v n a U { l } . 
We fix t h e f o l l o w i n g n o t a t i o n a l C o n v e n t i o n s : 
(1) a, b, c, x, y, z denote elements of 3T. 
(2) M, u, w denote elements of Ä 0 . 
(3) SR,3E serve as syntactical variables for sets {x: $[x ] }cS", where $[x] is a 

formula of the theory considered. 
(4) X D a : = { x G X : x < a } , X n w + := {x E X : Sx < w}. 
(5) Prog [SR, X] abbreviates the formula V x E »(SR n x C £ -> x E £ ) . 

TI[SR,£, a] abbreviates the fromula a E SR A (Prog [9t, £]-»SR D a C X \ and 
TI[SR, a] denotes the scheme {TI[SR, a ] } * expressing the principle of trans
finite induction over SR up to a . 

T r a n s f i n i t e i n d u c t i o n s p r o v a b l e i n ID'„ a n d ID<*. Our main tool in proving 
transfinite inductions will be the concept of the a c c e s s i b l e p a r t W[SR] of a set SR, 
usually defined by W[SR] = {x E SR: SR H x is wellordered}, which is a second-
order definition. This definition however can be replaced by an inductive 
definition, which is expressible in a first-order language by the infinite liSt of 
axioms: 

(i) Prog [SR, W[SR]] and 
(ii) Prog [SR, £ ] - > W [SR ]C£ for each X . 
The t h e o r i e s IDj, ( w i t h v E M 0 ) a n d ID<- are formal theories for iterations of 

such inductive definitions. They are first-order extensions of Heyting's arithme
tic, where ID'„ allows iteration of monotone inductive definitions along the 
segment M 0 f l v, while ID<» allows iteration along the accessible part 
W 0 : = W [ M 0 ] of M 0 . Besides the axioms for iteration of inductive definitions 
(cf. [4, p. 307, (i), (ii)]) there are the axioms: 

(Tl . ) Prog [Mo, X ) M 0 f l v C X for each 3E, in ID . , 

7 For each a^0 there are uniquely determined main terms a x > ••• > a„ ( n > 1) such that 
a = ÜI + • • • + a n . We call a u . . . , a n the components of a . 0 is defined to have no components. 
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asserting the wellordering of M 0 , 

(W 01) Prog [Mo, Wo] and 

(W 02) Prog [Mo, £]-» W o C l for each 3E, in IDÜ-, 

defining the accessible part W 0 of M 0 . 
In order to treat I D l and ID<* simultaneously as far as possible, we refer to 

both as ID* and define A to be the set { C l x : x < v ) in the case of I D l and the set 
{ i l x : x E Wo} in the case of ID<*. Then A is a segment of Ä 0 H (In, with 0 E A . 

I n t h e sequel w, v a r e r e s e r v e d t o denote elements of A ! 
Define 2I[X, Y , x , y ] to be the formula g[x] A V x 0 < x ( g [ x 0 ] - » x 0 E X ) , 

where g[x] Stands for Sx < ü y A V Z , < y({(z 0 , z,}: ZoE K < i z x } C Y ) . Then 
2l[X, Y, x, y] is an arithmetic formula such that each occurrence of X is 
positive. To 21 corresponds a set constant P % (cf. [4, p. 307]). We define 

W a y : = {x : (x ,y>EP 9 1 } and 

M u : = { x : S x < w A V V < u ( K v x C W V ) } . 

Then the axioms (i) and (ii) of [4, p. 307] become 

(Wl) Vw E A ( P r o g [ M u , Wu]) and 

(W2) V K 6 A ( P r o g [ M M , . J ? ] - > Wu C X ) for each £ . 

(Wl) and (W2) assert that Wu i s t h e a c c e s s i b l e p a r t of M u . Clearly for u =0, M u 

coincides with the previously defined set M 0 = iT Pl C l u and in the case of ID<* 
the set Wo defined by (Wl), (W2) coincides with the set W 0 defined by (W 01), 
(W 02). A s immediate consequences of (Wl), (W2) the following formulas are 
provable in I D ' : 

(6) Vx E W u (x E M u A M u D x = Wu H x ) , i.e. Wu is a segment of M u . 
(7) ö G W U ^ T I [ M U , J , a ] . 

