combined aqueous layers were extracted with 100 mL of ether and then acidified with concentrated HCl and extracted with dichloromethane $(3 \times 75 \text{ mL})$. The combined organic extracts were washed with 100 mL of brine and dried (MgSO₄). Removal of solvent gave 4.38 g (59.6%) of 11 as a yellow solid. Recrystallization from ether yielded material with mp 136.5-137.5 °C

(lit.¹¹ mp 136–137 °C).

Acknowledgment. The author thanks Michael G. Legendre for providing the mass spectra and Ingenue' Cobbinah, Angela Haynes, Jacki Novak, Mary P. Lovisa, Jan Ferrara, and James Philips for technical assistance.

[3 + 2]- and [5 + 2]-Cycloadditions of the Cyclohepta-2,4-dienyl Cation

Werner Heilmann, Rainer Koschinsky, and Herbert Mayr*

Institut für Chemie der Medizinischen Universität zu Lübeck, D-2400 Lübeck 1, Federal Republic of Germany

Received October 14, 1986

The cyclohepta-2,4-dienyl cation (9), generated in situ from 5-chloro-1,3-cycloheptadiene (10) and zinc chloride, undergoes a [3 + 2]-cycloaddition with 1-phenylpropyne (11) to give the bicyclo[4.2.1]nona-2,7-dien-9-yl cation (18), which is stereoselectively trapped by a chloride ion. The corresponding reaction of 10 with 1-methoxy-2-methylpropene (13) yields the aldehyde 14 and the bicyclo[3.2.2] nonenes 15a-c and 16, which are rationalized by a stepwise [5 + 2]-cycloaddition process. Configurations and conformations of the bicyclo[3.2.2] nonenes are investigated by NMR spectroscopy.

The thermally allowed $[{}_{\pi}4_{s} + {}_{\pi}2_{s}]$ -cycloaddition reactions¹ can be realized in four different ways (eq 1-4).

Synthetic as well as mechanistic aspects of Diels-Alder reactions (eq 1)^{2,3} allyl anion,⁴ azallyl anion,⁴ and 1,3-dipolar cycloadditions 3,5 (eq 2) have been studied in great detail. Allyl cation cycloadditions with 1.3-dienes (eq 3) offer a synthetic access to seven-membered ring compounds, but the mechanism of these reactions is still questionable.⁶ As shown in the following discussion, examples of eq 4 are rare.

Woodward and Hoffmann¹ cited the perezon pipitzole rearrangement (eq 5)^{7a} as the only representative of reaction 4. Deuterium labeling studies provided arguments

for the concerted nature of this reaction^{7b} and proved that the rearrangement proceeds stepwise in the presence of a Lewis acid.^{7c} Intermolecular analogues of this transformation, e.g., the reaction sequence $3 \rightarrow 4$,^{8d} have been carried out with 2-alkoxybenzoquinone derivatives⁸ and 3-hydroxy-4-pyrones.^{9,10}

^{(7) (}a) Walls, F.; Padilla, J.; Joseph-Nathan, P.; Giral, F.; Romo, J. Tetrahedron Lett. 1965, 1577. (b) Joseph-Nathan, P.; Mendoza, V.; Garcia, E. Tetrahedron 1977, 33, 1573. (c) Suchez, I. H.; Yafaez, R.;
 Enriquez, R.; Joseph-Nathan, P. J. Org. Chem. 1981, 46, 2818.
 (8) (a) Büchi, G.; Mak, C.-P. J. Am. Chem. Soc. 1977, 99, 8073. (b)

⁽¹⁾ Woodward, R. B.; Hoffmann, R. Angew Chem. 1969, 81, 797. Angew. Chem., Int. Ed. Engl. 1969, 8, 781.

^{(2) (}a) Wasserman, A. Diels Alder Reactions; Elsevier: New York, 1965. (b) Sauer, J. Angew. Chem. 1966, 78, 233; 1967, 79, 76. Angew. Chem., Int. Ed. Engl. 1966, 5, 211; 1967, 6, 16. (c) Sauer, J.; Sustmann, R. Angew. Chem. 1980, 92, 773. Angew. Chem., Int. Ed. Engl. 1980, 19, 779.

⁽³⁾ Desimoni, G.; Tacconi, G.; Barco, A.; Pollini, G. P. Natural Products Synthesis through Pericyclic Reactions; ACS Monograph 180; Amucts Synthesis through 1 criticity: Washington, DC, 1983.
(4) (a) Kauffmann, T. Angew. Chem. 1974, 86, 715. Angew Chem., 1980.

