fact that $k_{\text {inter }}[1] \ll k_{\text {inter }}^{\prime}[2]$. In variant $\mathrm{B}, 2$ is slowly added to a solution of 1 . It is clear that not only in the early stages of the reaction, but also during a large part of its time course, the product $k_{\text {inter }}^{\prime}[2]$ is small compared to the product $k_{\text {inter }}[1]$, in spite of the fact that $k_{\text {inter }}^{\prime}$ is larger than $\dot{k}_{\text {inter }}$. Hence, the approximate eq 8 applies to variant B. Combination of eq 7 with eq 8 gives eq 9 , where the nu-

$$
\begin{align*}
& \frac{\left(v_{\text {intra }} / v_{\text {inter }}\right)_{\mathrm{B}}}{\left(v_{\text {intra }} / v_{\text {inter }}\right)_{\mathrm{A}}} \approx \\
& \quad \frac{2 k_{\text {inter }}[2]+k_{\text {inter }}^{\prime}\left([-\mathrm{COCl}]+\left[-\mathrm{SSn}(\mathrm{Cl}) \mathrm{Bu}_{2}\right]\right)}{2 k_{\text {inter }}[1]+k_{\text {inter }}^{\prime}\left([-\mathrm{COCl}]+\left[-\mathrm{SSn}(\mathrm{Cl}) \mathrm{Bu}_{2}\right]\right)} \tag{9}
\end{align*}
$$

merator of the fraction in the right-hand side is much greater than the denominator because $k_{\text {inter }}^{\prime} \gg k_{\text {inter. }}$. This shows that the advantage of variant B over variant A, as measured by the corresponding ($v_{\text {intra }} / v_{\text {inter }}$) ratios, is a consequence of the reactivity increase of the tin thiolate intermediate 5 relative to the stannadithiane reactant 1. In other words, the advantage of variant B is that in this case macrolactonization to the monomeric dithialactones 3 competes with a slower intermolecular reaction.

Concluding Remarks

It was found that macrocyclic dithialactones can be prepared in remarkably high yields by reaction of 1 with 2 provided that reactant mixing is carried out according to the 2C-DP technique. It should be stressed that highly efficient macrocyclization can be achieved by a proper adjustment of experimental conditions, even in the absence of yield-enhancing factors, such as template effects. Reaction of 1 with 2 is actually a double ring-closure reaction of the type $A \cdots A^{\prime}+B--B$, where A^{\prime} is a latent functionality that is more reactive than the parent functionality A. This has important consequences on yields whenever reactant mixing is carried out according to a $1 \mathrm{C}-\mathrm{DP}$ technique, which is widely used in macrocyclization reactions. ${ }^{4}$ In this case the correct order of mixing is the slow addition of the symmetrical reactant to a solution of the reactant in which equivalence of the two ends is lost in the reaction. The advantage of the correct procedure over the uncorrect one is greater, the larger the reactivity difference between A and A^{\prime}.

Experimental Section

Instruments, Techniques, and Materials. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 7.1 T in CDCl_{3}. Positive FAB-MS spectra were obtained with a standard FAB source (Argon 7 kV). Melting points are uncorrected. Column chromatography of the reaction mixtures was performed on silica gel 60 , mesh size 70-230. Ethanedithiol and dibutyltin oxide were commercial samples. Reagent-grade samples of acid chlorides were distilled before use.

2,2-Dibutyl-1,3,2-dithiastannolane (1). Ethanedithiol (3.76 $\mathrm{g}, 40 \mathrm{mmol})$ and dibutyltin oxide $(9.95 \mathrm{~g}, 40 \mathrm{mmol})$ were azeotropically dehydrated in toluene (100 mL) in a Dean-Stark apparatus, until the reaction was complete. Toluene was removed in vacuo and the resulting solid was crystallized from hexane to afford 13 g (50% yield) of a colorless solid, $\mathrm{mp} 57.5-58{ }^{\circ} \mathrm{C}$ (lit. ${ }^{7}$ $\operatorname{mp} 59-60^{\circ} \mathrm{C}$).

Macrocyclization Reactions. These were carried out as described in the text. Slow additions were carried out by means of a motor-driven syringe pump. After completion of additions, reflux was continued for 30 min to ensure complete reaction. The mixture was then cooled, and $\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$ was removed by complexation with $2,2^{\prime}$-dipyridyl. Concentration in vacuo and chromatography of the residue on silica gel with toluene containing increasing amounts of EtOAc (from 0 to 30%) led to the isolation

[^0]of the pure macrocyclic products. ${ }^{8}$
1,4-Dithiacycloundecane-5,11-dione (3, $m=5$): mp 79-80 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{3} \mathrm{mp} 75-78^{\circ} \mathrm{C}$).

1,4-Dithiacyclotridecane-5,13-dione (3, $m=7$): $\operatorname{mp} 90-91$ ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 3.25$ (s, 2 H), 2.55 (m, 2 H), 1.75, 1.33 (m, 14 H); ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 199.5,44.0,27.8,27.4,27.2,25.2$; IR (Nujol) $1675 \mathrm{~cm}^{-1}$; mass spectrum $m / e \mathrm{M}^{+}$, 246. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 53.66; H, 7.32. Found: C, $53.60 ; \mathrm{H}, 7.38$.

1,4,12,15-Tetrathiacyclodocosane-5,11,16,22-tetrone (4, m $=5$): mp $134-135{ }^{\circ} \mathrm{C}$ (lit. ${ }^{3} \mathrm{mp} 125-129^{\circ} \mathrm{C}$).

1,4,14,17-Tetrathiacyclohezacosane-5,13,18,26-tetrone (4, $m=7$): mp $109-110{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 3.0(\mathrm{~s}, 4 \mathrm{H}), 2.54(\mathrm{t}, J=7$ $\mathrm{Hz}, 4 \mathrm{H}$), 1.66, 1.31 (m, 28 H); ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 198.8,43.8$, $28.7,28.6,28.2,25.5$; IR (Nujol) $1680 \mathrm{~cm}^{-1}$; mass spectrum m / e $\mathrm{M}+1,493$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{~S}_{4}$: C, $53.66 ; \mathrm{H}, 7.32$. Found: C, 53.54; H, 7.48.