By (3) and the definition of M u we get 
(8) a,b£Mu-*a + b E M u and a + fcEMu—>fcE M u . 
The following lemmata 1-3 are straightforward modifications of correspond-

ing lemmata in [9], [10], [11] and [14]. 
L E M M A 1. (a) a, b E Wu—> a + b E WM arcd 

(b) Sa<w A i£Ma C WM—» a E W u are p r o v a b l e i n ID' . 
P R O O F . By (6) and (8). a, E Wu A V X E M u f l b(a + x E WM)-> a + 6 E 

M u A M„ n ( a + fc)C W u . Hence by (Wl) , a E W u - > P r o g [ M u , { x : x + a E Wu}] 
and thence by (W2), a, E Wu—> a + 6 E W u . Part (b) is an immediate 
consequence of (a) and (2). 

L E M M A 2. (a) a E Wu—> Kva C Wv and 
(b) v < u ^ > W v = W u r \ v + a r e p r o v a b l e i n ID' . 
P R O O F . Suppose a E W u A v = H x . Using (TI P ) or (W 02) resp. we prove 

KuöCW, by transfinite induction on x. For u < u we have K„flCW„ by 
a E . W u C M u . From w < i ; we get M v C \ u + C M u , hence by (Wl), 
Prog [M M , {x: x E M„ -* x E WJ] and thence by (W2), Wu C{x: x E M v -» x E 
WJ, i.e. W u nMu C W„. By the induction hypothesis we have K w a C W w for all 
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w < v and hence a E Wu n M v C W^. By (2), (4) and (6) we then get K v a CM„ f l 
(a + 1 ) C W , Part (b) follows from (a) by Lemma l(b). 

LEMMA 3. wE W u is p r o v a b l e i n I D \ 
PROOF. We have {x: £lx E A } C W 0 , which is trivial for I D < « and proved by 

( T L ) and ( W l ) in ID '„ . So for u = ( l x we get x E Wo and thence by (5) and 
Lemma 2(a), K v u C K v x C Wv for all v < w, which implies u E M « . Now suppose 
a E M u n w, then Sa E A D w, X S a a C W„ and by the lemmata l(b), 2(b), 
a E W t t . Hence M u D u C W u and by (Wl), u E W u . 

DEFINITION. Q : = { X : 3 U ( I G W u ) } = U u e A W u ; M : = { x : V v ( K v x C Wv)}. 
Consequences. 1. Obviously Sa E A for all a E Q. By Lemma 3 we then 

have Vx(x E Q - » Sx E Q ) and Q H Ä 0 = A . Hence by Lemma 2(b) for all 
u E O 

(9) O H M + = W U 

and M U = { x : Sx < w A V W ( W E Q n u -> K w x C Q)}. That means the set Q is 
"ausgezeichnet" in the sense of [2, p. 18] with M ? H M + = M u and W ? = 
w [ M ? n M

+ ] = w u . 
2. By (6) and (9) P r o g [ Q , £ ] - > Prog [ M u , { x : x E Wu—» x E £}] and thence 

by (W2) 
(10) P r o g [ 0 , ^ ] ^ Q c £ for each £ , 

which is the first-order formulation of the fact that Q is w e l l o r d e r e d . 
3. Since Q is "ausgezeichnet" (provable in I D ' ) we may follow the proof of 

Theorem 15(b) in [2, p. 19] and get the formula 

a E M A V x G M n a ( Q C R x ) ^ > Prog[Q, R a ] \ 

where R a : = { y : @ay E iT—>©ay E Q } . Here besides the premise " Q aus
gezeichnet" only methods formalizable in Heyting's arithmetic are used. By 
(10) it follows 

(11) P r o g [ M , { x : V y E Q(@xy E 5T-^@xy E (?)}]. 
4. From outside we know that ®({g}) = ( & , < ) is wellordered and hence 

Wu = M U = {x: Sx < u } and M = ST which implies Q = M D C l ^ er defined by: 
DEFINITION. 

v, in the case of I D l , 

Hi, in the case of ID<.. 

