ADDITION REACTIONS OF THE TRICHLOROCYCLOPROPENYLIUM ION WITH ALKENES: a novel access to cyclopropene and cyclopropenone derivatives ${ }^{1}$

Klaus Musigmann and Herbert Mayr*
Institut für Chemie, Medizinische Universität zu Lübeck, Ratzeburger Nllee 160, D-2400 Lübeck 1, Federal Republic of Germany
Armin de Meijere*
Fachbereich Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13, Federal Republic of Germany

Summary: Trichlorocyclopropenylium tetrachloroaluminate $1^{+\boldsymbol{+}} \mathrm{AlCl}_{4}^{-}$reacts with alkenes in nitromethane at $-35^{\circ} \mathrm{C}$ to give the $1: 1$ addition products $2^{+}-\mathrm{AlCl} 1^{-}$, which can be converted into the 2 -chlorocyclopropenones 5 or the α, β-acetylenic carboxylates 6 .

Tetrachlorocyclopropene 1, which is readily accessible from sodium trichloroacetate and trichloroethylene [2], reacts with typical alkenes under thermal conditions to give 1 -chloro-1-(trichlorovinyl)-cyclopropane derivatives [3]. These products are formed via initial ring cleavage of $\mathbf{1}$ and successive [2+1] cycloaddition of the intermediate perchlorovinylcarbene [3]. Electrophilic additions of 1 only happen with bicyclopropylidene [4], telraethoxyethylene, and alkenes of comparable high nucleophilicity [5]. In dichloromethane, the trichlorocyclopropenylium salts $1^{+}-\mathrm{AlCl}_{4}^{-}$or $1^{+}-\mathrm{SbCl}_{6}^{-}$, which are obtainable from 1 [6], give only $2: 1$ or $3: 1$ products with trichloroethylene, isobutene, ?-hutene, or tetramethylethylene [5-8]. We now report on the selective formation of $1: 1$ adducts from $\mathbf{1}^{+}$ and alkenes.

1

The addition of $1 \rightleftharpoons 1^{+}$to 4 initially yields the $1: 1$ addition products $2 \rightleftharpoons 2^{\prime}$. Now the products $2 \rightleftharpoons 2^{+}$and the reactants $1 \rightleftharpoons 1^{+}$will compete for the alkene 4 , and the yield of 1:1 producto will depend on the relative reactivity of thesc two couplcs. From a goneral analysis of such systems [9] one can derive that in this case the formation of the 1:1 products should be favoured, if an at least equivalent amount of a completely ionising Lewis acid is employed. Under such conditions, the carbenium ion $1^{+\boldsymbol{+}}$ can be expected to be more reactive than 2^{+}which is stabilized by an alkyl group.

However, only the $2: 1$ product $3 e^{+}$was formed, when $0.5-1$ equivalents of $4 e$ were added to a suspension of $1^{+-A l C 1-}$ in dichloromethane. Like the results of Weiss [7], this observation can be explained by the low solubility of $\left.1^{+}-\mathrm{AlCl}\right]_{4}^{-}$in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, which reduces the chance of 1^{+}to react with 4 . Consequently, the better soluble $2 e^{+}$reacts preferentially so that $3 \mathrm{e}^{+}$is formed.

Under homogeneous conditions, the expected results are obtained, however. When 0.5 equivalents of the alkenes $4 a-g$ are added dropwise to solutions of $\mathbf{1}^{+\boldsymbol{A}} \mathrm{AlCl}_{\mathbf{4}}$ in nitromethane at $-35^{\circ} \mathrm{C}$, the salts $2^{+}-\mathrm{AlCl}_{4}^{-}$are formed exclusively. Addition of solid LiCl at ambient temperature yields the trichlorocyclopropenes $2 \mathrm{a}-\mathrm{g}$, which can be extracted from the nitromethane solution with hexane (Tab. 1).

Table 1. 1,3,3-Trichlorocyclopropenes $2 \mathbf{a - g}$ via AlCl_{3} Initiated Addition of Tetrachlorocyclopropene 1 towards the Alkenes $4 \mathbf{a - g}$.

Alkene	Product (\% Yield)	R^{1}	R^{2}	R^{3}	R^{4}	IR $\left(\mathrm{cm}^{-1}\right)$	${ }^{13} \mathrm{C}$ NMP (δ)		
							C-1	C-2	c-3
I 4a	2a(41)	H	H	H	CH_{3}	1800	126.35	129.14	60.88
$=10$	2b (51)	H	H	CH_{3}	CH_{3}	1820	126.46	129.43	65.14
$\curvearrowright_{4 c}$	2c (59)	H	H	CH_{3}	$\mathrm{C}_{3} \mathrm{H}_{7}$	1816	126.41	129.48	61.15
	2d (60)	CH_{3}	H	CH_{3}	CH_{3}	1805	125.41	132.94	61.16
	2e (56)	CH_{3}	CH_{3}	CH_{3}	CH_{3}	1802	124.15	135.89	61.33
	2f(28)	H	H	- ${ }^{\text {C }}$		1802			
$\Longrightarrow 4 g$	2g (53)	H	-(CH_{2}		CH_{3}	1809	125.14	132.25	61.12

Compound 2 e was obtained in similar yield from 1 and 4 e in nitromethane, when AlCl_{3} was replaced by equimolar amounts of $\mathrm{SnCl}_{4}, \mathrm{BCl}_{3}$, or TiCl_{4}. Its yield decreased, however, when only catalytic amounts of these Lewis acids or when catalytic or equimolar amounts of the weak Lewis acid ZnCl_{2} were employed.