Registry No. 1, 7191-30-2; $2(m=5), 142-79-0 ; 2(m=7)$, 123-98-8; $3(m=5), 89863-24-1 ; 3(m=7), 137516-82-6 ; 4(m=$ 5), 74190-60-6; $4(m=7), 74190-59-3 ; 7,10017-60-4$; ethanethiol, 540-63-6; dibutyltin oxide, 818-08-6.
(8) Combined HPLC and FAB-MS analyses of the crude mixtures obtained with the BW technique showed the presence of higher cyclic oligomers with polymerization degree up to 7 . This work will be presented elsewhere.

Synthesis of Cyclopentenes via [3 + 2]Cycloadditions of Silylated Propargyl \leftrightarrow Allenyl Cations with Alkenes ${ }^{\boldsymbol{\dagger}}$

Herbert Mayr,*,t Englbert Bäuml, Gerlinde Cibura, and Rainer Koschinsky

Institut für Chemie der Medizinischen Universität zu

 Lübeck, Ratzeburger Allee 160, D-2400 Lübeck 1, Germany
Received May 15, 1991

The construction of 5 -membered carbocycles by combination of 3 C and 2C fragments has attracted considerable attention in recent years. ${ }^{1}$ One possible approach, $[3+$ 2]-cycloadditions of [allenyl \leftrightarrow propargyl] cations with alkenes, has been accomplished by treating trialkylpropargyl chlorides with Lewis acids in the presence of alkenes. ${ }^{2}$ This reaction sequence proceeds via the cyclization $3 \rightarrow 2,{ }^{2}$ in spite of the fact that 1-cyclopentenyl cations are highly unstable and are not formed during solvolyses of 1-cyclopentenyl triflates. ${ }^{3}$ The vinyl cations 2 are not the only cycloadducts arising from [allenyl \rightarrow propargyl] cations, however, and for other substitution patterns of $1,[2+2]$-cycloadditions with formation of 4 or 6 have been observed (Scheme I). ${ }^{4}$

Because of the well-known β-effect of trialkylsilyl groups, ${ }^{5}$ the intermediate cations $3\left(\mathrm{R}^{1}=\mathrm{SiMe}_{3}\right.$) can be expected to undergo exclusive 5 -endo-dig cyclizations with formation of 1 -cyclopentenyl cations, thus providing a convenient access to cyclopentenes with a functionalized double bond. We report now on Lewis acid promoted reactions of 3 -chloro-3-methyl-1-(trimethylsilyl)-1-butyne (7) with various CC-double bonded compounds and describe some reactions of the resulting 1-chloro-2-(trimethylsilyl)cyclopentenes 9 .

When the propargyl chloride 7 is combined with one of the alkenes $8 \mathrm{a}-\mathrm{e}$ in the presence of TiCl_{4}, the cyclopentenes 9a-e are produced (Tables I and II), accompanied

[^1]Table I. ${ }^{13} \mathrm{C}$ NMR Chemical Shifts for the 2-Chloro-2-(trimethylsilyl)cyclopentenes $9\left(\mathrm{CDCl}_{3}\right)^{a}$

formula	R^{1}	R^{2}	R^{3}	C-1	C-2	C-3	C-4	C-5	R ${ }^{1}$	R^{2}	R^{3}	$5-\mathrm{CH}_{3}$	SiMe_{3}
9 a	H	CH_{3}	CH_{3}	150.52	142.09	48.32*	55.48	47.53*		30.94*	30.94*	28.64*/28.64*	0.45
9 b	CH_{3}	CH_{3}	CH_{3}	151.37	142.54	52.99*	49.84	50.39*	8.77	27.54*	29.21*	23.51/21.72	0.52
9 c	CH_{3}	H	Ph	153.65	136.30	54.85*	60.33*	50.78	12.04		b	26.03*/20.42*	-0.82
9d	CH_{3}	H	CH_{3}	151.47	137.21	51.64*	48.30*	50.61	12.73*		19.95*	26.42*/20.07*	-0.06
9 e		$)_{3}{ }^{-}$	CH_{3}	148.94	141.24	58.35	61.10	49.50	$\begin{aligned} & 26.01 \\ & 30.52 \\ & 41.33 \end{aligned}$		22.51	29.67/30.64	-0.08

${ }^{a}$ Asterisk indicates uncertain assignment. ${ }^{b} 145.36$ (i), 128.22 (\mathbf{o}, m), 126.22 (p).
Scheme I

Scheme II

only by polymeric material. There was no evidence for the formation of isomeric products with the positions of SiMe_{3}

[^2]Scheme III

Scheme IV

Scheme V

13

and Cl interchanged. Products of that type might arise via trimethylsilyl migration during cyclization, in analogy to the $[3+2]$ annulations previously described by Danheiser. ${ }^{6}$ Proof for the constitution of the unsymmetrical

[^3]Table II

${ }^{a} \mathrm{BCl}_{3}$ was used instead of TiCl_{4}; the TiCl_{4}-catalyzed reaction at $0^{\circ} \mathrm{C}$ gave 20% of 9 e contaminated by an unidentified product.
cyclopentene 9 c has been obtained by conversion of 9 c into 10c (Scheme II). A cross-correlated heteronuclear 2D spectrum ${ }^{7}$ of 10 c revealed a ${ }^{3} J(\mathrm{C}, \mathrm{H})$ coupling between $\mathrm{C}-1$ and the protons of the 5 -methyl groups. If the substitutents at the double bond of 9 c were in the alternative positions, the desilylated product should show a ${ }^{3} J(\mathrm{C}, \mathrm{H})$ coupling between the unsubstituted vinyl carbon and the 5-methyl-protons.

At room temperature, 9a does not react with either Br_{2} or I_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the formation of some 10 a was observed when 9 a was heated with iodine in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Probably traces of moisture account for this reaction (Scheme II), since treatment of 9 a with iodine and water ${ }^{\dot{8}}$ in boiling dichloromethane gave 10a in 70% yield.

Replacement of the trimethylsilyl group by halogens has been achieved by reaction of 9 a with $\mathrm{Br}_{2} / \mathrm{AgCF}_{3} \mathrm{CO}_{2}$ or $\mathrm{I}_{2} / \mathrm{AgCF}_{3} \mathrm{CO}_{2},{ }^{9}$ respectively.