Of course W U = M U = {x: Sx < w} is not provable in ID' , but the weaker 
assertion Q = M C\ f l a is provable as the following theorem shows. 

THEOREM 1. C l ^ E M a n d Q = M f l C l a a r e p r o v a b l e i n ID' . 
PROOF. B y Lemma 2(a) we have Q C M D H a G M and Sa E A we get 

K S a CL CWSa and by Lemma l(b), a E W S a C Q . So we just have to prove 
a E M D Sa E A and O f f e M . The proofs differ for I D l , I D U 

1. I D l Then A = { w : w <Ü<r} and trivially aEMnQ,a-*SaEA holds. 
By ( T L ) and ( W l ) we get a = v E W 0 . Hence by Lemma 2(a) and (5) 
V v i K v S l t r C K u O - C Wv) which means E M . 

8 In [2] this formula is proved with Q in place of M, but an analysis of the proof shows that it is 
enough to have the premise a E M A V X G M fl a ( Q C R x ) . 
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2. ID<*. Suppose a E M H O r . Then K 0 a C W 0 and Sa = O for some 
x <0 = (7. By (5) K 0 x CK0£lx U{1}. Further K 0 S a C K 0 a and 1 E Wo. We 
therefore get by Lemma l(b) x E W 0 and thence Sa E A . For 0 < u, 2C 0ft n i

 = 0 
and K u f t a i = Obviously ftG A and hence O E W n , by Lemma 3. By 
Lemma 2(b) it follows V u ( K u S l a i C W u ), which means fl«, = ftn,E M 

Now by (10) and Theorem 1 we get 
(12) TI [M ,0 , ] . 
Hence by (11) Vy E Q(0O,y E JT-> © f ^ y E Q ) . Since 0 E Q A 00,0 E 

ST H ft, we obtain 00,0 E Q n O , Hence by (9) and (7) T I [ M 0 , 00,0]. This 
means we are able to c o l l a p s e the wellordering M fl O , to the provable ordinal 
©OrO 9. This is a special case of the following theorem, which is proved by the 
above considerations with c in place of (!<,. 

T H E O R E M 2 ( C O L L A P S I N G PROPERTY) . I f TI [ M , c ] is provable in I D ' and 

0cOE5T, then TI [M 0 ,@cO] i s p r o v a b l e i n ID 1 . 
Starting from (12) we now prove T I [ M , c ] for each c E M f l ö l O r using 

Gentzen's [5] method for proving T I [ < s 0 ] in number theory. 
DEFINITION. X : = { x : 01O, < x v V y ( M n y C l ^ M f l (y +_©0jt)C£)}. 
L E M M A 4. Vy ( M 0 y C X - » M fl (y + O,) C £)-H> Prog [ M , #] is p r o v a b l e 

i n ID' . 
P R O O F . We have to prove M H (6 + ©Oa) Cäf under the assumptions 

(1) V y ( M H y C l ^ M f l ( y +n . )Cf ) , (2) M f l a C l , (3) a < © 1 0 „ 
(4) M H c l 

By (1) and (4) we get M fl (ft + O , • n) C X for all n E N using mathematical 
induction. Hence M PI (fr 4- ©OOr) C.3f because of sup n e J vOr • n = ©Oft,,.. Sup-
posez G M n ( H ©Oa). We may assume b + ©00, < z. By (3) z < + ©Oa < 
b + © l O , . Hence z = b + ©Oa,- n + z, with 1 < n E AT, O , < a, < a, z, < ©Oa,. 
By Vu(u < Or = Sa () and the definition of Kv—it is the case that K v a x = 
J^ÖOa, C K v z . So we get a x E M P i a since z G M i s assumed. By (2), (3), (4) 
we get M fl (fr + ©Oai • (n + l))C.3f using mathematical induction. Hence 
Z E X . 

