## THE

## JOURNAL

## OF

## SYMBOLIC LOGIC

EDITED BY

Alonzo Church
William Craig

Herbert Enderton
Dagfinn Føllesdal
Y. N. Moschovakis

Managing Editor: Alfons Burgers
Consulting Editors:

Jikí Be čvár
Andrzej Blikle
Martin Davis
Edward E. Dawson
Serena H. Dyson
Calvin C. Elgot
Frederic B. Fitch
G. Hasenjaeger'

Hans Hermes
H. Jerome Keister

Ariel Lévy
Donald Monk
Cert H. Müller
Michael O. Rabin
Gene F. Rose

Barkley Poser
Arto Salomaa
Kurt Schütte
Dana Scott
Joseph R. Shoenfield
J. F. Thomson

Jean van Heijenoort

Volume 43 NUmber 1
MARCH 1978

Published quarterly by the Association for Symbolic Logic, Inc. with SUPPORT FROM ICSU AND FROM INSTITUTIONAL AND CORPORATE MEMBERS

Copyright © 1978 by the Association for Symbolic. Logic, Inc.
Reproduction by photostat, photo-print, microfilm, or like process by permission only

## TABLE OF CONTENTS

On the inconsistency of systems similar to $\mathscr{F}_{21}^{*}$. By M. W. Bunder and R. K. Meyer ..... 1
First steps in intuitionistic model theory. By H. DE Swart ..... 3
Controlling the dependence degree of a recursively enumerable vector space. By Richard A. Shore ..... 13
Relativized realizability in intuitionístic arithmetic of all finite types. By Nicolas D. Goodman ..... 23
Degrees of sensible lambda theories. By Henk Barendregt, Jan Bergstra, Jan Willem Klop and Henri Volken ..... 45
Projective algebra and the calculus of relations. By A. R. Bednarek and S. M. Ulam ..... 56
Saturated ideals. By Kenneth Kunen ..... 65
Separation principles and the axiom of determinateness. By Robert A. VaN WESEP ..... 77
The model theory of ordered differential fields. By MichaEl F. Singer ..... 82
Rings which admit elimination of quantifiers. By Bruce I. Rose ..... 92
Note on an induction axiom. By J. B. Paris. ..... 113
Provable wellorderings of formal theories for transfinitely iterated inductive definitions. By W. Buchholz and W. Pohlers ..... 118
Existentially complete torsion-free nilpotent groups. By D. Saracino ..... 126
Sets which do not have subsets of every higher degree. By STEPHEN G. Simpson ..... 135
Reviews ..... 139

The Journal of Symbolic Logic is the official organ of the Association for Symbolic Logic Inc., published quarterly, in the months of March, June, September, and December. The Journal also contains the official notices of the Division of Logic, Methodology and Philosophy of Science of the International Union of History and Philosophy of Science.

Membership in the Association is open to any one interested in its work. Annual dues for students are $\$ 9.00$. Dues for other individual members are $\$ 18.00$ per year. Dues include subscription to the current volume of the Journal. For their personal use, all members may purchase back issues at $25 \%$ discount.

For nonmembers, subscription to the current volume of the Journal is $\$ 48$ per year. Back volumes may be purchased at $\$ 20$ per volume for volumes $1-17, \$ 25$ per volume for volumes $18-36, \$ 45$ for volume $37, \$ 53$ for volume 38 , and $\$ 60$ per volume for volumes $39-41$. Back volumes of JSL are also available on 16 mm microfilm and may be mounted on spools or in Eastman or 3M cartridges. Volumes 1-37 (1936-1972) are mounted on 5 spools and cost $\$ 325.00$ for spools or $\$ 340.00$ for cartidges.

Applications for membership in the Association, requests for information, all business correspondence and notices of change of address should be sent to The Association for Symbolic Logic, P.O. Box 6248, Providence, Rhode Island 02940. Dues and subscriptions to the Journal should be sent to The Association for Symbolic Logic, P.O. Box 1571, Annex Station, Providence, Rhode Island 02901; all orders must be accompanied by payment.

Two copies of any article, being submitted for publication in the Journal should be sent to Yiannis Moschovakis, Department of Mathematics, U.C.L.A., Los Angeles, CA 90024 or to William

## Continued on inside back cover

## THE

## JOURNAL

## OF SYMBOLIC LOGIC

EDITED BY

Alonzo Church
William Craig
Herbert Enderton
Dagfinn Føllesdal
Y. N. Moschovakis
C. E. M. Yates

Anil Nerode
anaging Editor: Alfons Borgers

Consulting Editors:

Jiǩí Bečvá
Andrzej Blikle Martin Davis Edward E. Dawson Verena H. Dyson Callin C. Elgot
Frederic B. Fitch
G. HASENJAEGER

Hans Hermes
H. Jerome Keisler

Azriel Lévy
Donald Monk
Gert H. Müller
Michael O. Rabin
Gene F. Rose

Barkley Rosser
Arto Salomaa
Kurt Schütte
Dana Scott
Joseph R. Shoenfield
J. F.Thomson

Jean van Heijenoort

Volume 43
1978

The four numbers of Volume 43 were issued at the following dates:
Number 1, pages $1-160$, June 27, 1978
Number 2, pages $161-384$, August 16,1978
Number 3, pages $385-622$, August 28,1978
Number 4, pages $623-759$, February 14, 1979

Numbers 1-3 of this volume are copyrighted © 1978 by the Association for Symbolic Logic., Inc. Number 4 of this volume is copyrighted © 1979 by the Association for Symbolic Logic, Inc. Reproduction of copyrighted numbers of the Journal by photostat, photoprint, microfilm, or like process is forbidden, except by written permission, to be obtained through the Business Office of the Association for Symbolic Logic, P. O. Box 6248, Providence, Rhode Island 02940, U. ©S. A.