For the formation of the cyclopentenes 9a-e, a stepwise $[3+2]$-cycloaddition sequence is suggested, as indicated in the upper left of Scheme I. In accord with this hypothesis, the acyclic adduct 12 is isolated in 74% yield, when 7 and 8a are combined in presence of BCl_{3} instead of TiCl_{4}. Under these conditions, the intermediate 3 can be trapped by Cl^{-}, since BCl_{4}^{-}is more nucleophilic than TiCl_{5}^{-}. Treatment of 12 with TiCl_{4} gave 9 a in 84% yield; analogous silicon-directed cyclizations have been reported. ${ }^{10}$
(7) Bax, A. D.; Morris, G. A. J. Magn. Reson. 1981, 12, 501.
(8) Utimoto, K.; Kitai, M.; Nozaki, H. Tetrahedron Lett. 1975, 2825.
(9) Miller, R. B.; Reichenbach, T. Tetrahedron Lett. 1974, 543.

The SnCl_{4}-catalyzed reaction of 7 with 1,3-butadiene gave 41% of the acyclic adduct 13 , containing an E-configurated double bond. Yields of $10-40 \%$ were obtained with BCl_{3} at $-78^{\circ} \mathrm{C}$, but the TiCl_{4}-catalyzed reaction at $0^{\circ} \mathrm{C}$ yielded only polymers. Attempts to cyclize 13 by treatment with Lewis acids have failed under a variety of conditions. An analogous adduct from 7 and isoprene could not be produced, since the primarily produced adduct 14 is ionized to a greater extent than 7 and therefore gives rise to the formation of polymeric material. ${ }^{11}$
In contrast, the BCl_{3}-catalyzed reaction of 7 with cyclopentadiene gave 26% of the bicyclo[3.2.1]octadiene 16. Like 14, the allyl chloride derived from 15 is not isolable, but the allylic cation 15 does not exclusively react with external nucleophiles (i.e., cyclopentadiene) to give higher adducts or polymers; because of the endo-fixed conformation it can also undergo cyclization with formation of the vinyl cation 17, the precursor of 16. Bicyclo[3.2.1]octadienes with hydrogen or alkyl groups at C-2 have analogously been prepared from cyclopentadiene and al-kyl-substituted propargyl chlorides. ${ }^{12}$

Conclusion

The TiCl_{4}-catalyzed reaction of the propargyl chloride 7 with 1,1-dialkylated or trialkylated ethylenes provides a convenient access to highly alkylated 1-chloro-2-(trimethylsilyl)cyclopentenes, which are of interest as possible cyclopentyne precursors. Because of the low $\mathrm{S}_{\mathrm{N}} 1$ reactivity of $7,{ }^{13}$ the scope of this reaction is rather limited, however, and the choice of alkenes that give [1:1]-products is considerably smaller than in analogous reactions with trialkyl or phenyl substituted propargyl chlorides. ${ }^{2,14}$

Experimental Section

3-Chloro-3-methyl-1-(trimethylsilyl)-1-butyne (7) has been synthesized in 77% yield from 30 g of 2 -methyl-4-(trimethyl-silyl)-3-butyn-2-ol and 83 mL of concd hydrochloric acid according
(10) (a) Kozar, L. G.; Clark, R. D.; Heathcock, C. H. J. Org. Chem. 1977, 42, 1386. (b) Johnson, W. S.; Yarnell, T. M.; Myers, R. F.; Morton, D. R. Tetrahedron Lett. 1978, 2549. (c) Johnson, W. S.; Yarnell, T. M.; Myers, R. F.; Morton, D. R.; Boots, S. G. J. Org. Chem. 1980, 45, 1254. (d) Despo, A. D.; Chiu, S. K.; Flood, T.; Peterson, P. E. J. Am. Chem. Soc. 1980, 102, 5120. (e) Schmid, R.; Huesmann, P. L.; Johnson, W. S. J. Am. Chem. Soc. 1980, 102, 5122.
(11) (a) Mayr, H.; Klein, H. J. Org. Chem. 1981, 46, 4097. (b) Mayr, H.; Klein, H. Chem. Ber. 1982, 115, 3528. (c) Mayr, H.; Striepe, W. J. Org. Chem. 1983, 48, 1159. (d) Mayr, H.; Schade, C.; Rubow, M.; Schneider, R. Angew. Chem. 1987, 99, 1059; Angew. Chem., Int. Ed. Engl. 1987, 26, 1029. (e) Mayr, H. In Selectivities in Lewis Acid-Promoted Reactions: NATO ASI Series C, Schinzer, D., Ed., Kluwer Academic Publishers: Dordrecht, 1989; Vol. 289, p 21.
(12) (a) Mayr, H.; Halberstadt, I. K. Angew. Chem. 1980, 92, 840; Angew. Chem., Int. Ed. Engl. 1980, 19, 814. (b) Mayr, H.; Halber-stadt-Kausch, I. K. Chem. Ber. 1982, 115, 3479.
(13) Propargyl chloride 7 solvolyzes only 2.3 times faster than t - BuCl (100% EtOH, $25^{\circ} \mathrm{C}$): Dau-Schmidt, J. P.; Mayr, H.; Bentley, T. W. Unpublished results.
(14) (a) Mayr, H.; Klein, H. J. Org. Chem. 1981, 46, 4097. (b) Mayr, H.; Klein, H. Chem. Ber. 1982, $115,3528$.
to ref $15, \mathrm{bp} 61-63^{\circ} \mathrm{C}(20 \mathrm{mmHg})\left[\right.$ lit..$^{15} \mathrm{bp} 54.5^{-55}{ }^{\circ} \mathrm{C}(17$ mmHg)]. For the preparation of 2 -methyl-4-(trimethylsilyl)-3-butyn-2-ol a procedure developed by Shostakovskii ${ }^{16}$ was used: A Grignard reagent was prepared from magnesium turnings (29.2 $\mathrm{g}, 1.20 \mathrm{~mol}$) and bromoethane ($133 \mathrm{~g}, 1.22 \mathrm{~mol}$) in 600 mL of THF. The solution was cooled at $0^{\circ} \mathrm{C}$ (formation of a precipitate), and a solution of $50.0 \mathrm{~g}(0.594 \mathrm{~mol})$ of 2-methyl-3-butyn-2-ol in THF (50 mL) was added dropwise within 30 min . The cooling bath was removed, and stirring was continued for 6 h with occasional warming in a water bath to improve blending of the viscous suspension. The suspension, which had become fluid during this period, was cooled at $0^{\circ} \mathrm{C}$, and after addition of $\mathrm{CuCl}(0.6 \mathrm{~g})$ and $\mathrm{Hg}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~g})$, chlorotrimethylsilane ($65.0 \mathrm{~g}, 0.598 \mathrm{~mol}$) was added dropwise within 30 min . Stirring was continued for 12 h at ambient temperature and for 5 h at reflux. After the mixture was cooled, 160 mL of hydrochloric acid (concd $\mathrm{HCl}: \mathrm{H}_{2} \mathrm{O}=1: 3$) and 150 mL of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (concd $\mathrm{NH}_{4} \mathrm{Cl}: \mathrm{H}_{2} \mathrm{O}=1: 1$) were successively added to dissolve the precipitate. The orange organic layer was separated, washed with two $200-\mathrm{mL}$ portions of saturated aqueous NaCl solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. Bulb-to-bulb distillation of the residue gave $56.3 \mathrm{~g}(61 \%)$ colorless, asbestos-like fibers with $\mathrm{mp} 41.5-42.5^{\circ} \mathrm{C}$ [lit. ${ }^{16}$ 42-42.5 ${ }^{\circ} \mathrm{C}$].