Intg. Ed. Engl. 1974, 13, 627. (b) Kauffmann, T. Top. Curr. Chem. 1980, 92, 109.

^{(5) (}a) Huisgen, R. Angew. Chem. 1963, 75, 604; 1963, 75, 742. (b) Padwa, A., Ed. 1,3-Dipolar Cycloaddition Chemistry; Wiley: New York, 1984; Vol I and II.

^{(6) (}a) Hoffmann, H. M. R. Angew. Chem. 1973, 85, 877. Angew. Chem., Int. Ed. Engl. 1973, 12, 819. (b) Hoffmann, H. M. R. Angew. Chem. 1984, 96, 29. Angew. Chem., Int. Ed. Engl. 1984, 23, 1.

Büchi, G.; Chu, P.-S. J. Org. Chem. 1978, 43, 3717. (c) Büchi, G.; Chu, P. S. J. Am. Chem. Soc. 1979, 101, 6767. (d) Mak, C.-P.; Büchi, G. J. Org. Chem. 1981, 46, 1.

Like 1 and 5, tropylium ions 7 do not incorporate an isolated dienyl cation fragment, and their cycloaddition reactions with alkenes¹¹ may alternatively be attributed to class (1) or (4). As an extension of our work on allyl¹² and allenyl cation¹³ cycloadditions, we have been searching for a clear-cut example of eq 4. [5 + 2]-cycloadditions of

type (4) require U-shaped 2,4-dienyl cations. Acyclic systems, which are forced into U-shape by substituents, are expected to undergo electrocyclic pentadienyl \rightarrow cyclopentenyl cation ring-closure reactions^{1,14} rapidly. Since the same process may take place in cyclic systems with ring size \geq 8, only six- and seven-membered rings remain. The 2,4-cycloheptadienyl cation 9 was finally selected for our studies, as six-membered ring cations that do not possess special structural features like 1 and 5 will aromatize under ordinary reaction conditions.

Previously, we have reported that the cycloheptadienyl cation 9 reacts with isobutene and silyl enol ethers with formation of a single new σ -bond, i.e., normal additions, not cycloadditions, take place.¹⁵ We have now obtained bicyclic products when the cycloheptadienyl chloride 10 was reacted with 1-phenylpropyne (11) or the enol ether 13 in the presence of ZnCl₂ at -78 °C.

Reaction Products and Structural Assignments.¹⁶ The zinc chloride/ether-catalyzed reaction of 10 with 11 gave 42% of the 1:1 products 12a and 12b (\approx 10:1). Independent of the way in which the reactants were combined, the yield of 12a,b was around 40% while the remainder were high molecular weight compounds.

The bicyclo[4.2.1]nonadiene structure of 12a was derived from ¹H NMR homonuclear spin-decoupling experiments,

(10) For other related intramolecular cycloadditions see: (a) Hienuki,
 Y.; Tsuji, T.; Nishida, S. Tetrahedron Lett. 1981, 22, 867. (b) Ishibashi,
 M.; Tsuyuki, T.; Takahashi, T. Tetrahedron Lett. 1983, 24, 4843.

(11) (a) Ito, S.; Itoh, I. Tetrahedron Lett. 1930, 24, 3040.
 (11) (a) Ito, S.; Itoh, I. Tetrahedron Lett. 1971, 2969. (b) Ito, S.; Mori,
 A.; Saito, I.; Saken, K.; Ishiyama, H.; Sasaki, K. Tetrahedron Lett. 1973,
 2737. (c) Ito, S.; Itoh, I.; Saito, I.; Mori, A. Tetrahedron Lett. 1974, 3887.
 (12) (a) Klein, H.; Mayr, H. Angew. Chem. 1981, 93, 1069. Angew.
 Chem., Int. Ed. Engl. 1981, 20, 1027. (b) Klein, H.; Freyberger, G.; Mayr,

Chem., Int. Ed. Engl. 1981, 20, 1027. (b) Klein, H.; Freyberger, G.; Mayr,
H. Angew. Chem. 1983, 95, 62. Angew. Chem., Int. Ed. Engl. 1983, 22,
49. (c) Mayr, H.; Klein, H.; Kolberg, G. Chem. Ber. 1984, 117, 2555.
(13) (a) Mayr, H.; Halberstadt, I. K. Angew. Chem. 1980, 92, 840.