## AUTHOR INDEX

Abramson, Fred G. and Harrington, Leo A. Models without indiscernibles. ..... 572
Barendregt, Henk, Bergstra, Jan, Klop, Jan Willem and Volken, Henri. Degrees of sensible lambda theories ..... 45
Barwise, Jon and Moschovakis, Yiannis N. Global inductive definability ..... 521
Bednarek, A. R. and Ulam, S. M. Projective algebra and the calculus of relations ..... 56
Beeson, Michael. A type-free Gödel interpretation ..... 213
——. Some relations between classical and constructive mathematics ..... 228
Bergstra, Jan. See Barendregt, Henk.
Botts, Truman. What is the Conference Board of the Mathematical Sciences?. ..... 620
Bruce, Kim B. Ideal models and some not so ideal problems in the model theory of $L(Q)$ ..... 304
\& Buchholz, W. and Pohlers, W. Provable wellorderings of formal theories for transfinitely iterated inductive definitions ..... 118
Bunder, M. W. and Meyer, R. K. On the inconsistency of systems similar to $\mathscr{F}_{21}^{*}$ ..... 1
Bunder, M. W. and Seldin, Jonathan P. Some anomalies in Fitch's system $Q D$ ..... 247
Burgess, John P. On the Hanf number of Souslin logics ..... 568
Cutland, Nigel. $\Sigma_{1}$-compactness in languages stronger than $\mathscr{L}_{A}$ ..... 508
De Swart, H. First steps in intuitionistic model theory ..... 3
DiPrisco, C. A. and Henle, J. On the compactness of $\aleph_{1}$ and $\aleph_{2}$ ..... 394
Epstein, R. See Posner, D.
Ferro, Ruggero. Interpolation theorems for $L_{k, k}^{2+}$ ..... 535
Galvin, F., Jech, T. and Magidor, M. An ideal game ..... 284
Goodman, Nicolas D. Relativized realizability in intuitionistic arithmetic of all finite types ..... 23
——. The nonconstructive content of sentences of arithmetic ..... 497
Green, Judy. к-Suslin logic ..... 659
Harrington, Leo A. Analytic determinacy and $0^{\#}$ ..... 685
——. See Abramson, Fred G.
Henle, J. See DiPrisco, C. A.
Hirschfeld, Joram. Examples in the theory of existential completeness ..... 650
Hodes, Harold T. Uniform upper bounds on ideals of Turing degrees ..... 601
Howard, Paul E., Rubin, Arthur L. and Rubin, Jean E. Independence results for class forms of the axiom of choice ..... 673
Jech, T. See Galvin, F.Jockusch, Carl G., Jr. and Posner, David B. Double jumps of minimaldegrees.715
Johnson, Nancy. Classifications of generalized index sets of open classes ..... 694
Jones, James P. Three universal representations of recursively enumerable sets. ..... 335
Kalantari, Iraj. Major subspaces of recursively enumerable vector spaces. ..... 293
Kechris, Alexander S. Minimal upper bounds for sequences of $\Delta_{2 n}^{1}$-degrees. ..... 502
——. The perfect set theorem and definable wellorderings of the continuum ..... 630
Keisler, H. Jerome. The stability function of a theory ..... 481
Kleene, Stephen C. An addendum to "The work of Kurt Gödel". ..... 613
Klop, Jan Willem. See Barendregt, Henk.
Knight, Julia F. An inelastic model with indiscernibles. ..... 331
——. Prime and atomic models. ..... 385
Kunen, Kenneth. Saturated ideals ..... 65
Leggett, Anne. $\alpha$-Degrees of maximal $\alpha$-r.e. sets. ..... 456
Lih, Ko-Wer. Type two partial degrees ..... 623
F MAASS, Wolfgang. The uniform regular set theorm in $\alpha$-recursion theory. ..... 270
Magidor, M, See Galvin, F.
Meyer, R. K. See Bunder, M. W.
Mills, George, A model of Peano arithmetic with no elementary end extension. ..... 563
Moschovakis, Yiannis N. See Barwise, Jon.
Normann, Dag. A continuous functional with noncollapsing hierachy ..... 487
Paris, J. B. Note on an induction axiom. ..... 113
——. Some independence results for Peano arithmetic. ..... 725
>Pillay, Anand. Number of countable models. ..... 492
\& Pohlers, W. Ordinals connected with formal theories for transfinitely iterated inductive definitions ..... 161
——. See Buchholz, W.
Posner, David B. See Jockusch, Carl G., Jr.
Posner, D. and Epstein, R. Diagonalization in degree constructions. ..... 280
Remmel, J. A $r$-maximal vector space not contained in any maximal vector space. ..... 430
Retzlaff, Allen. Simple and hyperhypersimple vector spaces ..... 260
Rose, Alan. Formalisations of further $\aleph_{0}$-valued Kukasiewicz propositional calculi. ..... 207
Rose, Bruce I. Rings which admit elimination of quantifiers ..... 92
——.The $\aleph_{1}$-categoricity of strictly upper triangular matrix rings over algebraically closed fields. ..... 250
Rubin, Arthur L. See Howard, Paul E.
Rubin, Jean E. See Howard, Paul E.SARACINO, D. Existentially complete torsion-free nilpotent groups126
Schlipf, John Stewart. Toward model theory through recursive saturation ..... 183
-Schumm, George F. An incomplete nonnormal extension of S3 ..... 211
Seldin, Jonathan P. A sequent calculus formulation of type assignment with equality rules for the $\delta \beta$-calculus ..... 643
——. See Bunder, M. W.
Shelah, Saharon. On the number of minimal models ..... 475

- End extensions and numbers of countable models. ..... 550
Shore, Richard A. Controlling the dependence degree of a recursively enumerable vector space ..... 13
——. Nowhere simple sets and the lattice of recursively enumerable sets. ..... 322
Simpson, Stephen G. Sets which do not have subsets of every higher degree ..... 135
Singer, Michael F. The model theory of ordered differential fields ..... 82
Solomon, Martin K. Some results on measure independent Gödel speed-ups ..... 667
Štěpánek, Petr. Cardinal collapsing and ordinal definability. ..... 635
Ulam, S. M. See Bednarek, A. R.
van Wesep, Robert A. Separation principles and the axiom of determinateness ..... 77
Volken, Henri. See Barendregt, Henk.
Wheeler, William H. A characterization of companionable, universal theories ..... 402
Woodrow, Robert E. Theories with a finite number of countable models. ..... 442
Meeting of the Association for Symbolic Logic, Campinas, Brazil, 1976. By Ayda
I. Arruda, Francisco Miró Quesada, Newton C. A. da Costa and Rolando Chuaqui ..... 352
Abstracts of papers. ..... 352
Annual meeting of the Association for Symbolic Logic, Saint Louis, 1977. By Jon Barwise, Kenneth Kunen and Joseph Ullian. ..... 365
Abstracts of papers. ..... 365
Meeting of the Association for Symbolic Logic, Chicago, 1977. By Carl G. Jockusch, Jr., Robert I. Soare, William Tait and Gaisi Takeuti ..... 614
Abstracts of papers ..... 614
Reviews ..... 139
Reviews ..... 373
List of officers and members of the Association for Symbolic Logic. ..... 732
Notice of meeting. ..... 759


# PROVABLE WELLORDERINGS OF FORMAL THEORIES FOR TRANSFINITELY ITERATED INDUCTIVE DEFINITIONS 

W. BUCHHOLZ and W. POHLERS

## Introduction

By [12] we know that transfinite induction up to $\Theta \varepsilon_{\Omega_{N^{+}}} 0$ is not provable in $\mathrm{ID}_{N}$, the theory of $N$-times iterated inductive definitions. In this paper we will show that conversely transfinite induction up to any ordinal less than $\Theta \varepsilon_{\Omega_{N+1}} 0$ is provable in $\mathrm{ID}_{\mathrm{N}}^{i}$, the intuitionistic version of $\mathrm{ID}_{\mathrm{N}}$, and extend this result to theories for transfinitely iterated inductive definitions.