DEFINITION. C 0 : = C l ^ c„+i: = @0c„. 
One easily proves cn E M , cn < ©lOr = s u p k e N c k and @c„0 E 2". 
T H E O R E M 3. TI [M,c„] is p r o v a b l e i n ID ' f o r each n E N . 
P R O O F . We prove the theorem by 'metainduction' on n . By (3) 

it follows that a + b E M ^ b E M . Hence Prog [ M , £ ] A M H a C 
J-H>Prog[M,{jt: a + x E M - + a + x E X } ] and thence by (12) 

(*) Prog [ M , X] V y ( M fl y C X - > M PI (y + O,) C £ ) . 

By (*) and c 0 = Or E M we have T I [ M , c 0]. For n > 0 we have the induction 
hypothesis T I [ M , c„_,]. Hence Prog[M, X] —> cn_i E which implies 
Prog [M, l ] - ^ M D c n C if. By (*) and Lemma 4 we get 
Prog[M, J ] ^ P r o g [ M , X ] and therefore P r o g f M , X ] - * M fl c„ CX. Hence 
T I [ M , c ] . 

T H E O R E M 4. I n ID', T I [ M 0 , a] is p r o v a b l e f o r each a < ©(01O,)O. 

9Remember that by (1) M on0nC TO represents the ordinal ©("UO. 
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P R O O F . For a < ©(©l f t ^O there is an n G JV with a < ©c„0. By Theorem 3 
we have T I [ M , c„], which can be collapsed to T I [ M 0 , @c„0] by Theorem 2. So 
T I [ M 0 , a ] holds._ 

Since M 0 f l © ( © l f l ^ O represents the segment { £ G O n : £<0£n<,+iO}, the 
results (A) and (B) stated in the introduction follow from Theorem 4. 

F I N A L R E M A R K S . The above proof of transfinite induction admits the 
following generalization. Let Th be a theory containing Heyting's arithmetic 
and axioms for iterations of inductive definitions along a provably wellordered 
subset A of Ä 0 . Then the sets Wu:= W [ M U ] , M u : = { x : S x < 
u A V U G A n « ( ^ C ^ ) } ( H £ A ) , Q : = { X : 3U G A ( X G W U ) } and 

M : = {x: Vw G A ( K u x C Wu)} are definable in Th , and if the formula V u G 
A ( u G Wu A Vx G Wu(5x G A ) ) is provable in Th , one gets: 

I. Q is w e l l o r d e r e d , i.e. 

II. C o l l a p s i n g p r o p e r t y . 

Th h T I [ M , c] ^> Th h T I [ M o , 0 c O ] (for ©cO G 3T). 

III. Extension t o the next e-number. 

ThhTI [M , n a ] ^> T h h T I [ M , c ] for each c G M f l 01O,. 

From I, II, III it follows: 
I V . 

T h h f t f l G M A M n f t f l C O ThhTI[<0(0in a)O] 

for 0(010, )0G£: 
A s an example we regard the following definition by transfinite recursion on 

j / G ^ r n o : 

A(0):=0, A o : = 0 . 

\(v + 1) := ß A ( „ ) + „ A „ + 1 := A v U { O : A(v) < x G W[M"]}, 
with M v : = { x : x < \ ( v + 1) A V W G A V ( K U X C W H )} 
and Wu defined as above by iteration of 
inductive definitions along A v . 

A (*>): = sup^< i,A(^)10, A v : = U ^ < V A ^ for limit ordinals v. 

Let I D ! be the theory, which allows to define A v and to iterate inductive 
definitions along A v (ID* for example is ID<.). Then by the above consider-
ations we get: 

I D t h T I [ < 0(010 )̂0]. 

B I B L I O G R A P H Y 

[1] J . B R I D G E , A s i m p l i f i c a t i o n of the B a c h m a n n method f o r g e n e r a t i n g l a r g e c o u n t a b l e o r d i n a l s , 
this J O U R N A L , vol. 40 (1975), pp. 171-185. 