(13) (a) Mayr, H.; Halberstadt, I. K. Angew. Chem. 1380, 92, 540.
Angew. Chem., Int. Ed. Engl. 1980, 19, 814. (b) Mayr, H.; Seitz, B.;
Halberstadt-Kausch, I. K. J. Org. Chem. 1981, 46, 1041. (c) Mayr, H.;
Halberstadt-Kausch, I. K. Chem. Ber. 1982, 115, 3479. (d) Mayr, H.;
Schütz, F.; Halberstadt-Kausch, I. K. Chem. Ber. 1982, 115, 3516. (e)
Mayr, H.; Klein, H. Chem. Ber. 1982, 115, 3528. (f) Mayr, H.; Bäuml, E.
Tetrahedron Lett. 1984, 25, 1127. (g) Bäuml, E.; Mayr, H. Chem. Ber.

(14) (a) Sorensen, T. S. In Carbonium Ions; Olah, G. A., Schleyer, P. v. R., Eds.; Wiley: New York, 1970; Vol. II, Chapter 19. (b) Sorensen, T. S.; Rauk, A. In Pericyclic Reactions; Marchand, A. P., Lehr, R. E., Eds.; Academic: New York, 1977; Vol. II, Chapter 1.
(17) Marchand, M. H., 1977; Vol. II, Chapter 1.

(15) (a) Mayr, H.; Heilmann, W. Tetrahedron 1986, 24, 6657. (b) Mayr, H.; Heilmann, W.; Lammers, R. Tetrahedron 1986, 24, 6663.

(16) The NMR techniques used in this work have been reviewed by: Benn, R.; Günther, H. Angew. Chem. 1983, 95, 381. Angew. Chem., Int. Ed. Engl. 1983, 22, 390.

Table I. ¹³C NMR Chemical Shifts and ¹³C-¹³C Coupling Constants (±0.25 Hz, in Parentheses) of the Bicyclo[3.2.2]nonenes 15a-c and 16

	H ₃ CO H ₃ CO	10 - 11 60 OCH3 3 - 5 - 9 Cl	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 3 5 5 5 6		
	1 5a	15 b	15c	16 ^a		
1	43.81	41.05	41.22	35.13		
	(39.8, 32.0)	(39.6, 38.0,	(39.5, 38.3, 32.2)	(38.8, 35.8, 31.2)		
	. , .	31.1)				
2	134.50	138.16	136.94	134.26		
	(39.9)	(39.6)	(39.6)	(38.4)		
3	129.95	128.19	129.44	130.66		
	(43.6)	(43.9)	(43.3)	(42.3)		
4	63.77	65.23	66.61	66.00		
	(43.6, 34.2)	(44.1, 33.9)	(43.5, 33.0)	(43.4, 34.4)		
5	41.71	42.20	43.59	48.5 3		
	(34.7, 34.0)	(35.2, 34.3)	(37.7, 32.8, 31.7)	(33.7, 32.5)		
6	86.89	86.26	82.33	36.80		
	(37.6, 34.7)	(38.5, 35.3)	(38.0)	(36.1, 35.1, 33.9)		
7	39.71	38.28	40.62	87.52		
	(37.6, 35.7,	(38.8, 38.2,	(38.3, 36.7)	(36.4)		
	32.0)	37.1)				
8	23.62	25.96	25.93	21.26		
	(34.4, 32.0)	(33.4, 31.0)	(33.2, 32.3)			
9	19.68	15.78	19.64	17.70		
	(34.4)	(34.5, 33.3)	(33.2, 31.5)	(31.7)		
10	23.62	30.90	29.95	30.30		
	(35.8)	36.7)	(36.6)			
11	30.99	23.22	22.88	25.12		
	(35.6)	(37.1)	(36.3)			
12	58.57	58.29	57.58	58.16		

^a Accuracy of J for this compound ± 0.5 Hz.

which showed that the triplet splitting (J = 6.7 Hz) of the proton at the chloro-substituted carbon is due to couplings with both bridgehead hydrogens. The relative positions of methyl and phenyl were determined by NOE experiments: Irradiation at δ 3.45 (1-H) enhanced the intensity of vinyl and phenyl resonances, while irradiation at the second bridgehead position (δ 2.85) yielded a NOE enhancement of the methyl and of a methylene signal. The stereochemistry at C-9 was deduced from a NOE enhancement of 9-H (in addition to 1-H and CH₃) during irradiation of the phenyl resonance.

The minor component 12b was detected by a set of 13 C NMR resonances closely similar to those of 12a. As expected for the exchange of phenyl and methyl, 1-H was shifted upfield (-0.27 ppm) and 6-H was shifted downfield (+0.37 ppm) relative to 12a.