In [14] Schütte proves the wellordering of his notational systems $\Sigma(N)$ using predicates $\mathfrak{B}_{k}(a): \leftrightarrow\left(a \in M_{k} \wedge\left\{x \in M_{k}: x<a\right\}\right.$ is wellordered) with $M_{k}:=\{x \in$ $\left.\Sigma(N): \mathfrak{B}_{0}\left(K_{0} x\right) \wedge \cdots \wedge \mathfrak{B}_{k-1}\left(K_{k-1} x\right)\right\}^{1}$ and $0 \leq k \leq N$. Obviously the predicates $\mathfrak{B}_{0}, \ldots, \mathfrak{B}_{N-1}$ are definable in $\mathrm{ID}_{N}^{i}$ with the defining axioms:

$$
\begin{equation*}
\operatorname{Prog}\left[M_{k}, \mathfrak{B}_{k}\right] \tag{k}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Prog}\left[M_{k}, \mathfrak{F}\right] \rightarrow \forall x\left(\mathfrak{B}_{k}(x) \rightarrow \mathfrak{F}[x]\right), \tag{k}
\end{equation*}
$$

where $\operatorname{Prog}\left[M_{k}, X\right]$ means that $X$ is progressive with respect to $M_{k}$, i.e.

$$
\operatorname{Prog}\left[M_{k}, X\right]: \leftrightarrow \forall x \in M_{k}\left(\forall y \in M_{k}(y<x \rightarrow X(y)) \rightarrow X(x)\right) .
$$

The crucial point in Schütte's wellordering proof is Lemma 19 [14, p. 130] which can be modified to

$$
\begin{equation*}
\mathrm{TI}\left[M_{k+1}, a\right], S b=k, \mathfrak{B}_{k}(b) \Rightarrow \mathfrak{B}_{k}((a, b)), \quad \text { for } 0 \leq k \leq N-1 \tag{I}
\end{equation*}
$$

where $\operatorname{TI}\left[M_{k+1}, a\right]$ is the scheme of transfinite induction over $M_{k+1}$ up to $a^{2}$. Checking the proof of (I) it turns out that besides ( $\mathfrak{B}_{k} 1$ ) and ( $\mathfrak{B}_{k} 2$ ) ( $0 \leq k \leq N-1$ ) only finitary methods (including mathematical induction) are used. Since the proof uses "excluded middle" only for decidable formulas it is formalizable in $\mathrm{ID}_{\mathrm{N}}^{\mathrm{N}}$. Following the proof of Lemma 17 in [14] one gets

$$
\begin{gather*}
\operatorname{ID}_{N}^{i} \vdash \mathfrak{B}_{0}(1) \wedge \cdots \wedge \mathfrak{B}_{N-1}\left(\Omega_{N-1}\right) \text { and }  \tag{II}\\
\operatorname{ID}_{N}^{i} \vdash \operatorname{TI}\left[M_{N}, \Omega_{N}\right] . \tag{III}
\end{gather*}
$$

From (III) one derives in the well-known way (due to Gentzen [5])

$$
\begin{equation*}
\mathrm{ID}_{N}^{i}+\mathrm{TI}\left[M_{N}, c_{n}\right] \text { for each } n \in N \tag{IV}
\end{equation*}
$$

[^0]where $c_{0}:=\Omega_{N}, c_{n+1}:=\left(1, c_{n}\right)$. By (I), (II), (IV) and the facts that $M_{0}=\Sigma(N)$ and, $\mathfrak{B}_{k}(a)$ implies $\mathrm{TI}\left[M_{k}, a\right]$ one gets
\[

$$
\begin{equation*}
\mathrm{ID}_{N}^{i} \vdash \mathrm{TI}\left[\Sigma(N), \Omega\left[c_{n}, 0\right]\right] \text { for each } n \in N \tag{V}
\end{equation*}
$$

\]

where $\quad \Omega\left[c_{n}, 0\right]:=\left(\left(\cdots\left(c_{n}, \Omega_{N-1}\right), \ldots, \Omega_{1}\right), 1\right)$. Since $\sup _{n \in N} \Omega\left[c_{n}, 0\right]=$ $\Omega\left[\left(1 \# 1, \Omega_{N}\right), 0\right]$ and the order type of $\left\{x \in \Sigma(N): x<\Omega\left[\left(1 \# 1, \Omega_{N}\right), 0\right]\right\}$ is $\Theta \varepsilon_{\Omega_{N+1}} 0^{3}$, transfinite induction up to any ordinal less than $\Theta \varepsilon_{\Omega_{N+1}} 0$ is provable in $\mathrm{ID}_{N}^{i}$, which we will abbreviate by $\mathrm{ID}_{N}^{i} \vdash \mathrm{TI}\left[<\Theta \varepsilon_{\Omega_{N^{+}}} 0\right]$.

Similar considerations apply to the wellordering proof of the system $\bar{\Theta}(\{g\})$ given in [2]. We will prove the following results:

$$
\begin{equation*}
\mathrm{ID}_{\nu}^{i} \vdash \mathrm{TI}\left[<\bar{\Theta} \varepsilon_{\Omega_{\nu}+1} 0\right] \quad \text { for any countable } \nu \in \bar{\Theta}(\{g\})^{4} \tag{A}
\end{equation*}
$$

where $\mathrm{ID}_{\nu}^{i}$ and $\mathrm{ID}^{i}<$ - are the intuitionistic versions of the theories $\mathrm{ID}_{\nu}$ and $\mathrm{ID}_{<\cdot}$ defined in [4, pp. 307-308] (see also the last paragraph of page 3 of the present paper).

ID $<\nu$ is defined to be the theory $\bigcup_{\xi<\nu} \mathrm{ID}_{\xi}$. By $\overline{\mathrm{ID}}$ we mean the theory of autonomously iterated inductive definitions (i.e. if $\overline{\mathrm{ID}} \vdash \mathrm{TI}[\nu]$ then. $\mathrm{ID}_{\nu} \subset \overline{\mathrm{ID}}$ ). For a theory Th we take $|\mathrm{Th}|:=\sup \{\xi \in O n: \mathrm{Th} \vdash \mathrm{TI}[\xi]\}$. There are the following ordinal theoretic relations:
(1) $\bar{\Theta} \varepsilon_{\Omega_{\Omega_{1}+1}} 0=\Theta \varepsilon_{\Omega_{\Omega_{1}+1}} 0$ and $\bar{\Theta} \varepsilon_{\Omega_{\nu}+1} 0=\Theta \varepsilon_{\Omega_{\nu}+1} 0$ for $\nu<\Theta \Omega_{\Omega_{1}} 0$. (So the above derived results on transfinite induction in $\operatorname{ID}_{N}^{i}(N<\omega)$ are special cases of (A).)
(2) $\Theta \Omega_{\nu} 0=\sup _{\xi<\nu} \Theta \varepsilon_{\Omega_{\epsilon}+1} 0$ for limit $\nu \leq \Theta \Omega_{\Omega_{1}} 0$.
(3) $\Theta \Omega_{\nu} 0=\nu$ for $\nu=\Theta \Omega_{\Omega_{1}} 0$.
(4) $\Theta \Omega_{\Omega_{1}} 0=\sup _{n \in N} \nu_{n}$ with $\nu_{0}:=1, \nu_{n+1}:=\Theta \Omega_{\nu_{n}} 0$.

By (A), (1)-(4) and [13] (cf. footnote 4) we get the equations:

$$
\begin{equation*}
\left|\mathrm{ID}_{\nu}\right|=\left|\mathrm{ID}_{\nu}^{i}\right|=\Theta \varepsilon_{\Omega_{\nu}+1} 0 \quad \text { for } \nu<\Theta \Omega_{\Omega_{1}} 0 \tag{A1}
\end{equation*}
$$

$$
\begin{equation*}
\left|\mathrm{ID}_{<\nu}\right|=\left|\mathrm{ID}_{<\nu}^{i}\right|=\Theta \Omega_{\nu} 0 \text { for limit } \nu \leq \Theta \Omega_{\Omega_{1}} 0 \tag{A2}
\end{equation*}
$$


Preliminaries. In the sequel we assume an arithmetization of the notational system $\bar{\Theta}(\{g\})$, such that all relevant ordinal sets, functions and relations of [2] (as $\mathfrak{T}, \mathscr{R}, K_{u} a, S,+, \bar{\Theta},<$, etc.) become primitive recursive ${ }^{6}$. We will identify ordinal notations and their arithmetizations.