1-Chloro-3,3,5,5-tetramethyl-2-(trimethylsilyl)cyclopentene (9a) (Typical Procedure). A solution of $7(26.5 \mathrm{~g}, 152$ mmol) and isobutene (8 a) ($9.90 \mathrm{~g}, 176 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(270$ mL) was added dropwise within 3 h to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathrm{TiCl}_{4}(9.0 \mathrm{~g}, 47 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{~mL})$. After 2 h at $0^{\circ} \mathrm{C}$, the solution was poured into water (200 mL). The organic layer was separated, washed with 200 mL of water, and dried over CaCl_{2}. Evaporation of the solvent gave 29.0 g of a dark brown oil, which could not be distilled because of heavy foaming. The product was, therefore, dissolved in petroleum ether (bp 35-45 ${ }^{\circ} \mathrm{C}$) and filtered through a small amount of silica. Distillation over a $10-\mathrm{cm}$ Vigreux column gave $9 \mathrm{a}(13.3 \mathrm{~g}, 38 \%$), a colorless oil with bp 88-90 ${ }^{\circ} \mathrm{C}(20 \mathrm{mmHg})$: IR (neat) $2970,2940,2900,2870,1580,1470,1460$, $1450,1365,1315,1250,1030,915,880,840,765,730 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}^{2}$ NMR $\left(\mathrm{CCl}_{4}, 60 \mathrm{MHz}\right) \delta 0.25\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.13\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.15$ (s, $6 \mathrm{H}, 2 \mathrm{CH}_{3}$), $1.72\left(\mathrm{~s}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR see Table I; MS (96 eV) m / e (rel intensity) $230,232\left(32,11, \mathrm{M}^{+}\right), 215,217(100,36), 179$ (6), 159, 161 (28, 9), 143, 145 (18, 5), 122 (58), 121 (32), 117 (34), 107 (54), 95 (20), 93 (49), 91 (25), 73 (60). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{ClSi}$ C, 62.44; H, 10.04. Found: C, 62.40; H, 9.94.

1-Chloro-3,3,4,5,5-pentamethyl-2-(trimethylsilyl)cyclopentene (9 b) was prepared in 45% yield from $7(9.67 \mathrm{~g}, 55.3$ mmol), 2-methyl-2-butene (8 b) ($4.36 \mathrm{~g}, 62.2 \mathrm{mmol}$), and $\mathrm{TiCl}_{4}(3.3$ $\mathrm{g}, 17 \mathrm{mmol}$) as described for 9a: bp (bath) $77-79^{\circ} \mathrm{C}(0.4 \mathrm{mmHg})$; IR (neat) $2980,2880,1580,1475,1465,1370,1255,1210,1035$, $905,865,850,770 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CCl_{4}) $\delta 0.24\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 0.88 (d, partially masked, $\left.J \approx 7 \mathrm{~Hz}, 4-\mathrm{CH}_{3}\right), 0.96\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$, $1.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.63(\mathrm{q}, J=7 \mathrm{~Hz}, 1 \mathrm{H}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR see Table I; MS (96 eV) m / e (rel intensity) 244,246 $\left(14,5, \mathrm{M}^{+}\right), 229,231(47,16), 169,167(5,2), 170,172(8,2), 159$, 161 (21, 7), 136 (62), 135 (44), 121 (100), 117 (22), 105 (15), 93 (39), 73 (70). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{ClSi}: \mathrm{C}, 63.76 ; \mathrm{H}, 10.29$. Found: C, 64.09; H, 10.08 .

1-Chloro-4,5,5-trimethyl-3-phenyl-2-(trimethylsilyl)cyclopentene (9 c). Following the typical procedure, compound $7(2.90 \mathrm{~g}, 16.6 \mathrm{mmol})$, (E)-1-phenylpropene (8 c) ($2.21 \mathrm{~g}, 18.7 \mathrm{mmol}$), and $\mathrm{TiCl}_{4}(1.0 \mathrm{~g}, 5 \mathrm{mmol})$ were combined to give $9 \mathrm{c}(1.70 \mathrm{~g}, 35 \%)$ with bp (bath) $80-100^{\circ} \mathrm{C}(0.01 \mathrm{mmHg})$, which crystallized in the refrigerator. Colorless needles from pentane with mp $46-47^{\circ} \mathrm{C}$; IR (KBr) $3050,3020,2950,2890,2860,1575,1475,1465,1440$, $1350,1235,1220,1200,1145,1100,1075,1055,1015,980,965,930$, $900,880,855,825,805,765,745,720,685 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}$ (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-0.10\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.87\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right)$, $0.94\left(\mathrm{~s}, 3 \mathrm{H}, 5-\mathrm{CH}_{3}\right), 1.09\left(\mathrm{~s}, 3 \mathrm{H}, 5-\mathrm{CH}_{3}\right), 1.74(\mathrm{mc}, 1 \mathrm{H}, 4-\mathrm{H}), 3.24$ (d, $J=9 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.13\left(\mathrm{mc}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}$ NMR see Table I; MS (90 eV) m/e (rel intensity) 292, 294 ($39,15, \mathrm{M}^{+}$), 277, 279 (19, 8), 257 (4), 241 (11), 219, 221 (20, 7), 218, 220 (17, 7), 185 (28), 184 (63), 183 (56), 170 (54), 169 (84), 161 (20), 159 (54), 155 (32),
(15) Bush, C. N.; Applequist, D. E. J. Org. Chem. 1977, 42, 1076. (16) Shostakovskii, M. F.; Shikhiev, I. A.; Komarov, N. V. Izvest. Akad. Nauk S.S.S.R., Otdel. Khim. Nauk 1956, 1271; Chem. Abstr. 1957, 51, 5689 i.