When the enol ether 13 was added to a mixture of 10 and $ZnCl_2/Et_2O$ in dichloromethane, 37% of the bicyclic compounds 15a-c and 16 were obtained in addition to 40% of the aldehyde 14, which has previously been prepared from 10 and 2-methyl-1-siloxypropene.^{15b}

The similarity of the ¹³C NMR chemical shifts of 15a-cand 16 (Table I) indicates that all of these compounds incorporate the same bicyclic framework. The connectivity of the carbon atoms, i.e., the constitution of 15a-c, was

⁽⁹⁾ Volkmann, R. A.; Weeks, P. D.; Kuhla, D. E.; Whipple, E. B.; Chmurny, G. N. J. Org. Chem. 1977, 42, 3976.
(10) For other related intramolecular cycloadditions see: (a) Hienuki,

Table II. ¹H NMR Chemical Shifts (CDCl₃) and H-H Coupling Constants (Hz) of the Bicyclo[3.2.2]nonenes 15a-c and 16

	H ₃ CO		N H H 3 S H 1 S H 3 S H 3	
	15 a	15b	15c	16
2-H	5.86	6.02	5.93	5.93
3-H	$J_{2,3} = 10.8$ $J_{2,1} = 8.9$ $J_{2,4} = 1.8$ 5.61 $J_{3,2} = 10.8$	$J_{2,3} = 10.6$ $J_{2,1} = 9.5$ $J_{2,4} = 1.1$ 5.57 $J_{3,2} = 10.6$	$J_{2,3} = 11.0$ $J_{2,1} = 9.3$ $J_{2,4} = 1.8$ 5.49 $J_{3,2} = 11.0$	$J_{2,3} = 10.8$ $J_{2,1} = 9.3$ $J_{2,4} = 1.6$ 5.59 $J_{3,2} = 10.8$
4-H	$J_{3,4} = 2.8 J_{3,5} = 1.9 J_{3,1} = 0.6 5.12$	$J_{3,4} = 4.4$ $J_{3,5} = 1.5$ 4.84	$J_{3,4} = 2.6$ $J_{3,5} = 1.9$ 4.73	$J_{3,4} = 2.9$ $J_{3,5} = 1.6$ 5.14
	$\begin{array}{c} \mathrm{mc} \\ J_{4,5} \approx 3 \end{array}$	$J_{4,5} = 5.5$ $J_{4,3} = 4.4$ $J_{4,2} = 1.1$	$J_{4,3} = 2.7 \\ J_{4,5} = 2.7 \\ J_{4,2} = 1.8 $	$J_{4,5} = 4.5$ $J_{4,3} = 2.9$ $J_{4,2} = 1.6$
6-H	3.18 $J_{6,5} = 5.1$	$\begin{array}{c} 2.91 \\ J_{6,5} = 0.7 \\ J_{6,9} = 1.9 \end{array}$	$3.34 \ J_{6,5} = 0.8 \ J_{6,9} = 1.5$	2.93 (7-H) $J_{7,1} = 1.4$ $J_{7,8} = 1.4$
5-H	2.55 mc 1.64-1.87	2.33 mc 1.71-1.95	2.28 mc 1.44–1.50	2.32 (1-H) mc 1.57-1.86
	1.04-1.07	1.71 1.50	1.44 1.00	(5-H)
8,9-H	2.17 - 2.34	2.08 - 2.19	1.80 - 2.03	1.99-2.09
10-H	0.91	1.02	1.00	1.08
11-H	1.13	1.05	0.96	1.05
OCH3	3.39	3.35	3.31	3.26

derived from the ${}^{13}C{}^{-13}C$ coupling constants (Table I), which were obtained by one-dimensional INADEQUATE spectroscopy. Because of the similarity of the C-1–C-7 and the C-5–C-6 coupling constants in 15c, the orientation of the 6,7-ethano bridge in this compound has been ascertained by two-dimensional INADEQUATE spectroscopy.

The isolated quantity of 16 was too small to obtain the $^{13}C^{-13}C$ coupling constants with high precision. Therefore, the constitution of this isomer was certified by a two-dimensional $\delta\delta$ (¹H) correlated spectrum (COSY). Since one bridgehead hydrogen (1-H) is coupled to the vinylic 2-H and to CHOCH₃ (7-H), the orientation of the 6,7-ethano bridge must be opposite as in 15a-c.

The configurations of 15a–c and 16 were assigned on the basis of two-dimensional nuclear Overhauser effect spectroscopy (NOESY). Figure 1 shows a NOE between the CHCl (4-H) and the CHOCH₃ (6-H) protons in 15b. Since a NOE is only possible, if 4-H and 6-H point toward each other, the relative configurations of both C-4 and C-6 can thus be attributed. None of the other compounds showed a NOE between these protons.