Though we presume some familiarity with [2], we will give a short description of the system $\bar{\Theta}(\{g\}) . \bar{\Theta}(\{g\})$ is a set $\mathfrak{I}$ of ordinal notations ordered by a relation $<$. Each element of $\mathfrak{T}$ has the shape $0, a+b, \bar{\Theta} a b$ or $g a b$ with

[^1]$a, b \in \mathfrak{T}$. The symbols + (ordinal sum), $\bar{\Theta}$ and $g$ denote 2-place ordinal functions. So each term $a \in \mathfrak{T}$ canonically represents an ordinal $|a|$, for example $|\bar{\Theta} 00|=1,|\bar{\Theta} 01|=\omega,|\bar{\Theta} 10|=\varepsilon_{0}$. For the order relation $<$ we have $a<b \leftrightarrow|a| \in|b|$. Terms of the shape $\bar{\Theta} a b$ or $g a b$ are called main terms; they represent ordinals closed under $+\ldots$ is the set of all terms $g a b \in \mathfrak{T}$; the elements of $\Omega$ represent initial ordinals $>\omega$. There is a primitive recursive order isomorphism $a \mapsto \Omega_{a}$ from $\mathfrak{I}$ onto $\mathfrak{R}_{0}:=\{0\} \cup \mathfrak{R}$ with $\Omega_{0}=0$ and $\left|\Omega_{a}\right|=$ $\Omega_{|a|}$ for $a \neq 0$. For each $a \in \mathfrak{I}$ there is exactly one $x \in \mathfrak{I}$ with $\Omega_{x} \leq a<\Omega_{x+1}$; we define $S a:=\Omega_{x}$ and call it the level (Stufe) of $a$. For all $a, b \in \mathfrak{I}$ we have $S \bar{\Theta} a b=S b$, hence $\bar{\Theta} a 0<\Omega_{1}$. We define $M_{0}:=\{x \in \mathfrak{I}: S x=0\}=\{x \in \mathfrak{I}: x<$ $\left.\Omega_{1}\right\} . M_{0}$ represents a segment of the countable ordinals, i.e.
(1) $\{\xi \in O n: \xi<|a|\}=\left\{|x|: x \in M_{0} \wedge x<a\right\}$ for $a \in M_{0}$.

For $a \in \mathscr{I}$ and $u \in \mathscr{H}_{0}, K_{u} a$ is a finite set of main terms with levels $\leq u$. The sets $K_{u} a$ have the following properties:
(2) If $S a \leq u$, then $K_{u} a$ is the set of components of $a^{7}$.
(3) $K_{u} b \subset K_{u}(a+b) \subset K_{u} a \cup K_{u} b$.
(4) $w \leq v \wedge c \in K_{v} a \rightarrow K_{w} c \subset K_{w} a$.
(5) $v<\Omega_{a} \rightarrow K_{v} \Omega_{a} \subset K_{v} a \subset K_{v} \Omega_{a} \cup\{1\}$.

We fix the following notational conventions:
(1) $a, b, c, x, y, z$ denote elements of $\mathfrak{T}$.
(2) $u, v, w$ denote elements of $\mathfrak{R}_{0}$.
(3) $\mathfrak{R}, \mathfrak{X}$ serve as syntactical variables for sets $\{x: \mathfrak{F}[x]\} \subset \mathfrak{I}$, where $\mathfrak{F}[x]$ is a formula of the theory considered.
(4) $\mathfrak{X} \cap a:=\{x \in \mathfrak{X}: x<a\}, \mathfrak{X} \cap u^{+}:=\{x \in \mathfrak{X}: S x \leq u\}$.
(5) Prog $[\mathfrak{R}, \mathfrak{X}]$ abbreviates the formula $\forall x \in \mathfrak{R}(\mathfrak{R} \cap x \subset \mathfrak{X} \rightarrow x \in \mathfrak{X})$. $\mathrm{TI}[\mathfrak{R}, \mathfrak{X}, a]$ abbreviates the fromula $a \in \mathfrak{R} \wedge(\operatorname{Prog}[\mathfrak{R}, \mathfrak{X}] \rightarrow \Re \cap a \subset \mathfrak{X})$, and $\mathrm{TI}[\mathfrak{R}, a]$ denotes the scheme $\{\mathrm{TI}[\mathfrak{R}, \mathfrak{X}, a]\}_{\mathfrak{F}}$ expressing the principle of transfinite induction over $\mathfrak{R}$ up to $a$.

Transfinite inductions provable in $\mathrm{ID}_{\nu}^{i}$ and $\mathrm{ID}_{<\cdot}^{i}$. Our main tool in proving transfinite inductions will be the concept of the accessible part $W[\Re]$ of a set $\Re$, usually defined by $W[\Re]=\{x \in \mathfrak{R}: \mathfrak{R} \cap x$ is wellordered $\}$, which is a secondorder definition. This definition however can be replaced by an inductive definition, which is expressible in a first-order language by the infinite list of axioms:
(i) $\operatorname{Prog}[\Re, W[\Re]]$ and
(ii) $\operatorname{Prog}[\Re, \mathfrak{X}] \rightarrow W[\Re] \subset \mathfrak{X}$ for each $\mathfrak{X}$.

The theories $\mathrm{ID}_{\nu}^{i}\left(\right.$ with $\left.\nu \in M_{0}\right)$ and $\mathrm{ID}_{<\cdot}^{i}$ are formal theories for iterations of such inductive definitions. They are first-order extensions of Heyting's arithmetic, where $\mathrm{ID}_{\nu}^{i}$ allows iteration of monotone inductive definitions along the segment $M_{0} \cap \nu$, while $\mathrm{ID}_{<}^{i}$. allows iteration along the accessible part $W_{0}:=W\left[M_{0}\right]$ of $M_{0}$. Besides the axioms for iteration of inductive definitions (cf. [4, p. 307, (i), (ii)]) there are the axioms:
$\left(\mathrm{TI}_{\nu}\right) \quad \operatorname{Prog}\left[M_{0}, \mathfrak{X}\right] \rightarrow M_{0} \cap \nu \subset \mathfrak{X} \quad$ for each $\mathfrak{X}$, in $\mathrm{ID}_{\nu}^{i}$,

[^2]asserting the wellordering of $M_{0}$,
$\operatorname{Prog}\left[M_{0}, W_{0}\right] \quad$ and
( $W_{0} 2$ ) $\quad \operatorname{Prog}\left[M_{0}, \mathfrak{X}\right] \rightarrow W_{0} \subset \mathfrak{X} \quad$ for each $\mathfrak{X}$, in $\mathrm{ID}_{<\cdot}^{i}$,
defining the accessible part $W_{0}$ of $M_{0}$.
In order to treat $\mathrm{ID}_{\nu}^{i}$ and $\mathrm{ID}_{<\cdot}^{i}$ simultaneously as far as possible, we refer to both as ID ${ }^{i}$ and define $A$ to be the set $\left\{\Omega_{x}: x<\nu\right\}$ in the case of ID $_{\nu}^{i}$ and the set $\left\{\Omega_{x}: x \in W_{0}\right\}$ in the case of $\mathrm{ID}_{<}^{i} \cdot$. Then $A$ is a segment of $\Omega_{0} \cap \Omega_{\Omega_{1}}$ with $0 \in A$.