154 (30), 153 (28), 152 (21), 143 (18), 142 (19), 141 (42), 129 (26), 128 (35), 119 (37), 117 (58), 115 (45), 105 (37), 95 (56), 93 (71), 91 (55), 77 (33), 74 (42), 73 (100). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{ClSi}$: C, 69.71; H, 8.60. Found: C, 69.27; H, 8.43.

1-Chloro-3,4,5,5-tetramethyl-2-(trimethylsilyl)cyclopentene (9d). A solution of $7(5.02 \mathrm{~g}, 28.7 \mathrm{mmol}$) and of (E)-2-butene $8 \mathrm{~d}(7.0 \mathrm{~g}, 125 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ was added dropwise within 75 min to a solution of $\mathrm{TiCl}_{4}(1.55 \mathrm{~g}, 8.2 \mathrm{mmol})$ in 75 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$. The mixture was then stirred at $-20^{\circ} \mathrm{C}(16 \mathrm{~h})$ and warmed to $0^{\circ} \mathrm{C}$ within 5 h . Workup as described (see typical procedure) gave 3.28 g of distilled material, a mixture of products, from which $9 \mathrm{~d}(1.04 \mathrm{~g}, 16 \%$) was isolated by medium-pressure liquid chromatography (silica $20 \mu \mathrm{~m}$, hexane): colorless liquid with bp (bath) $20-40^{\circ} \mathrm{C}(0.4 \mathrm{mmHg})$; IR (neat) $2954,2923,2898,2868,1580,1466,1453,1361,1249,1101,1013$, $906,870,838 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 0.19(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.85\left(\mathrm{~s}, 3 \mathrm{H}, 5-\mathrm{CH}_{3}\right), 0.95\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right)$, $1.04\left(\mathrm{~s}, 3 \mathrm{H}, 5-\mathrm{CH}_{3}\right.$), $1.1\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 3-\mathrm{CH}_{3}\right), 1.41(\mathrm{qd}, J$ $=7.0 \mathrm{~Hz}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 2.25(\mathrm{qd}, J=6.7 \mathrm{~Hz}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}, 3-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR see Table I; MS (70 eV) m / e (rel intensity) $230,232\left(5,2, \mathrm{M}^{+}\right), 215(6), 122(30), 121$ (25), 107 (100), 93 (31), 73 (85). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{ClSi}: \mathrm{C}, 62.44 ; \mathrm{H}, 10.04$. Found: C, 61.60; H, 9.60.

3-Chloro-1,4,4-trimethyl-2-(trimethylsilyl)bicyclo[3.3.0]-oct-2-ene (9e). Solutions of $7(1.75 \mathrm{~g}, 10.0 \mathrm{mmol})$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and of $8 \mathrm{e}(0.83 \mathrm{~g}, 10.1 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were successively added to a solution of $\mathrm{BCl}_{3}(1.20 \mathrm{~g}, 10.2 \mathrm{mmol})$ in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$. After being stirred for 18 h at -78 ${ }^{\circ} \mathrm{C}$, the solution was poured into ice/water. The organic layer was separated, and the aqueous layer was extracted with 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were dried over MgSO_{4}, the solvent was evaporated, and the residue was distilled [bp (bath) $40^{\circ} \mathrm{C}$ (0.04 mbar)] to give $1.40 \mathrm{~g}(54 \%$) of a colorless liquid 9 e : IR (neat) $2946,2859,1582,1448,1369,1260,1249,1038,1026,840,761 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 0.21\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.01(\mathrm{~s}, 3$ $\left.\mathrm{H}, 1-\mathrm{CH}_{3}\right), 1.14,1.22\left(2 \mathrm{~s}, 6 \mathrm{H}, 4-\mathrm{CH}_{3}\right), 1.3-1.9(\mathrm{~m}, 7 \mathrm{H}, 5-\mathrm{H}, 6-\mathrm{H}$, $7-\mathrm{H}, 8-\mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR see Table I; MS (70 eV) m/e (rel intensity) 256, 258 ($13,5, \mathrm{M}^{+}$), 241, 243 (25, 9), 182, 184 (11, 4), 147 (16), 133 (19), 117 (10), 93 (26), 81 (18), 73 (100). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{SiCl}: \mathrm{C}, 65.46 ; \mathrm{H}, 9.81$. Found: C, 65.70; H, 9.48 .