In 15c, one CH₃ group (δ 0.96) shows a NOE with protons of the C₂H₄ bridge, and the other CH₃ group (δ 1.00) shows a NOE with 6-H. These observations imply the OCH₃ group being on the side of the C₂H₄ bridge. The position of Cl is derived from a NOE between CHCl and protons of the C₂H₄ bridge. Similar arguments allowed

Figure 1. 200-MHz NOESY spectrum of 15b in CDCl₃.

Figure 2. Calculated¹⁷ conformations A and B of the bicyclo-[3.2.2]nonene 15b.

the stereochemical assignments of 15a and 16.

Conformations. Like the ¹³C NMR chemical shifts, the ¹H NMR chemical shifts of corresponding nuclei are closely similar (Table II). There are considerable differences of corresponding H–H coupling constants, however, which indicate unlike dihedral angles in the different isomers. The analysis is complicated by the fact that the bicyclononenes 15 and 16 may exist in two different conformations A and B, depicted for compound 15b (Figure 2).

The energy differences of the various conformers, which have been calculated by a force-field method (MMPMI¹⁷),

Table III. Comparison of Calculated^a Dihedral Angles of Compounds 15a-c and 16 with the Corresponding H-H Coupling

Constants								
	15a(A)	15a(B)	15b(A)	15 b (B)	15c(A)	15c(B)	16(A)	16(B)
$\Delta H_{\rm f}^{\circ}$, kcal/mol	-58.51	-58.78	-58.01	-58.47	-58.25	-58.73	-57.13	-56.91
θ (H-3-4-H), deg	70.5	51.4	70.1	51.5	51.5	67.9	46.4	63.8
J _{3.4} , Hz	2.8			4.4		2.6		≈2.9
J _{3,4} , Hz θ(H-4–5-H), deg	71.9	54.5	70.2	53.9	52.5	66.7	50.0	65.9
	≈3			5.5		2.7		4.5
$J_{4,5}$, Hz θ (H-5–6-H), ^b deg	58.8	40.5	59.0	80.8	59.2	83.4	56.4	79.1
J _{5,6} , Hz	5.1			0.7		0.8		1.4

^a MMPMI: ref 17. ^b For 16: θ (H-1-7-H) and $J_{1.7}$.

are very small (Table III), and the preferred conformations cannot be derived from the calculated $\Delta H_{\rm f}^{\circ}$ values. The 5,6-coupling constants of 15b,c and 16, however, allow us to assign these compounds to conformation B since the Jvalues of approximately 1 Hz are in accord with a dihedral angle of $\approx 80^{\circ}$ (B). Larger $J_{5,6}$ values would be expected for the dihedral angles of 56–59° (conformation A) on the basis of the Karplus equation.¹⁸

The conformation of 15a cannot be assigned on the basis of $J_{5.6}$ as the observed value of ≈ 5 Hz fits the calculated dihedral angles of both conformers (Table III). The coupling constants $J_{3,4} = 2.8$ Hz and $J_{4,5} \approx 3$ Hz, however, are better consistent with dihedral angles of 71° and 72° (A) than with angles of 51° and 55° (conformation B). Therefore, 15a appears to be the only isomer that prefers conformation A. This conclusion is in accord with the finding that $J_{3,4}$ and $J_{4,5}$ are considerably greater in 15b than in 15a, though the configuration of C-4 is identical in both cases.

Discussion. Bicyclononadiene 12a, the major product of the reaction of 10 with 11, is formed via [3 + 2]-cvcloaddition of the cycloheptadienyl cation 9 with 1-phenylpropyne (11). Probably, this cycloaddition proceeds stepwise, i.e., phenylpropyne 11 attacks position 1 of the cycloheptadienyl cation 9 to yield vinyl cation 17 as the intermediate. Successive cyclization generates the bridged cation 18, which reacts stereoselectively at the backside with Cl⁻¹⁹ to form the secondary chloride 12a. The minor isomer 12b can be rationalized by initial attack of 11 at C-3 of the cycloheptadienyl cation 9. Analogous [3 + 2]-cycloaddition reactions of allyl cations with phenylpropyne (11) have previously been reported by Miller and Moore.²⁰

Products arising from [5 + 2]-cycloaddition of 9 with 11 have not been isolated, possibly because the eventually formed cycloadduct 19 would cyclize to yield the highly stabilized cation 20. According to previous studies,²¹ 20 is expected not to be intercepted by Cl⁻ under these reaction conditions but to react with another π -system (e.g., 10, 11, 12), thus giving rise to the higher boiling products.^{21c}