In the sequel $u, v$ are reserved to denote elements of $A$ !
Define $\mathfrak{A}[X, Y, x, y]$ to be the formula $\mathfrak{F}[x] \wedge \forall x_{0}<x\left(\mathfrak{F}\left[x_{0}\right] \rightarrow x_{0} \in X\right)$, where $\mathfrak{F}[x]$ stands for $S x \leq \Omega_{y} \wedge \forall z_{1}<y\left(\left\{\left\langle z_{0}, z_{1}\right\rangle: z_{0} \in K_{\Omega_{z_{1}}} x\right\} \subset Y\right)$. Then $\mathfrak{Y}[X, Y, x, y]$ is an arithmetic formula such that each occurrence of $X$ is positive. To $\mathscr{H}$ corresponds a set constant $P^{\mathscr{Q}}$ (cf. [4, p. 307]). We define

$$
\begin{aligned}
W_{\Omega_{y}} & :=\left\{x:\langle x, y\rangle \in P^{2}\right\} \quad \text { and } \\
M_{u} & :=\left\{x: S x \leq u \wedge \forall v<u\left(K_{v} x \subset W_{v}\right)\right\} .
\end{aligned}
$$

Then the axioms (i) and (ii) of [4, p. 307] become
(W1)

$$
\begin{equation*}
\forall u \in A\left(\operatorname{Prog}\left[M_{u}, W_{u}\right]\right) \quad \text { and } \tag{W2}
\end{equation*}
$$

(W1) and (W2) assert that $W_{u}$ is the accessible part of $M_{u}$. Clearly for $u=0, M_{u}$ coincides with the previously defined set $M_{0}=\mathfrak{I} \cap \Omega_{1}$, and in the case of $\mathrm{ID}^{i}$. the set $W_{0}$ defined by $(W 1)$, ( $W 2$ ) coincides with the set $W_{0}$ defined by ( $W_{0} 1$ ), ( $W_{0} 2$ ). As immediate consequences of ( $W 1$ ), ( $W 2$ ) the following formulas are provable in ID $^{i}$ :
(6) $\forall x \in W_{u}\left(x \in M_{u} \wedge M_{u} \cap x=W_{u} \cap x\right)$, i.e. $W_{u}$ is a segment of $M_{u}$.
(7) $a \in W_{u} \rightarrow \mathrm{TI}\left[M_{u}, \mathfrak{X}, a\right]$.

By (3) and the definition of $M_{u}$ we get
(8) $a, b \in M_{u} \rightarrow a+b \in M_{u}$ and $a+b \in M_{u} \rightarrow b \in M_{u}$.

The following lemmata 1-3 are straightforward modifications of corresponding lemmata in [9], [10], [11] and [14].

Lemma 1. (a) $a, b \in W_{u} \rightarrow a+b \in W_{u}$ and
(b) $S a \leq u \wedge K_{u} a \subset W_{u} \rightarrow a \in W_{u}$ are provable in ID $^{i}$.

Proof. By (6) and (8). $a, b \in W_{u} \wedge \forall x \in M_{u} \cap b\left(a+x \in W_{u}\right) \rightarrow a+b \in$ $M_{u} \wedge M_{u} \cap(a+b) \subset W_{u}$. Hence by $(W 1), a \in W_{u} \rightarrow \operatorname{Prog}\left[M_{u},\left\{x: x+a \in W_{u}\right\}\right]$ and thence by (W2), $a, b \in W_{u} \rightarrow a+b \in W_{u}$. Part (b) is an immediate consequence of (a) and (2).

Lemma 2. (a) $a \in W_{u} \rightarrow K_{v} a \subset W_{v}$ and
(b) $v<u \rightarrow W_{v}=W_{u} \cap v^{+}$are provable in ID $^{i}$.

Proof. Suppose $a \in W_{u} \wedge v=\Omega_{x}$. Using ( $\mathrm{TI}_{\nu}$ ) or ( $W_{0} 2$ ) resp. we prove $K_{v} a \subset W_{v}$ by transfinite induction on $x$. For $v<u$ we have $K_{v} a \subset W_{v}$ by $a \in W_{u} \subset M_{u}$. From $u \leq v$ we get $M_{v} \cap u^{+} \subset M_{u}$, hence by ( $W 1$ ), $\operatorname{Prog}\left[M_{u},\left\{x: x \in M_{v} \rightarrow x \in W_{v}\right\}\right]$ and thence by (W2), $W_{u} \subset\left\{x: x \in M_{v} \rightarrow x \in\right.$ $\left.W_{v}\right\}$, i.e. $W_{u} \cap M_{v} \subset W_{v}$. By the induction hypothesis we have $K_{w} a \subset W_{w}$ for all
$w<v$ and hence $a \in W_{u} \cap M_{v} \subset W_{v}$. By (2), (4) and (6) we then get $K_{v} a \subset M_{v} \cap$ $(a+1) \subset W_{v}$. Part (b) follows from (a) by Lemma 1(b).

Lemma 3. $u \in W_{u}$ is provable in ID $^{i}$.
Proof. We have $\left\{x: \Omega_{x} \in A\right\} \subset W_{0}$, which is trivial for ID $^{i}{ }^{i}$. and proved by ( $\mathrm{TI}_{v}$ ) and ( $W 1$ ) in $\mathrm{ID}_{v}^{i}$. So for $u=\Omega_{x}$ we get $x \in W_{0}$ and thence by (5) and Lemma 2(a), $K_{v} u \subset K_{v} x \subset W_{v}$ for all $v<u$, which implies $u \in M_{u}$. Now suppose $a \in M_{u} \cap u$, then $S a \in A \cap u, K_{s a} a \subset W_{u}$ and by the lemmata 1(b), 2(b), $a \in W_{u}$. Hence $M_{u} \cap u \subset W_{u}$ and by ( $W 1$ ), $u \in W_{u}$.

Definition. $Q:=\left\{x: \exists u\left(x \in W_{u}\right)\right\}=\bigcup_{u \in A} W_{u} ; M:=\left\{x: \forall v\left(K_{v} x \subset W_{v}\right)\right\}$.
Consequences. 1. Obviously $S a \in A$ for all $a \in Q$. By Lemma 3 we then have $\forall x(x \in Q \rightarrow S x \in Q)$ and $Q \cap \Re_{0}=A$. Hence by Lemma 2(b) for all $u \in Q$
(9) $Q \cap u^{+}=W_{u}$
and $M_{u}=\left\{x: S x \leq u \wedge \forall w\left(w \in Q \cap u \rightarrow K_{w} x \subset Q\right)\right\}$. That means the set $Q$ is "ausgezeichnet" in the sense of [2, p. 18] with $M_{u}^{O} \cap u^{+}=M_{u}$ and $W_{u}^{O}=$ $W\left[M_{u}^{O} \cap u^{+}\right]=W_{u}$.
2. By (6) and (9) $\operatorname{Prog}[Q, \mathfrak{X}] \rightarrow \operatorname{Prog}\left[M_{u},\left\{x: x \in W_{u} \rightarrow x \in \mathfrak{X}\right\}\right]$ and thence by (W2)
(10) $\operatorname{Prog}[Q, \mathfrak{X}] \rightarrow Q \subset \mathfrak{X}$ for each $\mathfrak{X}$, which is the first-order formulation of the fact that $Q$ is wellordered.
3. Since $Q$ is "ausgezeichnet" (provable in ID') we may follow the proof of Theorem 15(b) in [2, p. 19] and get the formula