1-Chloro-3,3,5,5-tetramethylcyclopentene (10a). A solution of $9 \mathrm{a}(0.23 \mathrm{~g}, 1.0 \mathrm{mmol}), \mathrm{I}_{2}(0.12 \mathrm{~g}, 0.47 \mathrm{mmol})$, and water (0.20 $\mathrm{g}, 11 \mathrm{mmol}$) in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was refluxed for 20 h , and the reaction mixture was poured into aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (30 mL). The layers were separated, and the aqueous layer was extracted with two $15-\mathrm{mL}$ portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was evaporated, and the residue was distilled [bp (bath) $25-45^{\circ} \mathrm{C}(23 \mathrm{mmHg})$] to give 0.11 $\mathrm{g}(70 \%)$ of the colorless liquid 10a: IR (neat) 2960, 2860, 1630, $1465,1455,1370,1330,1200,1000,910,855,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CCl_{4}) $\delta 1.10(\mathrm{~s}, 6 \mathrm{H}), 1.13(\mathrm{~s}, 6 \mathrm{H}), 1.73(\mathrm{~s}, 2 \mathrm{H}, 4 \mathrm{H}), 5.35(\mathrm{~s}, 1$ $\mathrm{H}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 28.03$ (q), 30.12 (q), 41.38 (s), 46.62 (s), 52.90 (t), 133.87 (d), 139.12 (s$)$; MS (96 eV) m/e (rel intensity) 158, $160\left(15,4, \mathrm{M}^{+}\right), 143,145(100,31), 107(28), 91(16)$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{Cl}: \mathrm{C}, 68.13 ; \mathrm{H}, 9.53$. Found: C, 68.41 ; H, 9.34.
1-Chloro-4,5,5-trimethyl-3-phenylcyclopentene (10c). A solution of $9 \mathrm{c}(220 \mathrm{mg}, 0.751 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}(0.40 \mathrm{~mL}, 22.2 \mathrm{mmol})$, and $\mathrm{HI}\left(0.10 \mathrm{~mL}\right.$ of a 57% aqueous solution, 0.74 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) was heated under reflux for 4.5 h . The mixture was washed with 30 mL of concd aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. After extraction of the aqueous phase with two $20-\mathrm{mL}$ portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Bulb-to-bulb distillation of the residue gave 150 mg (90%) of 10 c with bp (bath) $55-60^{\circ} \mathrm{C}$: IR (neat) $3017,2951,2919$, $2862,1617,1491,1465,1450,1361,975,905,849,749,731,696$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.97\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right), 0.99$, $1.11\left(2 \mathrm{~s}, 6 \mathrm{H}, 5-\mathrm{CH}_{3}\right), 1.74-1.90(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}$), 3.32 (dd, $J=9.4$ $\mathrm{Hz}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 5.64(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 7.16-7.40$ ($\mathrm{m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.98\left(\mathrm{q}, 4-\mathrm{CH}_{3}\right), 19.73,25.59$ ($2 \mathrm{q}, 5-\mathrm{CH}_{3}$), 48.73 (s, C-5), 54.28 (d, C-4), 54.75 (d, C-3), 126.53 (d, C_{p}), 127.35 (d, C-2), 127.60, 128.35 ($2 \mathrm{~d}, \mathrm{C}_{\mathrm{o}}, \mathrm{C}_{\mathrm{m}}$), 143.66, 143.70 ($2 \mathrm{~s}, \mathrm{C}_{\mathrm{i}}, \mathrm{C}-1$) ; MS $(70 \mathrm{eV}) \mathrm{m} / \mathrm{e}\left(\mathrm{rel}\right.$ intensity) $220,222\left(12,5, \mathrm{M}^{+}\right)$, $207,205(13,32) 185(100), 169(30), 129(21), 128(22), 115(30)$, 91 (39), 77 (20).

1-Bromo-2-chloro-3,3,5,5-tetramethylcyclopentene (11a). Silver trifluoroacetate ($2.66 \mathrm{~g}, 12.0 \mathrm{mmol}$) was added to a solution
of $9 \mathrm{a}(2.30 \mathrm{~g}, 10.0 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. During dropwise addition of a solution of $\mathrm{Br}_{2}(0.62 \mathrm{~mL}, 12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50$ mL) a precipitate is formed, and the mixture is stirred for 20 h at ambient temperature. After filtration, the solution is washed with 20% aqueous NaHSO_{3} solution (2 mL) and concd aqueous ammonia (2 mL) and then dried over CaCl_{2}. Evaporation of the solvent and distillation yields 2.10 g (88%) of 11a with a bp (bath) $80-100^{\circ} \mathrm{C}(20 \mathrm{mmHg})$, which crystallizes in the refrigerator (mp $\left.29.5-30^{\circ} \mathrm{C}\right):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.13(\mathrm{~s}, 6 \mathrm{H}), 1.17(\mathrm{~s}, 6 \mathrm{H}), 1.87$ $(\mathrm{s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 28.36(\mathrm{q}), 29.12(\mathrm{q}), 45.26(\mathrm{~s}), 45.62$ (s), $51.54(\mathrm{t}), 128.07(\mathrm{~s}), 138.66(\mathrm{~s}) ; \mathbf{M S}(70 \mathrm{eV}) \mathrm{m} / \mathrm{e}$ (rel intensity) $240,238,236\left(2,10,8, \mathrm{M}^{+}\right), 225(11), 223(49), 221(38), 144$ (31), 142 (100).

1-Chloro-2-iodo-3,3,5,5-tetramethylcyclopentene (11b). Silver trifluoroacetate ($7.74 \mathrm{~g}, 35.0 \mathrm{mmol}$) was added to a solution of $9 \mathrm{a}(4.90 \mathrm{~g}, 21.2 \mathrm{mmol})$ in 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A solution of I_{2} ($8.83 \mathrm{~g}, 34.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL}$) was added dropwise and stirred for 4 h at ambient temperature. The suspension was washed with 20% aqueous NaHSO_{3} solution (100 mL), filtered, and once more washed with 20% aqueous NaHSO_{3} solution (100 mL). The organic layer was then washed with water (200 mL) and concd aqueous $\mathrm{NH}_{3}(150 \mathrm{~mL})$ and was dried over CaCl_{2}. After evaporation of the solvent, the residue was distilled to give 5.25 $\mathrm{g}(87 \%)$ of 11 b with bp (bath) $90-105^{\circ} \mathrm{C}(3.5 \mathrm{mmHg})$, which crystallizes in the refrigerator: mp $26-28^{\circ} \mathrm{C}$ (from ether); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right), \delta 1.12(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}), 1.95(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 28.52$ (q), 30.40 (q), 46.56 (s), 47.51 (s), 50.42 (t), 109.09 (s), 145.73 (s); MS (90 eV) m / e (rel intensity) $286,284\left(12,43, \mathrm{M}^{+}\right), 271$ (31), 269 (100), 144 (43), 143 (25), 142 (48), 127 (27).

5-Chloro-3,3,5-trimethyl-1-(trimethylsilyl)-1-hexyne (12). Isobutene ($1.25 \mathrm{~g}, 22.3 \mathrm{mmol}$) was introduced into a 0.5 M solution of BCl_{3} in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. A solution of $7(2.58$ $\mathrm{g}, 14.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added dropwise to give a brown solution. After being stirred at $-78^{\circ} \mathrm{C}$ for 2 d , the mixture was poured into water, and the organic layer was separated, washed with water, and dried over $\mathrm{CaCl}_{2} / \mathrm{NaHCO}_{3}$. Distillation gave 0.40 g of unreacted 7 and 2.12 g (74%, with respect to converted 7) of 12 with bp (bath) $45-52^{\circ} \mathrm{C}(0.01 \mathrm{mmHg})$: IR (neat) $2960,2920,2880,2150,1250,885,845,790,760 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.10\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.31\left(\mathrm{~s}, 6 \mathrm{H}, 3-\mathrm{CH}_{3}\right), 1.73$ (s, $\left.6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Cl}\right), 2.00\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; \mathrm{MS}(96 \mathrm{eV}) \mathrm{m} / e$ (rel intensity) $230,232\left(13,4, \mathrm{M}^{+}\right), 215,217(57,19), 179(7), 159,161$ (29, 9), 139 (22), 123 (22), 122 (47), 121 (38), 119 (19), 117 (52), 107 (67), 97 (73), 95 (23), 93 (68), 91 (28), 73 (100).

