[2+2]-CYCLOADDITIONS OF ALKENES WITH THE TRIPHENYLALLENYL CATION

Herbert Mayr* and Englbert Bäump
Institut für Organische Chemie der Universität Erlangen-Nürnberg
Henkestr. 42, D-8520 Erlangen

Summary. The triphenylallenyl cation (8), generated from triphenylpropynol (7) and $\mathrm{FSO}_{3} \mathrm{H}$, reacts with alkenes to give the allyl cations 12 , which may be deprotonated to yield the methylenecyclobutenes 14 . Alternatively, 12 can be converted into the 2 -vinyl-indenes $\underline{\underline{1}} \underline{\underline{2}} \underline{\text { via }}$ two subsequent electrocyclic reactions.

Allenyl cations (2) are ambident electrophiles. ${ }^{1)}$ Nucleophilic attack at the sp^{2} carbon yields propargyl derivatives, whereas allenic compounds are formed via attack at the sp terminus. If the nucleophile is an alkene, reaction at these two positions yields carbenium ions $\underline{\underline{1}}$ and $\underline{\underline{3}}$, which can undergo successive cyclization reactions as shown in Scheme 1.

Scheme 1

1

4

5

6

Allenyl cations (2) with $\mathrm{R}^{\prime}=\mathrm{CH}_{3}$ and alkenes were found to give the vinyl cations $\underline{\underline{4}}$ ($\mathrm{R}=$ aryl) and $\underline{\underline{5}}(R=a l k y l)$ via the linear intermediate $\left.\underline{1}^{2} .{ }^{2}\right)$ We now report a novel type of reaction between alkenes and allenyl cations. $A[2+2]-c y c l o a d d i t i o n$ with formation of allyl cations $\underline{\underline{6}}$ is observed if the triphenylallenyl cation ($R, R^{\prime}=P h$) is employed.

Since allyl cations $\underset{=}{6}$ are better stabilized than their precursors ${\underset{\equiv}{2}}^{3}$) complex mixtures would be expected, $i \bar{f}$ the reactions were carried out in our usual way by combining propargyl or allenyl halides with alkenes in the presence of a weak Lewis acid. ${ }^{4)}$ Good yields of the 1:1 products 13 and 14 are obtained, however, by simultaneous addition of triphenylpropynol (7) and alkenes to solutions of fluorosulfuric acid in dichloromethane and subsequent workup with aqueous sodium carbonate solution (Table). Obviously, protonation of the alkenes does not play an important role under these conditions.

Table. Fluorosulfuric Acid Initiated Reactions of Triphenylpropynol (7) with Some Alkenes at $-60^{\circ} \mathrm{C}$

R^{1}	R^{2}	R^{3}	R^{4}	Alkene	$\underline{\underline{7} / \mathrm{Alkene} / \mathrm{FSO}} 3 \mathrm{H}^{\text {a }}$	Time	Product	$\left(\right.$ Yield) ${ }^{\text {b }}$	mp (${ }^{0} \mathrm{C}$)
a) H	CH_{3}	H	CH_{3}	\rightleftharpoons	1:2.4:2.0	20 min	14.	(84%)	156-158
b) H	H	CH_{3}	CH_{3}	$=$	$1: 1.4: 1.2$	30 min	$\underline{\underline{14 b}}$	(63\%)	113-115
c) H	CH_{3}	CH_{3}	CH_{3}	\approx	1:2.1:0.25	20 min	$14 \underline{\underline{c}}$	(69\%)	103-105
					$1: 2.1: 2.0$	15 min	$\underline{13}=$	(72\%)	95-97
d) CH_{3}	CH_{3}	CH_{3}	CH_{3}	\rightleftharpoons	$1: 1.2: 1.1$	15 min	13 d	(86\%)	106-108
e) H	H	CH_{3}	Ph		1: $1.1: 2.0$	$15 \mathrm{~min}{ }^{\text {c }}$)	$\underline{13}=\underline{ }$	(78%)	128-130
f) H			CH_{3}	\square	1: 1.2 : 1.2	20 min	$\underline{14 \mathrm{f}}$	(41\%)	138-140

a) Molar ratio; b) Isolated yield of crystalline material; all compounds were structurally ascertained by ${ }^{1} \mathrm{H}$ (ref. 9) and ${ }^{13} \mathrm{C}$-NMR, MS and elemental analyses; c) $-35^{\circ} \mathrm{C}$;

It is suggested (Scheme 2) that fluorosulfuric acid rapidly converts the alcohol $\underset{\underline{Z}}{ }$ into the
 intermediacy of 9 has not been proven for the examples quoted in the Table, we suggest a stepwise cycloaddition mechanism for the formation of $1 \underline{\underline{2}}$ in analogy to the reaction of $\underline{\underline{~}}$ with cyclopentadiene. 5) Furthermore, the reaction of $\underline{\underline{7}}$ with 1-ethoxy-2-methylpropene yields aldehydes 15 and $1 \underline{=}^{9}, 9$ hydrolysis products of $\underline{\underline{9}}$ and 11 .