$$
a \in M \wedge \forall x \in M \cap a\left(Q \subset R_{x}\right) \rightarrow \operatorname{Prog}\left[Q, R_{a}\right]^{8}
$$

where $R_{a}:=\{y: \bar{\Theta} a y \in \mathfrak{I} \rightarrow \bar{\Theta} a y \in Q\}$. Here besides the premise " $Q$ ausgezeichnet" only methods formalizable in Heyting's arithmetic are used. By (10) it follows
(11) $\operatorname{Prog}[M,\{x: \forall y \in Q(\bar{\Theta} x y \in \mathfrak{I} \rightarrow \bar{\Theta} x y \in Q)\}]$.
4. From outside we know that $\bar{\Theta}(\{g\})=(\mathfrak{T},<)$ is wellordered and hence $W_{u}=M_{u}=\{x: S x \leq u\}$ and $M=\mathfrak{I}$ which implies $Q=M \cap \Omega_{\sigma}, \sigma$ defined by:

Definition.

$$
\sigma:= \begin{cases}\nu, & \text { in the case of } \mathrm{ID}_{\nu}^{i} \\ \Omega_{1}, & \text { in the case of } \mathrm{ID}_{<\cdot}^{i}\end{cases}
$$

Of course $W_{u}=M_{u}=\{x: S x \leq u\}$ is not provable in $\mathrm{ID}^{i}$, but the weaker assertion $Q=M \cap \Omega_{\sigma}$ is provable as the following theorem shows.

Theorem 1. $\Omega_{\sigma} \in M$ and $Q=M \cap \Omega_{\sigma}$ are provable in $\mathrm{ID}^{i}$.
Proof. By Lemma 2(a) we have $Q \subset M \cap \Omega_{\sigma}$. If $a \in M$ and $S a \in A$ we get $K_{s a} a \subset W_{s a}$ and by Lemma 1(b), $a \in W_{s a} \subset Q$. So we just have to prove $a \in M \cap \Omega_{\sigma} \rightarrow S a \in A$ and $\Omega_{\sigma} \in M$. The proofs differ for $\mathrm{ID}_{\nu}^{i}, \mathrm{ID}_{<\cdot}^{i}$.

1. ID ${ }_{\nu}^{i}$. Then $A=\left\{w: w<\Omega_{\sigma}\right\}$ and trivially $a \in M \cap \Omega_{\sigma} \rightarrow S a \in A$ holds. By ( $\mathrm{TI}_{\nu}$ ) and (W1) we get $\sigma=\nu \in W_{0}$. Hence by Lemma 2(a) and (5) $\forall v\left(K_{v} \Omega_{\sigma} \subset K_{v} \sigma \subset W_{v}\right)$ which means $\Omega_{\sigma} \in M$.

[^3]2. ID ${ }^{i}$.. Suppose $a \in M \cap \Omega_{\sigma}$. Then $K_{0} a \subset W_{0}$ and $S a=\Omega_{x}$ for some $x<\Omega_{1}=\sigma$. By (5) $K_{0} x \subset K_{0} \Omega_{x} \cup\{1\}$. Further $K_{0} S a \subset K_{0} a$ and $1 \in W_{0}$. We therefore get by Lemma 1(b) $x \in W_{0}$ and thence $S a \in A$. For $0<u, K_{0} \Omega_{\Omega_{1}}=\varnothing$ and $K_{u} \Omega_{\Omega_{1}}=\left\{\Omega_{1}\right\}$. Obviously $\Omega_{1} \in A$ and hence $\Omega_{1} \in W_{\Omega_{1}}$ by Lemma 3. By Lemma 2(b) it follows $\forall u\left(K_{u} \Omega_{\Omega_{1}} \subset W_{u}\right)$, which means $\Omega_{\sigma}=\Omega_{\Omega_{1}} \in M$.

Now by (10) and Theorem 1 we get
(12) $\mathrm{TI}\left[M, \Omega_{\sigma}\right]$.

Hence by (11) $\forall y \in Q\left(\bar{\Theta} \Omega_{\sigma} y \in \mathfrak{I} \rightarrow \bar{\Theta} \Omega_{\sigma} y \in Q\right)$. Since $0 \in Q \wedge \bar{\Theta} \Omega_{\sigma} 0 \in$ $\mathfrak{I} \cap \Omega_{1}$ we obtain $\bar{\Theta} \Omega_{\sigma} 0 \in Q \cap \Omega_{1}$. Hence by (9) and (7) $\mathrm{TI}\left[M_{0}, \bar{\Theta} \Omega_{\sigma} 0\right]$. This means we are able to collapse the wellordering $M \cap \Omega_{\sigma}$ to the provable ordinal $\bar{\Theta} \Omega_{\sigma} 0^{9}$. This is a special case of the following theorem, which is proved by the above considerations with $c$ in place of $\Omega_{\sigma}$.

Theorem 2 (Collapsing property). If $\mathrm{TI}[M, c]$ is provable in $\mathrm{ID}^{i}$ and $\bar{\Theta} c 0 \in \mathscr{I}$, then $\mathrm{TI}\left[M_{0}, \bar{\Theta} c 0\right]$ is provable in $\mathrm{ID}^{i}$.

Starting from (12) we now prove $\mathrm{TI}[M, c]$ for each $c \in M \cap \bar{\Theta} 1 \Omega_{\sigma}$ using Gentzen's [5] method for proving $\mathrm{TI}\left[<\varepsilon_{0}\right]$ in number theory.

Definition. $\overline{\mathfrak{X}}:=\left\{x: \bar{\Theta} 1 \Omega_{\sigma} \leq x \vee \forall y(M \cap y \subset \mathfrak{X} \rightarrow M \cap(y+\bar{\Theta} 0 x) \subset \mathfrak{X})\right\}$.
Lemma 4. $\forall y\left(M \cap y \subset \mathfrak{X} \rightarrow M \cap\left(y+\Omega_{\sigma}\right) \subset \mathfrak{X}\right) \rightarrow \operatorname{Prog}[M, \bar{X}]$ is provable in $\mathrm{ID}^{i}$.

Proof. We have to prove $M \cap(b+\bar{\Theta} 0 a) \subset \mathfrak{X}$ under the assumptions (1) $\forall y\left(M \cap y \subset \mathfrak{X} \rightarrow M \cap\left(y+\Omega_{\sigma}\right) \subset \mathfrak{X}\right)$, (2) $\quad M \cap a \subset \overline{\mathcal{X}}$, (3) $a<\bar{\Theta} 1 \Omega_{\sigma}$, (4) $M \cap b \subset \mathfrak{X}$.