7-Chloro-3,3-dimethyl-1-(trimethylsilyl)hept-5(E)-1-ene (13). 1,3-Butadiene $(1.08 \mathrm{~g}, 20.0 \mathrm{mmol})$ and $\mathrm{SnCl}_{4}(1.0 \mathrm{~g}, 3.8 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. A solution of $7(3.50$ $\mathrm{g}, 20.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added dropwise within 30 min , and the mixture was stirred for 4 h at $-78^{\circ} \mathrm{C}$. The solution was poured into water (150 mL), and after separation of the two layers, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were dried over MgSO_{4} and evaporated. Bulb-to-bulb distillation yielded 13 ($1.89 \mathrm{~g}, 41 \%$), a colorless liquid with bp (bath) $50^{\circ} \mathrm{C}(0.1 \mathrm{mmHg}): \operatorname{IR}$ (neat) $3030,2960,2920,2160,1440$, $1250,970,920,840,760 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 0.13$ (s, $9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}, 1.17\left(\mathrm{~s}, 6 \mathrm{H}, 3-\mathrm{CH}_{3}\right), 2.15(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, $4-\mathrm{H}), 4.07(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 7-\mathrm{H}), 5.60-5.95(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}, 6-\mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.26\left(\mathrm{q}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.83\left(\mathrm{q}, 3-\mathrm{CH}_{3}\right), 31.82(\mathrm{~s}$, $\mathrm{C}-3$), $45.10,45.62$ ($2 \mathrm{t}, \mathrm{C}-4, \mathrm{C}-7$), 84.01 ($\mathrm{s}, \mathrm{C}-1$), 113.64 (s, C-2), 128.70, 132.17 ($2 \mathrm{~d}, \mathrm{C}-5, \mathrm{C}-6$); MS (70 eV) m/e (rel intensity) 228, $230\left(2,1, \mathrm{M}^{+}\right), 159,161(6,3), 139(100), 97(83), 75(27)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{ClSi}$: $\mathrm{C}, 62.99 ; \mathrm{H}, 9.25$. Found: C, 62.26; H, 9.21 .

3-Chloro-4,4-dimethyl-2-(trimethylsilyl)bicyclo[3.2.1]-octa-2,6-diene (16). A solution of $7(2.62 \mathrm{~g}, 15.0 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) was added dropwise to a solution of $\mathrm{BCl}_{3}(1.2$ $\mathrm{g}, 10 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$. Cyclopentadiene (0.99 $\mathrm{g}, 15.0 \mathrm{mmol}$) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was then added within 1 h , and the solution was stirred for ancther hour at $-10^{\circ} \mathrm{C}$. The mixture was poured into water (100 mL), and the organic layer was extracted with two $50-\mathrm{mL}$ portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions were dried over MgSO_{4}, the solvent was evaporated, and the residue was dissolved in hexane (100 mL) and passed through silica (KG 60, 70-230 mesh, column $l=10 \mathrm{~cm}$ and $d=2.5 \mathrm{~cm})$. Evaporation of the solvent and distillation yielded 16 ($950 \mathrm{mg}, 26 \%$), a colorless oil with bp (bath) $50^{\circ} \mathrm{C}$ $(0.02 \mathrm{mmHg}):$ IR (neat) $2960,2860,1570,1250,1055,930,920$,
$870,840,730 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.19\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $0.99,1.27\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.75-1.9(\mathrm{~m}, 2 \mathrm{H}, 8-\mathrm{H}), 2.52(\mathrm{mc}, 1 \mathrm{H}$, $5-\mathrm{H}), 2.87(\mathrm{mc}, 1 \mathrm{H}, 1-\mathrm{H}), 5.83\left(1 \mathrm{H}, \mathrm{dd}, J_{6,7}=5.6 \mathrm{~Hz}, J_{5,6}=2.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 6.22$ (dd, $\left.J_{6,7}=5.6 \mathrm{~Hz}, J_{1,7}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-0.21\left(\mathrm{q}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 23.34,28.52\left(2 \mathrm{q}, 4-\mathrm{CH}_{3}\right)$, 39.45 (t, C-8), 42.21 (s, C-4), 43.78 (d, C-1), 51.72 (d, C-5), 131.18, 140.40 ($2 \mathrm{~d}, \mathrm{C}-6, \mathrm{C}-7$), 139.03 (s, C-2), 149.09 (s, C-3); MS (70 eV) m / e (rel intensity) $240,242\left(11,4, \mathrm{M}^{+}\right), 225,227(3,1), 159,161$ $(13,5), 132(40), 119,121(48,15), 117(71), 93(37), 73(100)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{ClSi}$ C, 64.83 ; $\mathrm{H}, 8.79$. Found: $\mathrm{C}, 64.76 ; \mathrm{H}, 8.93$.
Acknowledgment. We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support.

Registry No. 7, 18387-63-8; 8a, 115-11-7; 8b, 513-35-9; 8c, 873-66-5; 8d, 624-64-6; 8e, 693-89-0; 9a, 137649-22-0; 9b, 137649-23-1; 9c, 137649-24-2; 9d, 137649-25-3; 9e, 137649-26-4; 10a, 137649-27-5; 10c, 137649-28-6; 11a, 137649-29-7; 11b, 137649-30-0; 12, 137649-31-1; 13, 137649-32-2; 16, 137649-33-3; 2-methyl-4-(trimethylsilyl)-3-butyn-2-ol, 5272-33-3; 2-methyl-3-butyn-2-ol, 115-19-5; 1,3-butadiene, 106-99-0; cyclopentadiene, 542-92-7.