Scheme 2

Deprotonation of $\underline{\underline{12}}$ affords methylenecyclobutenes 14 , which are analogous to the products obtained from vinyl cation cycloadditions with alkenes. ${ }^{6 \text {) }}$ The allyl cations 12 d , e and (in the presence of excess $\left.\mathrm{FSO}_{3} \mathrm{H}\right) \underline{\underline{2}} \mathbf{2 c}=$ undergo rapid electrocyclic ring opening reactions at -60 to $-30^{\circ} \mathrm{C}$. The resulting carbenium ions 11 , like other 1 -arylallyl cations, ${ }^{7}$) undergo a pentadienyl cation type cyclization with formation of $1 \underline{\underline{0}}$, which is finally deprotonated to give 13.

The activation barrier of the electrocyclic process $12 \rightarrow=\frac{11}{=}$ is unusually low, compared to
cyclobutene - butadiene isomerizations of neutral systems. In subsequent work, we are cyclobutene - butadiene isomerizations of neutral systems. ${ }^{8}$) In subsequent work, we are trying to elucidate the mechanism of this rapid ring opening reaction.

We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for support of this work.

1) H. Mayr and R. Schne ider, Chem. Ber. 115 , 3470 (1982).
2) H. Mayr, B. Seitz and I. K. Halberstadt-Kausch, J. Org. Chem. 46, 1041 (1981).
3) For a comparison of solvolysis rates of allyl and propargyl halides see:
H. Mayr and H. Klein, Chem. Ber. 115, 3528 (1982).
4) a) H. Mayr, Angew. Chem., Int. Ed. Engl. 20, 184 (1981).
b) H. Mayr and W. Striepe, J. Org. Chem. 48, 1159 (1983).
5) H. Mayr and E. Bäuml, Tetrahedron Lett. 24,357 (1983).
6) a) G. Hammen and M. Hanack, Angew. Chem., Int. Ed. Eng1. 18, 614 (1979).
b) M. Hanack, I. Harder and K.-R. Bofinger, Tetrahedron Lett. $1981,553$.
7) a) G. A. Olah, G. Asensio and H. Mayr, J. Org. Chem. 43, 1518 (1978).
b) N. C. Deno, C. U. Pittman, Jr., and J. 0. Turner, J. Am. Chem. Soc. 87, 2153 (1965).
c) C. U. Pittman and W. G. Miller, J. Am. Chem. Soc. 95, 2947 (1973).
8) E. N. Marvell, Thermal Electrocyclic Reactions, Academic Press, New York, 1980, pp. 139.
9) ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \delta\right)$:

13c $=1.11(\mathrm{~s}, 6 \mathrm{H}), 1.63(\mathrm{~d}, 6.8 \mathrm{~Hz}, 3 \mathrm{H}), 5.62(\mathrm{q}, 1 \mathrm{H}), 7.13-7.70(\mathrm{~m}, 14 \mathrm{H})$.
13d: $0.72(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 7.10-7.90(\mathrm{~m}, 14 \mathrm{H})$.
13e: $1.77(\mathrm{~s}, 3 \mathrm{H}), 4.73(\mathrm{~d}, 1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, 1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.70(\mathrm{~m}, 19 \mathrm{H})$.
14a: $0.87(\mathrm{~d}, 6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.10(\mathrm{~d}, 1.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.58(q 9,6.8 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.68-$ $7.20(\mathrm{~m}, 10 \mathrm{H}), 7.30(\mathrm{~s}, 5 \mathrm{H})$.

14b: $1.20(\mathrm{~s}, 6 \mathrm{H}), 6.70-7.23(\mathrm{~m}, 11 \mathrm{H}), 7.30(\mathrm{~s}, 5 \mathrm{H})$.
프른 $1.13(\mathrm{~s}, 6 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 6.93$ (br. s, 10 H$), 7.30(\mathrm{~s}, 5 \mathrm{H})$.
14f: $0.92(\mathrm{~s}, 3 \mathrm{H}), 1.07-2.93(\mathrm{~m}, 8 \mathrm{H}), 6.40-7.07(\mathrm{~m}, 10 \mathrm{H}), 7.17$ (s, 5 H$)$.
15: $1.37(\mathrm{~s}, 6 \mathrm{H}), 7.17-7.63(\mathrm{~m}, 15 \mathrm{H})$, 9.72 ($\mathrm{s}, 1 \mathrm{H})$.
16: $1.70(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 6.70-7.70(\mathrm{~m}, 15 \mathrm{H}), 9.68(\mathrm{~s}, 1 \mathrm{H})$.
(Received in Germany 5 December 1983)