As described above, monocyclic and bicyclic products are formed in almost equal yield by the reaction of 10 with 13. If the enol ether 13 attacks C-3 of the dienylic cation 9, the methoxycarbenium ion 21 is produced, which hydrolyzes to give the aldehyde 14. Attack of the enol ether at C-1 of the cycloheptadienyl cation 9 yields cation 22. which can cyclize to the stereoisomeric cations 23 and 24. The formation of 15b and 15c indicates that Cl⁻ can approach to C-4 of the allyl cation 23 from top and bottom. Topside attack at C-2 of 23 is obviously shielded by one of the geminal methyl groups since only one stereoisomer 16 has been detected. The formation of oxonium ion 25 from 24 and selective backside attack at C-4 may be responsible for the formation of 15a as the only isomer with the methoxy group pointing toward the propeno bridge.

Since 22 has not been trapped by external nucleophiles. the formation of 23 and 24 via concerted [5 + 2]-cycloaddition cannot be excluded. When the cycloheptadienyl cation 9 was reacted with isobutene^{15a} or silyl enol ethers,^{15b} products derived from 1- and 3-attack were obtained, i.e., the activation energies of 1- and 3-attack are usually of similar magnitude. It is unlikely, therefore, that in this case a concerted cycloaddition mechanism is alone responsible for the formation of the bicyclic products. If the concerted [5 + 2]-cycloaddition mechanism had a significant preference over the stepwise process, 14 would not be formed along with 15 and 16. We, therefore, suggest 23 and 24 to be formed via a stepwise process, which allows us to treat all presently known dienvl cation-alkene reactions on the basis of a single mechanistic concept.

Experimental Section

General. NMR spectra were recorded on a Varian XL 200 spectrometer. Mass spectra were recorded on a VG 70-250 spectrometer.

The 1D-INADEQUATE spectra were measured in 0.4–0.8 M CDCl₃ solutions by using the pulse sequence $90^{\circ}-\tau-180^{\circ}-\tau 90^{\circ}-\Delta-90^{\circ}-\text{FID}(t_2)^{22}$ with $\tau = 6.67 \times 10^{-3}$ s and $t_2 = 10$ s. For a spectral width of 6230 Hz a digital resolution of 0.2 Hz was obtained with 32000 data points. The 2D-INADEQUATE spectrum of 15c was recorded at 298 K in a 0.7 M CDCl₂ solution in the presence of $Cr(acac)_3$ by using the pulse sequence $90^{\circ}-\tau$ - $180^{\circ} - \tau - 90^{\circ} - t_1/2 - 135^{\circ} - FID(t_2)^{23}$ with $t_2 = 2.84$ s (based on the maximal value of $t_1 = 0.75$ s) and $\tau = 6.75 \times 10^{-3}$ s. Spectral width was 6230 Hz. Two hundred fifty-six FIDs on 2K data points were taken, and 288 scans were accumulated for each FID resulting in a total acquisition time of 62 h. After a Gaussian multiplication in both dimensions, the FID was transformed. The measured DBQs were in good agreement with the calculated ones.

The COSY spectra were measured by using the pulse sequence $90^{\circ}-t_1-90^{\circ}-\Delta-90^{\circ}-\text{FID}(t_2)$ with double quantum filtering.²⁴ Two hundred fifty-six FIDs on 512 data points were recorded, and each FID was obtained from 32 scans. The FIDs were multiplied with a pseudo Gaussian function and zero filled in F_1 . The FID was then transformed and symmetrized. The spectral width for 15a,b

^{(17) (}a) Allinger, N. L. J. Am. Chem. Soc. 1977, 99, 8127. (b) Gajewski, J. J.; Gilbert, K. E. Molecular Mechanics Package (MS-DOS Computers); Serena Software: Bloomington, IN.

 ^{(18) (}a) Karplus, M. J. Am. Chem. Soc. 1963, 85, 2870. (b) Günther,
 H. NMR-Spektroskopie; Thieme: Stuttgart, 1983; p 105.
 (19) (a) Diaz, A. F.; Fulcher, J.; Sakai, M.; Winstein, S. J. Am. Chem.
 Soc. 1974, 96, 1264. (b) Diaz, A.; Fulcher, J. J. Am. Chem. Soc. 1976, 98, 798.

⁽²⁰⁾ Miller, A.; Moore, M. Tetrahedron Lett. 1980, 577.