Stirring of the cyclopropenes 2 with aqueous bicarbonate solution gave the cyclopropenones 5, which are characterized by IR absorptions at $1840-1862$ and $1630-1635 \mathrm{~cm}^{-1}$ and ${ }^{13} \mathrm{C}$ NMR absorptions at $\delta 165-168$ (s) and $137-151$ (2 s) [10].

On the other hand, ring opening between C^{2} and C^{3} and successive elimination of Cl^{-}takes place when the trichlorocyclopropenes 2 are treated with a suspension of NaHCO_{3} in methanol. The acetylene carboxylic esters 6 thus formed show characteristic infrared bands at 2220-2235 and $1710-1720 \mathrm{~cm}^{-1}$ [11].

The formal insertion of an alkene molecule into a vinylic $\mathrm{C}-\mathrm{Cl}$ bond of tetrachlorocyclopropene, which can easily be achieved by the procedure described in this letter, opens new perspectives for the use of 1 as a C_{3} building block [12]. Scope and limitations of this reaction are currently investigated.

Acknowledgement. We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for support of this work.

REFERENCES AND NOTES

[1] Dedicated to Professor Ulrich Schöllkopf on the oceasion of his 6oth birthday.
[2] Tobey, S. W.; West, R., J. Am. Chem. Soc., 1966, 88, 2481; improved procedure: Glück, C.; Pcignee, V.; Schwager, H., Synthesis, 1987, 260.
[3] Weber, W.; de Mei.jere, A., Chem. Ber., 1985, 118, 2450; Kostikov, R.; de Meijere, A., J. C. S. Chem. Commun., 1984, 1528; Liese, Th.; de Meijere, A., Chem. Ber., 1986, 119, 2995.
[4] Weber, W.; Behrens, U.; de Meijere, A., Chem. Ber., 1981, 114, 1196.
[b] Weber, W., Dissertation, Univ. Göttingen 1980.
[6] West, R.; Sado, A.; Tobey, S. W., J. Am. Chem. Soc., 1966, 88, 2488.
[7] Wciss, R.; Kölb], H.; SchIicrf, C., J. Org. Chem., 1976, 41, 2258.
[8] Bauer, C.; Le Goff, E., Synthesis, 1970, 544.
[9] Mayr, H.: Schade, Ch.; Rubow, M.; Schneider, R., Angew. Chem., 1987, in print.
[10] IR (film) : 5b: 1842, $1636 \mathrm{~cm}^{-1}$. $5 \mathrm{~d}: 1862,1636 \mathrm{~cm}^{-1} .5 \mathrm{e}: 1861,1631 \mathrm{~cm}^{-1}$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 5 \mathrm{~b}: 832.45(\mathrm{q}), 43.09(\mathrm{t}), 54.94(\mathrm{~s}), 140.20(\mathrm{~s}), 151.21$ (s), $161.40(\mathrm{~s})$. 5d: $\delta 13.41(\mathrm{q}), 30.22(\mathrm{q}), 30.91(\mathrm{q}), 46.94(\mathrm{~d}), 68.98(\mathrm{~s}), 139.21(\mathrm{~s}), 150.90(\mathrm{~s})$, 165.43 (s). 5e: $622.15(q), 28.67(q), 48.75(s), 72.88(s), 137.27(s), 150.46$ (s), 168.74 (s).
[11] IR (neat): 6b: 2236, $1718 \mathrm{~cm}^{-1}$. 6d: 2235, $1719 \mathrm{~cm}^{-1}$. 6e: 2223, $1713 \mathrm{~cm}^{-1} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 6 \mathrm{~b}: 831.79$ (q), 36.40 (t$), 52.60(\mathrm{q}), 65.98(\mathrm{~s}), 75.18$ (s), 84.46 (s), 153.72 (s). 6d: $\delta 15.80(q), 29.07(q), 30.92(q), 39.74(d), 52.47(q), 69.88(s)$, 74.92 (s), $88.86(s), 153.72(s) .6 e: \delta 24.75(q), 29.07(q), 41.54(s), 52.60(q)$, 73.89 (s), 74.35 (s), 92.79 (s), 154.01 (s).
[12] Reviews: de Meijere, A., Bull. Soc. Chim. Belg., 1984, 93, 241; Chem. Ber., 1987, in print.
(Received in Germany 16 July 1987)