By (1) and (4) we get $M \cap\left(b+\Omega_{\sigma} \cdot n\right) \subset \mathscr{X}$ for all $n \in N$ using mathematical induction. Hence $M \cap\left(b+\bar{\Theta} 0 \Omega_{\sigma}\right) \subset \mathscr{X}$ because of $\sup _{n \in N} \Omega_{\sigma} \cdot n=\bar{\Theta} 0 \Omega_{\sigma}$. Suppose $z \in M \cap(b+\bar{\Theta} 0 a)$. We may assume $b+\bar{\Theta} 0 \Omega_{\sigma} \leq z$. By (3) $z<b+\bar{\Theta} 0 a<$ $b+\bar{\Theta} 1 \Omega_{\sigma}$. Hence $z=b+\bar{\Theta} 0 a_{1} \cdot n+z_{1}$ with $1 \leq n \in N, \Omega_{\sigma} \leq a_{1}<a, z_{1}<\bar{\Theta} 0 a_{1}$. By $\forall v\left(v<\Omega_{\sigma}=S a_{1}\right)$ and the definition of $K_{v}$-it is the case that $K_{v} a_{1}=$ $K_{v} \bar{\Theta} 0 a_{1} \subset K_{v} z$. So we get $a_{1} \in M \cap a$ since $z \in M$ is assumed. By (2), (3), (4) we get $M \cap\left(b+\bar{\Theta} 0 a_{1} \cdot(n+1)\right) \subset \mathfrak{X}$ using mathematical induction. Hence $z \in \mathscr{X}$.

DEFINITION. $c_{0}:=\Omega_{\sigma}, c_{n+1}:=\bar{\Theta} 0 c_{n}$.
One easily proves $c_{n} \in M, c_{n}<\bar{\Theta} 1 \Omega_{\sigma}=\sup _{k \in N} c_{k}$ and $\bar{\Theta} c_{n} 0 \in \mathfrak{I}$.
Theorem 3. TI[ $M, c_{n}$ ] is provable in $\mathrm{ID}^{i}$ for each $n \in \boldsymbol{N}$.
Proof. We prove the theorem by 'metainduction' on $n$. By (3) it follows that $a+b \in M \rightarrow b \in M$. Hence $\operatorname{Prog}[M, \mathcal{X}] \wedge M \cap a \subset$ $\mathfrak{X} \rightarrow \operatorname{Prog}[M,\{x: a+x \in M \rightarrow a+x \in \mathfrak{X}\}]$ and thence by (12)

$$
\begin{equation*}
\operatorname{Prog}[M, \mathfrak{X}] \rightarrow \forall y\left(M \cap y \subset \mathfrak{X} \rightarrow M \cap\left(y+\Omega_{\sigma}\right) \subset \mathfrak{X}\right) . \tag{*}
\end{equation*}
$$

By (*) and $c_{0}=\Omega_{\sigma} \in M$ we have $\operatorname{TI}\left[M, c_{0}\right]$. For $n>0$ we have the induction hypothesis $\operatorname{TI}\left[M, c_{n-1}\right]$. Hence $\operatorname{Prog}[M, \overline{\mathscr{X}}] \rightarrow c_{n-1} \in \overline{\mathcal{X}} \quad$ which implies $\operatorname{Prog}[M, \bar{X}] \rightarrow M \cap c_{n} \subset \mathfrak{X}$. By (*) and Lemma 4 we get $\operatorname{Prog}[M, \mathscr{X}] \rightarrow \operatorname{Prog}[M, \overline{\mathscr{X}}]$ and therefore $\operatorname{Prog}[M, \mathscr{X}] \rightarrow M \cap c_{n} \subset \mathfrak{X}$. Hence $\mathrm{TI}\left[M, c_{n}\right]$.

Theorem 4. In $\mathrm{ID}^{i}, \operatorname{TI}\left[M_{0}, a\right]$ is provable for each $a<\bar{\Theta}\left(\bar{\Theta} 1 \Omega_{\sigma}\right) 0$.

[^4]Proof. For $a<\bar{\Theta}\left(\bar{\Theta} 1 \Omega_{\sigma}\right) 0$ there is an $n \in N$ with $a<\bar{\Theta} c_{n} 0$. By Theorem 3 we have $\operatorname{TI}\left[M, c_{n}\right]$, which can be collapsed to $\operatorname{TI}\left[M_{0}, \bar{\Theta} c_{n} 0\right]$ by Theorem 2. So $\mathrm{TI}\left[M_{0}, a\right]$ holds.

Since $M_{0} \cap \bar{\Theta}\left(\bar{\Theta} 1 \Omega_{q}\right) 0$ represents the segment $\left\{\xi \in O n: \xi<\bar{\Theta} \varepsilon_{\Omega_{o+1}} 0\right\}$, the results (A) and (B) stated in the introduction follow from Theorem 4.

Final Remarks. The above proof of transfinite induction admits the following generalization. Let Th be a theory containing Heyting's arithmetic and axioms for iterations of inductive definitions along a provably wellordered subset $A$ of $\Re_{0}$. Then the sets $W_{u}:=W\left[M_{u}\right], \quad M_{u}:=\{x: S x \leq$ $\left.u \wedge \forall v \in A \cap u\left(K_{v} x \subset W_{v}\right)\right\} \quad(u \in A), \quad Q:=\left\{x: \exists u \in A\left(x \in W_{u}\right)\right\} \quad$ and $M:=\left\{x: \forall u \in A\left(K_{u} x \subset W_{u}\right)\right\}$ are definable in Th, and if the formula $\forall u \in$ $A\left(u \in W_{u} \wedge \forall x \in W_{u}(S x \in A)\right)$ is provable in Th, one gets:
I. $Q$ is wellordered, i.e.

$$
\operatorname{Th} \vdash \operatorname{Prog}[Q, \mathfrak{X}] \rightarrow Q \subset \mathfrak{X}
$$

II. Collapsing property.

$$
\left.\mathrm{Th} \vdash \mathrm{TI}[M, c] \Rightarrow \mathrm{Th} \vdash \mathrm{TI}\left[M_{0}, \bar{\Theta} c 0\right] \quad \text { (for } \bar{\Theta} c 0 \in \mathfrak{I}\right)
$$

III. Extension to the next $\varepsilon$-number.

$$
\operatorname{Th} \vdash \operatorname{TI}\left[M, \Omega_{a}\right] \Rightarrow \operatorname{Th} \vdash \operatorname{TI}[M, c] \quad \text { for each } c \in M \cap \bar{\Theta} 1 \Omega_{a}
$$

From I, II, III it follows:
IV.

$$
\begin{aligned}
& \mathrm{Th} \vdash \Omega_{a} \in M \wedge M \cap \Omega_{a} \subset Q \Rightarrow \mathrm{Th} \vdash \mathrm{TI}\left[<\bar{\Theta}\left(\bar{\Theta} 1 \Omega_{a}\right) 0\right] \\
& \qquad \text { for } \bar{\Theta}\left(\bar{\Theta} 1 \Omega_{a}\right) 0 \in \mathfrak{I} .
\end{aligned}
$$

