ADDITION REACTIONS OF THE TRICHLOROCYCLOPROPENYLIUM ION WITH ALKENES: A NOVEL ACCESS TO CYCLOPROPENE AND CYCLOPROPENONE DERIVATIVES¹

Klaus Musigmann and Herbert Mayr*

Institut für Chemie, Medizinische Universität zu Lübeck, Ratzeburger Allee 160,

D-2400 Lübeck 1, Federal Republic of Germany

Armin de Meijere*

Fachbereich Chemie der Universität Hamburg, Martin-Luther-King-Platz 6,

D-2000 Hamburg 13, Federal Republic of Germany

Summary: Trichlorocyclopropenylium tetrachloroaluminate 1^+ -AlCl₄ reacts with alkenes in nitromethane at -35°C to give the 1:1 addition products 2^+ -AlCl₄, which can be converted into the 2-chlorocyclopropenones 5 or the α,β -acetylenic carboxylates 6.

Tetrachlorocyclopropene 1, which is readily accessible from sodium trichloroacetate and trichlorocthylene [2], reacts with typical alkenes under thermal conditions to give 1-chloro-1-(trichlorovinyl)-cyclopropane derivatives [3]. These products are formed <u>via</u> initial ring cleavage of 1 and successive [2+1] cycloaddition of the intermediate per-chlorovinylcarbene [3]. Electrophilic additions of 1 only happen with bicyclopropylidene [4], tetraethoxyethylene, and alkenes of comparable high nucleophilicity [5]. In dichloromethane, the trichlorocyclopropenylium salts 1^+ -AlCl⁻ or 1^+ -SbCl⁻₆, which are obtainable from 1 [6], give only 2:1 or 3:1 products with trichloroethylene, isobutene, 2-butene, or tetramethylethylene [5-8]. We now report on the selective formation of 1:1 adducts from 1^+ and alkenes.

The addition of $1 \rightleftharpoons 1^+$ to 4 initially yields the 1:1 addition products $2 \rightleftharpoons 2^+$. Now the products $2 \rightleftharpoons 2^+$ and the reactants $1 \oiint 1^+$ will compete for the alkene 4, and the yield of 1:1 products will depend on the relative reactivity of these two couples. From a general analysis of such systems [9] one can derive that in this case the formation of the 1:1 products should be favoured, if an at least equivalent amount of a completely ionising Lewis acid is employed. Under such conditions, the carbenium ion 1^+ can be expected to be more reactive than 2^+ which is stabilized by an alkyl group.

However, only the 2:1 product $3e^+$ was formed, when 0.5 - 1 equivalents of 4e were added to a suspension of 1^+ -AlCl⁻ in dichloromethane. Like the results of Weiss [7], this observation can be explained by the low solubility of 1^+ -AlCl⁻ in CH₂Cl₂, which reduces the chance of 1^+ to react with 4. Consequently, the better soluble $2e^+$ reacts preferentially so that $3e^+$ is formed.

Under homogeneous conditions, the expected results are obtained, however. When 0.5 equivalents of the alkenes 4a-g are added dropwise to solutions of $1^+-AlCl_{-}^-$ in nitromethane at -35°C, the salts $2^+-AlCl_{-}^-$ are formed exclusively. Addition of solid LiCl at ambient temperature yields the trichlorocyclopropenes 2a-g, which can be extracted from the nitromethane solution with hexane (Tab. 1).

Alkene	Product	R1	R²	R ³	R*	IR (cm ⁻¹)	¹³ C NMR (δ)		
	(% Yield)						C-1	C-2	C-3
_/ 4a	2a (41)	Н	Н	Н	CH 3	1800	126.35	129.14	60.88
≠ 4b	2b (51)	Н	Н	CH 3	CH 3	1820	126.46	129.43	65.14
= √4c	2c (59)	Н	Н	CH 3	C₃H,	1816	126.41	129.48	61.15
└ ─ 4d	2d (60)	CH 3	Н	CH 3	CH 3	1805	125.41	132.94	61.16
₩ ⁴ e	2e (56)	CH 3	CH 3	CH 3	CH 3	1802	124.15	135.89	61.33
=⊖ 4f	2f (28)	Н	Н	H -(CH ₂) ₅ -		1802			
 ✓ 4g 	2g (53)	Н	-(CH	2),-	СН 3	1809	125.14	132.25	61.12

Table 1. 1,3,3-Trichlorocyclopropenes **2a-g** <u>via</u> AlCl₃ Initiated Addition of Tetrachlorocyclopropene **1** towards the Alkenes **4a-g**.