Temperature-Controlled Synthesis of 4,7-Dioxatricyclo[3.2.1.0 ${ }^{3,6}$]octane Derivatives

Odôn Arjona, ${ }^{*, \dagger}$ Roberto Fernāndez de la Pradilla, ${ }^{*, \ddagger}$ Joaquin Plumet, ${ }^{\dagger}$ and Alma Viso ${ }^{\dagger}$

Departamento de Quimica Orgánica, Facultad de Química,
Universidad Complutense, 28040 Madrid, Spain, and Instituto de Quimica Orgânica, C.S.I.C., Juan de la Cierva 3, 28006 Madrid, Spain

Received July 15, 1991

Interest in the chemistry of 7-oxanorbornenic systems has increased in recent years especially due to the large array of molecules of biological relevance that may be synthesized from these bicycles. ${ }^{1}$ This has been possible because they contain valuable stereochemical information in their rigid skeleton and they are readily available as optically pure starting materials. ${ }^{2}$ Additions of soft electrophiles to 7 -oxanorbornenic derivatives have been thoroughly studied. In most cases the reaction occurs with complete regio- and stereocontrol to afford synthetically useful adducts (A or B) (Scheme I). This behavior has been attributed to the steric and electronic characteristics of the substituents at $\mathrm{C}-.^{3}$ These studies have been also extended to the norbornenic analogues. ${ }^{4}$
In connection with our interest in the development of new synthetic methodologies from oxanorbornenic derivatives, ${ }^{5}$ particularly those with sulfur and selenium, ${ }^{6}$ and with our broader interest in vinyl sulfoxides ${ }^{7}$ we required efficient regiocontrolled routes to oxabicyclic functionalized vinyl sulfides, ${ }^{8}$ immediate precursors of the corresponding sulfoxides and sulfones. ${ }^{9}$ For this purpose, the facile but not highly selective intramolecular cyclization of 2 -exo-methyl-7-oxabicyclo[2.2 .1]hept-5-en-2-endo-ol (1, Table I, entry 1) upon reaction with PhSCl was considered an interesting possibility, provided we could render the cyclization synthetically useful. Furthermore, it was envisioned that subsequent deprotonation of the sulfur-containing oxetanes should produce oxanorbornenic vinyl sulfides by preferential β-elimination of the oxetane oxygen due to the highly strained character of the four-membered ring. On the other hand, control of the addition reaction would

[^4]
[^0]: (7) Finch, A.; Poller, R. C.; Steele, D. Trans. Faraday Soc. 1965, 61, 2628.

[^1]: ${ }^{\dagger}$ This work is dedicated to Prof. Michael Hanack on the occasion of his 60 th birthday.
 ${ }^{\dagger}$ Present address: Institut für Organische Chemie, Technische Hochschule, Petersenstrasse 22, W-6100 Darmstadt, Germany.

[^2]: (1) Reviews: (a) Mann, J. Tetrahedron 1986, 42, 4611. (b) Trost, B. M. Angew. Chem. 1986, 98, 1; Angew. Chem., Int. Ed. Engl. 1986, $25,1$. (c) Krohn, K. Nachr. Chem. Tech. Lab. 1987, 35, 700. See also: (d) Singleton, D. A.; Church, K. M. J. Org. Chem. 1990, 55, 4780. (e) Rosenblum, M.; Watkins, J. C. J. Am. Chem. Soc. 1990, 112, 6316. (f) Ghera, E.; Yechezkel, T.; Hassner, A. Tetrahedron Lett. 1990, 31, 3653 and references cited therein.
 (2) Mayr, H.; Seitz, B.; Halberstadt-Kausch, I. K. J. Org. Chem. 1981, 46, 1041.
 (3) Hanack, M.; Bentz, H.; Märkl, R.; Subramanian, L. R. Liebigs Ann. Chem. 1978, 1894.
 (4) (a) Mayr, H.; Båuml, E. Tetrahedron Lett. 1984, 25, 1127. (b) Maas, G.; Singer, B.; Wald, P.; Gimmy, M. Chem. Ber. 1988, 121, 1847. (c) Bäuml, E.; Mayr, H. Chem. Ber. 1985, 118, 683, 694. (d) Gassman, P. G.; Singleton, D. A. Tetrahedron Lett. 1987, 28, 5969.

[^3]: (5) (a) Sommer, L. H.; Baughman, G. A. J. Am. Chem. Soc. 1961, 83, 3346. (b) Eaborn, R.; Bott, W. Organometallic Compounds of the Group IV Elements; Mac Diarmid, A. G., Ed., Marcel Dekker: New York, 1968; Vol. 1, Part 1. (c) Colvin, E. W. Silicon in Organic Synthesis; Butterworths: London, 1981. (d) Fleming, I. Chem. Soc. Rev. 1981, 10, 83. (e) Wierschke, S. G.; Chandrasekhar, J.; Jorgensen, W. L. J. Am. Chem. Soc. 1985, 107, 1496. (f) Lambert, J. B.; Wang, G.-T.; Finzel, R. B.; Teramura, D. H. J. Am. Chem. Soc. 1987, 109, 7838. (g) Apeloig, Y. In The chemistry of organic silicon compounds; Patai, S., Rappoport, Z., Eds.; Wiley: Chichester, 1989; Part I, Chapter 2. (h) Fleming, I.; Dunogues, J.; Smithers, R. Org. React. 1989, 37, 57. (i) Ibrahim, M. R.; Jorgensen, W. L. J. Am. Chem. Soc. 1989, 111, 819 . (k) Li, X.; Stone, J. A. J. Am. Chem. Soc. 1989, 111, 5586 . (l) Brook, M. A.; Neuy, A. J. Org. Chem. 1990, 55, 3609. (m) Lambert, J. B.; Chelius, E. C. J. Am. Chem. Soc. 1990, 112, 8120. (n) Lambert, J. B. Tetrahedron 1990, 46, 2677. (o) Hagen, G.; Mayr, H. J. Am. Chem. Soc. 1991, 113, 4954.
 (6) (a) Danheiser, R. L.; Carini, D. J.; Basak, A. J. Am. Chem. Soc. 1981, 103, 1604. (b) Danheiser, R. L.; Fink, D. M. Tetrahedron Lett. 1985, 26, 2509. (c) Danheiser, R. L.; Carini, D. J.; Fink, D. M.; Basak, A. Tetrahedron 1983, 39, 935. (d) Danheiser, R. L.; Kwasigroch, C. A.; Tsai, Y.-M. J. Am. Chem. Soc. 1985, 107, 7233. (e) Danheiser, R. L.; Fink, D. M. Tetrahedron Lett. 1985, 26, 2513. (f) Becker, D. A.; Danheiser, R. L. J. Am. Chem. Soc. 1989, 111, 389. (g) Danheiser, R. L.; Stoner, E. J.; Koyama, H.; Yamashita, D. S.; Klade, C. A. Ibid. 1989, 111, 4407.

[^4]: ${ }^{\dagger}$ Universidad Complutense.
 ${ }^{t}$ Instituto de Quimica Orgánica, C.S.I.C.