For v = o>(l + a ) it is ftA(p) = \ ( v ) = g l a . 



WELLORDERINGS OF F O R M A L THEORIES 125 

[2] W . B U C H H O L Z , N o r m a l f u n k t i o n e n und konstruktive Systeme von O r d i n a l z a h l e n , Proof Theory 
Symposium, Kiel, 1974, Lecture Notes in M a t h e m a t i c s , no. 500, Springer-Verlag, Berlin and New York, 1975, 
pp. 4-25. 

[3] W. B U C H H O L Z and K. S C H Ü T T E , D i e Beziehungen zwischen den Ordinalzahlsystemen X und 
Ö(o>), Archiv für Mathematische L o g i k und Grundlagenforschung, vol. 17 (1975), pp. 179-190. 

[4] S. F E F E R M A N , F o r m a l theories for t r a n s f i n i t e iterations of generalized inductive definitions and 
some substystems of analysis, I n t u i t i o n i s m and p r o o f theory (Kino, Myhill and Vesley, Editors), 
North-Holland, Amsterdam, 1970, pp. 303-326. 

[5] G . G E N T Z E N , Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der t r a n s f i n i t e n I n d u k 
tion i n der r e i n e n Z a h l e n t h e o r i e , Mathematische A n n a l e n , vol. 119 (1943), pp. 140-161. 

[6] H . G E R B E R , Brouwer's bar theorem and a System of o r d i n a l notations, I n t u i t i o n i s m and p r o o f 
theory (Kino, Myhill and Vesley, Editors), North-Holland, Amsterdam, 1970, pp. 327-338. 

[7] W. A . H O W A R D , A System of abstract constructive ordinals, this J O U R N A L , vol. 37 (1972), pp. 
355-374. 

[8] A . KINO, O n o r d i n a l diagrams, J o u r n a l of the M a t h e m a t i c a l Society of J a p a n , vol. 13 (1961), 
pp. 346-356. 

[9] H . PFEIFFER, E i n Bezeichnungssystem für O r d i n a l z a h l e n , Archiv für Mathematische L o g i k 
und Grundlagenforschung, vol. 12 (1969), pp. 12-17. 

[10] , E i n Bezeichnungssystem für O r d i n a l z a h l e n , Archiv für Mathematische L o g i k und 
Grundlagenforschung, vol. 13 (1970), pp. 74-90. 

[11] , Bezeichnungssysteme für O r d i n a l z a h l e n , Communications of the Mathematics 
I n s t i t u t e of Rijksuniversiteit, Utrecht, 1973. 

[12] W . POHLERS, Upper boundsfor the provability of t r a n s f i n i t e induction i n Systems with N-times 
iterated inductive definitions, Proof Theory Symposium, Kiel, 1974, Lecture Notes in M a t h e m a t i c s , no. 500, 
Springer-Verlag, Berlin and New York, 1975, pp. 271-289. 

[13] , O r d i n a l s connected with f o r m a l theories of transfinitely iterated inductive definitions, 
this J O U R N A L , (to appear). 

[14] K. S C H Ü T T E , E i n konstruktives System von O r d i n a l z a h l e n , Archiv für Mathematische L o g i k 
und Grundlagenforschung, vol. 11 (1968), pp. 126-137 and vol. 12 (1969), pp. 3-11. 

[15] , P r o o f theory, 2nd edition, .Springer-Verlag, Berlin, Heidelberg, New York, 1977. 
[16] J . I. Z U C K E R , I t e r a t e d inductive definitions, trees and ordinals, M e t a m a t h e m a t i c a l investiga-

tion of intuitionistic arithmetic and analysis (A. S. Troelstra, Editor), Lecture Notes i n M a t h e m a t i c s , 
no. 344, Springer-Verlag, Berlin and New York, 1973, pp. 392-453. 

MATHEMATISCHES INSTITUT DER LUDWIG-MAXIMILIANS-UNIVERSITÄT 

MÜNCHEN, FEDERAL REPUBLIC OF GERMANY 