Compound 2e was obtained in similar yield from 1 and 4e in nitromethane, when $AlCl_3$ was replaced by equimolar amounts of $SnCl_4$, BCl_3 , or $TiCl_4$. Its yield decreased, however, when only catalytic amounts of these Lewis acids or when catalytic or equimolar amounts of the weak Lewis acid $ZnCl_2$ were employed.

Stirring of the cyclopropenes 2 with aqueous bicarbonate solution gave the cyclopropenones 5, which are characterized by IR absorptions at 1840 - 1862 and 1630 - 1635 cm⁻¹ and ¹³C NMR absorptions at δ 165 - 168 (s) and 137 - 151 (2 s) [10].

On the other hand, ring opening between C^2 and C^3 and successive elimination of Cl^- takes place when the trichlorocyclopropenes 2 are treated with a suspension of NaHCO₃ in methanol. The acetylene carboxylic esters 6 thus formed show characteristic infrared bands at 2220 - 2235 and 1710 - 1720 cm⁻¹ [11].

The formal insertion of an alkene molecule into a vinylic C-Cl bond of tetrachlorocyclopropene, which can easily be achieved by the procedure described in this letter, opens new perspectives for the use of 1 as a C₃ building block [12]. Scope and limitations of this reaction are currently investigated.

Acknowledgement. We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for support of this work.

REFERENCES AND NOTES

- [1] Dedicated to Professor Ulrich Schöllkopf on the occasion of his 60th birthday.
- [2] Tobey, S. W.; West, R., J. Am. Chem. Soc., 1966, <u>88</u>, 2481; improved procedure: Glück, C.; Poignee, V.; Schwager, H., Synthesis, 1987, 260.
- [3] Weber, W.; de Meijere, A., <u>Chem. Ber.</u>, 1985, <u>118</u>, 2450; Kostikov, R.; de Meijere, A., <u>J. C. S. Chem. Commun.</u>, <u>1984</u>, 1528; Liese, Th.; de Meijere, A., <u>Chem. Ber.</u>, 1986, 119, 2995.
- [4] Weber, W.; Behrens, U.; de Meijere, A., Chem. Ber., 1981, 114, 1196.
- [5] Weber, W., Dissertation, Univ. Göttingen 1980.
- [6] West, R.; Sado, A.; Tobey, S. W., J. Am. Chem. Soc., 1966, 88, 2488.
- [7] Weiss, R.; Kölbl, H.; Schlierf, C., J. Org. Chem., 1976, 41, 2258.
- [8] Bauer, C.; Le Goff, E., Synthesis, 1970, 544.
- [9] Mayr, H.; Schade, Ch.; Rubow, M.; Schneider, R., Angew. Chem., 1987, in print.
- [10] IR (film): 5b: 1842, 1636 cm⁻¹. 5d: 1862, 1636 cm⁻¹. 5e: 1861, 1631 cm⁻¹. ¹³C NMR (CDCl₃): 5b: δ 32.45 (q), 43.09 (t), 64.94 (s), 140.20 (s), 151.21 (s), 161.40 (s).
 5d: δ 13.41 (q), 30.22 (q), 30.91 (q), 46.94 (d), 68.98 (s), 139.21 (s), 150.90 (s), 165.43 (s). 5e: δ 22.15 (q), 28.67 (q), 48.75 (s), 72.88 (s), 137.27 (s), 150.46 (s), 168.74 (s).
- [11] IR (neat): **6b**: 2236, 1718 cm⁻¹. **6d**: 2235, 1719 cm⁻¹. **6e**: 2223, 1713 cm⁻¹. ¹³C NMR (CDCl₃): **6b**: δ 31.79 (q), 36.40 (t), 52.60 (q), 65.98 (s), 75.18 (s), 84.46 (s), 153.72 (s). **6d**: δ 15.80 (q), 29.07 (q), 30.92 (q), 39.74 (d), 52.47 (q), 69.88 (s), 74.92 (s), 88.86 (s), 153.72 (s). **6e**: δ 24.75 (q), 29.07 (q), 41.54 (s), 52.60 (q), 73.89 (s), 74.35 (s), 92.79 (s), 154.01 (s).
- [12] Reviews: de Meijere, A., <u>Bull. Soc. Chim. Belg.</u>, 1984, <u>93</u>, 241; <u>Chem. Ber.</u>, 1987, in print.

(Received in Germany 16 July 1987)