 ^{(21) (}a) Mayr, H. Angew. Chem. 1981, 93, 202. Angew. Chem., Int. Ed.
 Engl. 1981, 20, 184. (b) Mayr, H.; Striepe, W. J. Org. Chem. 1983, 48, 1159. (c) Mayr, H.; Wilhelm, E.; Kaliba, C. J. Chem. Soc., Chem. Commun. 1981, 683

⁽²²⁾ Bax, A.; Freeman, R.; Kempsell, S. P. J. Am. Chem. Soc. 1980, 102, 4849.

⁽²³⁾ Mareci, T. H.; Freeman, R. J. Magn. Reson. 1982, 48, 158.

⁽²⁴⁾ Bax, A.; Freeman, R.; Morris, G. A. J. Magn. Reson. 1981, 42, 169.

and 16 was $F_1 = F_2 = 1300$ Hz, and $F_1 = F_2 = 1208.5$ Hz for 15c. With a recycle delay $t_2 = 4.5$ s and $\Delta = 1 \times 10^{-5}$ s the acquisition time was 10 h in each case. Phase cycling for quadrature detection in both dimensions was used.

The NOESY spectra were recorded by using the pulse sequence $90^{\circ}-t_1-90^{\circ}-\tau_m-90^{\circ}-FID(t_2)$ with $\tau_m = \tau_m + t_1\kappa$.²⁵ The mixing times were $\tau_m = 2.7$ s (15a), 2.5 s (15b), 3.8 s (15c), and 1.85 s (16), and κ was 0.15. The values of the other parameters were equivalent to those used in the measurements of the COSY spectra.

5-Chloro-1,3-cycloheptadiene (10) was prepared from cycloheptatriene and HCl as described previously.^{15b} The sample used in the following reactions was contaminated by some 6-chloro-1,3-cycloheptadiene, which is inert under these conditions.^{15b} Zinc chloride/ether was prepared according to ref 26.

5-Chloro-1,3-cycloheptadiene (10) and 1-Phenylpropyne (11). A solution of 11 (2.32 g, 20.0 mmol) in CH₂Cl₂ (30 mL) was added dropwise (1.5 h) to a cooled solution (-78 °C) of 10 (2.06 g, 16.0 mmol) and ZnCl₂ (3.22 g)/Et₂O (2.7 mL) in 35 mL of CH₂Cl₂. After stirring at -78 °C for 4.5 h, the solution was washed with 25% aqueous NH₄Cl solution and dried over CaCl₂, and the solvent was evaporated. Distillation gave a forerun of unreacted 11 and 1.65 g (42%) of 12a and 12b (\approx 10:1 estimated from the NMR signals of the bridgehead protons) with bp 100-105 °C (bath) (0.1 mbar) and 2.10 g of nonvolatile residue.

 $(1R^*,9S^*)$ -9-Chloro-7-methyl-8-phenylbicyclo[4.2.1]nona-2,7-diene (12a): ¹H NMR (CDCl₃) δ 1.79–1.91 (m, 1 H, 5-H), 1.93 (mc, 3 H, CH₃), 2.03–2.32 (m, 3 H, 4-H₂, 5-H), 2.85 (br t, J = 6.7 Hz, 1 H, 6-H), 3.45 (br t, J = 6.7 Hz, 1 H, 1-H), 4.65 (br t, J = 6.7 Hz, 1 H, 9-H), 5.65–5.77 (m, 1 H, 2-H), 5.86–5.98 (m, 1 H, 3-H), 7.31 (mc, 5 H); ¹³C NMR (CDCl₃) δ 13.50 (q, CH₃), 25.21, 26.79 (2 t, C-4,5), 52.62, 52.99 (2 d, C-1,6), 62.44 (d, C-9), 126.74 (d, C-para), 127.89, 128.14 (2d, C-ortho, meta), 128.20, 133.33 (2 d, C-2,3), 136.48, 136.75, 136.89 (3 s, C-7,8, C-ipso). Anal. Calcd for C₁₆H₁₇Cl (244.8): C, 78.51; H, 7.00. Found: C, 78.37; H, 7.08.

(26) Mayr, H.; Striepe, W. J. Org. Chem. 1985, 50, 2995.

9-Chloro-8-methyl-7-phenylbicyclo[4.2.1]nona-2,7-diene (12b) is assumed to be the minor component of the mixture because of ¹H NMR absorptions at δ 3.12–3.27 (m, 1,6-H) and 4.70 (br t, J = 6.7 Hz, 9-H). The relation of these protons was ascertained by spin-decoupling experiments. ¹³C NMR (CDCl₃) δ 15.01 (q, CH₃), 25.45, 27.14 (2 t, C-4,5), 51.55, 54.60 (2 d, C-1,6), 62.52 (d, C-9), 126.89 (d, C-para), 128.00, 128.31 (2d, C-ortho, meta), 127.34, 133.93 (2 d, C-2,3), 133.26, 135.76, 136.79 (3 s, C-7,8, C-ipso).