As an example we regard the following definition by transfinite recursion on $\nu \in \mathfrak{I} \cap \Omega_{1}:$

$$
\begin{array}{ll}
\lambda(0):=0, & A_{0}:=\varnothing \\
\lambda(\nu+1):=\Omega_{\lambda(\nu)+1}, & \begin{array}{l}
A_{\nu+1}:=A_{\nu} \cup\left\{\Omega_{x}: \lambda(\nu) \leq x \in W\left[M^{\nu}\right]\right\}, \\
\\
\text { with } M^{\nu}:=\left\{x: x<\lambda(\nu+1) \wedge \forall u \in A_{\nu}\left(K_{u} x \subset W_{u}\right)\right\} \\
\\
\text { and } W_{u} \text { defined as above by iteration of } \\
\text { inductive definitions along } A_{\nu .} . \\
\lambda(\nu):=\sup _{\xi<\nu} \lambda(\xi)^{10},
\end{array} \\
A \nu:=\bigcup_{\xi<\nu} A_{\xi} \text { for limit ordinals } \nu .
\end{array}
$$

Let ID* be the theory, which allows to define $A_{\nu}$ and to iterate inductive definitions along $A_{\nu}$ ( $\mathrm{ID}_{1}^{*}$ for example is $\mathrm{ID}_{<\cdot}$ ). Then by the above considerations we get:

$$
\mathrm{ID}_{\nu}^{*} \vdash \mathrm{TI}\left[<\bar{\Theta}\left(\bar{\Theta} 1 \Omega_{\lambda(\nu)}\right) 0\right] .
$$

## BIBLIOGRAPHY

[1] J. Bridge, A simplification of the Bachmann method for generating large countable ordinals, this Journal, vol. 40 (1975), pp. 171-185.

[^5][2] W. Buchholz, Normalfunktionen und konstruktive Systeme von Ordinalzahlen, Proof Theory Symposium, Kiel, 1974, Lecture Notes in Mathematics, no. 500, Springer-Verlag, Berlin and New York, 1975, pp. 4-25.
[3] W. Buchholz and K. Schütte, Die Beziehungen zwischen den Ordinalzahlsystemen $\Sigma$ und $\bar{\Theta}(\omega)$, Archiv für Mathematische Logik und Grundlagenforschung, vol. 17 (1975), pp. 179-190.
[4] S. Feferman, Formal theories for transfinite iterations of generalized inductive definitions and some substystems of analysis, Intuitionism and proof theory (Kino, Myhill and Vesley, Editors), North-Holland, Amsterdam, 1970, pp. 303-326.
[5] G. Gentzen, Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie, Mathematische Annalen, vol. 119 (1943), pp. 140-161.
[6] H. Gerber, Brouwer's bar theorem and a system of ordinal notations, Intuitionism and proof theory (Kino, Myhill and Vesley, Editors), North-Holland, Amsterdam, 1970, pp. 327-338.
[7] W. A. Howard, A system of abstract constructive ordinals, this JOURNal, vol. 37 (1972), pp. 355-374.
[8] A. Kino, On ordinal diagrams, Journal of the Mathematical Society of Japan, vol. 13 (1961), pp. 346-356.
[9] H. Pfeiffer, Ein Bezeichnungssystem für Ordinalzahlen, Archiv für Mathematische Logik und Grundlagenforschung, vol. 12 (1969), pp. 12-17.
[10] ——, Ein Bezeichnungssystem für Ordinalzahlen, Archiv für Mathematische Logik und Grundlagenforschung, vol. 13 (1970), pp. 74-90.
[11] , Bezeichnungssysteme für Ordinalzahlen, Communications of the Mathematics Institute of Rijksuniversiteit, Utrecht, 1973.
[12] W. Pohlers, Upper bounds for the provability of transfinite induction in systems with $N$-times iterated inductive definitions , Proof Theory Symposium, Kiel, 1974, Lecture Notes in Mathematics, no. 500, Springer-Verlag, Berlin and New York, 1975, pp. 271-289.
[13] -, Ordinals connected with formal theories of transfinitely iterated inductive definitions, this Journal, (to appear).
[14] K. Schütte, Ein konstruktives System von Ordinalzahlen, Archiv für Mathematische Logik und Grundlagenforschung, vol. 11 (1968), pp. 126-137 and vol. 12 (1969), pp. 3-11.
[15] ——, Proof theory, 2nd edition, Springer-Verlag, Berlin, Heidelberg, New York, 1977.
[16] J. I. Zucker, Iterated inductive definitions, trees and ordinals, Metamathematical investigation of intuitionistic arithmetic and analysis (A. S. Troelstra, Editor), Lecture Notes in Mathematics, no. 344, Springer-Verlag, Berlin and New York, 1973, pp. 392-453.

[^6]
[^0]:    Received January 5, 1976.
    ${ }^{1} K_{n} x$ is a finite set of subterms of $x . \mathfrak{B}_{n}\left(K_{n} x\right)$ means $\forall y \in K_{n} x\left(\mathfrak{B}_{n}(y)\right)$.
    ${ }^{2}$ For an exact definition see notational convention (5), page 3 of the present paper.

[^1]:    ${ }^{3}$ Cf. [3]. Note that the system $\Sigma(N)$ in [3] is a slight modification of that in [14]. In [3] the first element of $\Sigma(N)$ is 0 instead of 1 .
    ${ }^{4}$ Recently the second author [13] was able to show $\operatorname{ID}, \nvdash \mathrm{TI}\left[\Theta \varepsilon_{\mathbf{\Omega}_{\nu}+1} 0\right]$.
    ${ }^{5}$ Kino's wellordering proof for her ordinal diagrams $\operatorname{Od}(I)[8]$ is formalizable in ${ }^{1 D}{ }^{i} \cdot$. Hence $\mathrm{ID}_{<\cdot}^{i} \cdot \mathrm{TI}\left[\left\|\operatorname{Od}(I),<_{\infty}\right\|\right]$. But as remarked in [2] $\left\|\mathrm{Od}(I),<_{\infty}\right\| \leq \Theta \Omega_{\Omega_{1}}(\tau+1)<\Theta\left(\Omega_{\Omega_{1}}+1\right) 0<$ $\Theta \varepsilon_{\Omega_{\Omega_{1}+1}} 0$ for $\|I\|=1+\tau<\Theta\left(\Omega_{\Omega_{1}}+1\right) 0$.
    ${ }^{6}$ For a subsystem of $\bar{\Theta}(\{g\})$ such an arithmetization will be carried out in [15].

[^2]:    ${ }^{7}$ For each $a \neq 0$ there are uniquely determined main terms $a_{1} \geq \cdots \geq a_{n}$ ( $n \geq 1$ ) such that $a=a_{1}+\cdots+a_{n}$. We call $a_{1}, \ldots, a_{n}$ the components of $a .0$ is defined to have no components.

[^3]:    ${ }^{8}$ In [2] this formula is proved with $Q$ in place of $M$, but an analysis of the proof shows that it is enough to have the premise $a \in M \wedge \forall x \in M \cap a\left(Q \subset R_{x}\right)$.

[^4]:    ${ }^{9}$ Remember that by (1) $M_{0} \cap \bar{\Theta} \Omega_{\sigma} 0$ represents the ordinal $\bar{\Theta} \Omega_{\sigma} 0$.

[^5]:    ${ }^{10}$ For $\nu=\omega(1+a)$ it is $\Omega_{\lambda(\nu)}=\lambda(\nu)=g 1 a$.

[^6]:    MATHEMATISCHES INSTITUT DER LUDWIG-MAXIMILIANS-UNIVERSITÄT
    MÜNCHEN, FEDERAL REPUBLIC OF GERMANY