5-Chloro-1,3-cycloheptadiene (10) and 1-Methoxy-2methylpropene (13). A solution of 13 (4.30 g, 50.0 mmol) in 30 mL of CH_2Cl_2 was added dropwise (0.5 h) to a rapidly stirred solution of 10 (5.14 g, 40.0 mmol) and $ZnCl_2$ (5.04 g)/Et₂O (4.20 mL) in 60 mL of CH₂Cl₂ (-78 °C). After 1 h the reaction mixture was washed with 50 mL of 25% aqueous NH4Cl solution and dried with CaCl₂. The solvent was evaporated, and the yellow residue was distilled to give 1.29 g of 10 (bp 20-30 °C (bath) (0.4 mbar)), 5.09 g of the 1:1 products 14-16, and 1.27 g of a nonvolatile residue. Separation of 1.00 g of the 1:1 product mixture by MPLC (silica gel, 15-25 μ m, hexane:ether = 98.5:1.5) yielded 153 mg of (1S*,4R*,6S*)-4-chloro-6-methoxy-7,7-dimethylbicyclo[3.2.2]non-2-ene (15a), 81 mg of (1S*,4R*,6R*)-4-chloro-6-methoxy-7,7-dimethylbicyclo[3.2.2]non-2-ene (15b), 189 mg of (1S*,4S*,6R*)-4-chloro-6-methoxy-7,7-dimethylbicyclo[3.2.2]non-2-ene (15c), 54 mg of (1S*,4R*,7S*)-4-chloro-7-methoxy-6,6-dimethylbicyclo[3.2.2]non-2-ene (16), and 393 mg of 2-(2,6cycloheptadienyl)-2-methylpropanal (14) (77% total yield with respect to reacted 10).

NMR data: Tables I and II. Mass spectrum (70 eV) of 15c: m/z (rel intensity) 216, 214 (0.5%, 1.9%, M⁺), 147 (3), 135 (2), 121 (3), 105 (4), 97 (12), 93 (15), 91 (11), 86 (100). Anal. Calcd for C₁₂H₁₉ClO (214.7): C, 67.12; H, 8.92. Found for 15a: C, 67.56; H, 9.31. Found for 15b: C, 67.89; H, 8.97. Found for 15c: C, 67.02; H, 8.78. Spectroscopic data of 14: see ref 15b.

Acknowledgment. We thank R. Lammers for experimental assistance, Dr. E. Bäuml and Dr. Ch. Wolff for discussions, and the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support.

Photocycloaddition of 1,4-Dioxene to 3-Methylcyclohex-2-en-1-one: Conformational Analysis, X-ray Crystal Structures, and Acid-Catalyzed Rearrangement of the Photoadducts

Jean-Marie Bernassau, Anne Bouillot, Marcel Fétizon,* Issam Hanna, and Elaine Rose Maia

Laboratoire de Synthèse Organique, Ecole Polytechnique, 91128 Palaiseau, Cedex, France

Thierry Prangé

L.U.R.E., Université de Paris-Sud, Bâtiment 209 D, 91405 Orsay, Cedex, France

Received October 15, 1986

Photochemical cycloaddition of 1,4-dioxene to 3-methylcyclohex-2-en-1-one leads to a mixture of four 11methyl-1,4-dioxatricyclo[6.4.0.0.6.11]dodecan-7-one isomers 3-6. Their structures have been established by X-ray diffraction and ¹³C NMR, and their conformational properties have been studied by force field calculations. They only differ by the stereochemistry of the cyclobutane-dioxane junction, which is found to have a pronounced influence upon the conformation of the molecules. The four-membered rings are strongly distorted in all cases. These cyclobutane photoadducts undergo an unusual acid-catalyzed rearrangement, affording compounds 19-21. The structures of two of them, 19 and 20, have been established by X-ray diffraction. The formation of these rearranged products can be rationalized in terms of a common cationic intermediate 23 stabilized by oxygens.

The photocycloaddition of cyclic α,β -unsaturated ketones to alkenes has been extensively studied. It has become an important tool in the arsenal of the synthetic organic chemist, leading to versatile intermediates that can be subsequently used in a number of ways. For example, the cyclobutane intermediates smoothly undergo an acidcatalyzed rearrangement, providing useful precursors of many natural products.¹

⁽²⁵⁾ Kumar, A.; Ernst, R. R.; Wüthrich, K. Biochem. Biophys. Res. Commun. 1980, 95, 1.