© Verlag Chemie GmbH, D-6940 Weinheim, 1981 - Printed in the Federal Republic of Germany.

Verantwortlich für den Inhalt: Prof. Dr. Hans Musso, Karlsruhe. Redaktion: Dr. Hermann Zahn, München. Anzeigenleitung: R. J. Roth, Weinheim.

Verlag Chemie GmbH (Geschäftsführer Dr. Helmut Grünewald), Pappelallee 3, Postfach 1260/1280, D-6940 Weinheim.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen und dgl. in dieser Zeitschrift berechtigt nicht zu der Annahme, daß solche Namen ohne weiteres von jedermann benutzt werden dürfen. Vielmehr handelt es sich häufig um gesetzlich geschützte eingetragene Warenzeichen, auch wenn sie nicht als solche gekennzeichnet sind.

Alle Rechte, insbesondere die der Übersetzung in fremde Sprachen, vorbehalten. Kein Teil dieser Zeitschrift darf ohne schriftliche Genehnigung des Verlages in irgendeiner Form – durch Photokopie, Mikrofilm oder irgendein anderes Verfahren – reproduziert oder in eine von Maschinen, insbesondere von Datenverarbeitungsmaschinen verwendbare Sprache übertragen oder übersetzt werden. – All rights reserved (including those of translation into foreign languages). No part of this issue may be reproduced in any form – by photoprint, microfilm, or any other means – nor transmitted or translated into a machine language without the permission in writing of the publishers. – Von einzelnen Beiträgen oder Teilen von ihnen dürfen nur einzelne Vervielfältigungsstücke für den persönlichen oder sonstigen eigenen Gebrauch hergestellt werden. Jede im Bereich eines gewerblichen Unternehmens hergestellte oder benutzte Kopie dient gewerblichen Zwecken gem. § 54(2) UrhG und verpflichtet zur Gebührenzahlung an die VG WORT, Abteilung Wissenschaft, Goethestr. 49, 8000 München 2, von der die einzelnen Zahlungsmodalitäten zu erfragen sind. Die Weitergabe von Vervielfältigunge, gleichgültig zu welchem Zweck is hergestellt werden, ist eine Urheberrechtsverletzung.

Valid for users in the USA: The appearance of the code at the bottom of the first page of an article in this journal (serial) indicates the copyright owner's consent that copies of the article may be made for personal or internal use, or for the personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated percopy fee through the Copyright Clearance Center, Inc., for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective work, or for resale. For copying from back volumes of this journal see »Permissions to Photo-Copy: Publisher's Fee List« of the CCC.

In der Zeitschrift werden keine Rezensionen veröffentlicht; zur Besprechung eingehende Bücher werden nicht zurückgesandt. Herstellung: Krebs-Gehlen Druckerei, Hemsbach (Bergstraße).

CHEMISCHE BERICHTE

GEGRÜNDET 1868 114. JAHRGANG

HERAUSGEGEBEN IM AUFTRAG DER GESELLSCHAFT DEUTSCHER CHEMIKER

VON

K. HAFNER · W. KIRMSE · H. MUSSO · H. NÖTH · J. SAUER · E. WINTERFELDT

UNTER MITWIRKUNG VON

H. A. BRUNE · W. LÜTTKE · G. SPITELLER

REDAKTION: H. ZAHN mit H. SCHILL, J. STREHLOW und A. WIELAND

D-6940 WEINHEIM

1981 HEFT 12

BEMERKUNGEN DER REDAKTION

- 1. Die Chemischen Berichte (zu zitieren als Chem. Ber.) setzen die Berichte der Deutschen Chemischen Gesellschaft (zu zitieren als Ber. Dtsch. Chem. Ges.) fort.
- 2. Die "Berichte" enthalten Originalmitteilungen aus allen Gebieten der Chemie.
- 3. Die "Berichte" erscheinen monatlich; ein Registerheft beschließt jeden Band.
- 4. Die Verantwortung für ihre Mitteilungen tragen die Verfasser selbst.
- 5. Es werden grundsätzlich nur Arbeiten aufgenommen, die vorher weder im Inland noch im Ausland veröffentlicht worden sind.
- 6. Eine Anweisung zur Abfassung von Manuskripten für die "Berichte" wird auf Wunsch zugestellt.
- 7. Manuskripte sind zu senden an Redaktion der Chemischen Berichte. Dr. H. Zahn, Am Klopferspitz, D-8033 Martinsried. Telefon (089) 8585830.
- 8. Der Eingang der Abhandlungen wird den Autoren am Tage der Registrierung angezeigt.
- 9. Es werden nur Manuskripte in deutscher oder englischer Sprache aufgenommen. Allen Beiträgen ist eine knappe Zusammenfassung (summary) in beiden Sprachen voranzustellen, einschließlich Titel in der jeweils zweiten Sprache.
- 10. Der Autor muß das alleinige Urheberrecht besitzen. Mit der Annahme des Manuskriptes durch die Redaktion überträgt er dem Verlag Chemie das ausschließliche Nutzungsrecht, insbesondere das Recht der Vervielfältigung wie Fotokopie, Mikrofilm – oder mit irgendeinem anderen Verfahren – oder das Manuskript in eine von Maschinen, insbesondere von Datenverarbeitungsmaschinen, verwendbare Sprache zu übergeben oder zu übersetzen (auch in fremde Sprachen).
- 11. Den Autoren werden 75 Sonderdrucke unentgeltlich portofrei zugesandt. Wünscht ein Autor mehr als 75 Abzüge, so ist dies auf dem Manuskript oder spätestens bei Rücksendung der Korrektur auf dieser zu vermerken. Den Autoren werden nur die Selbstkosten für die Zahl der die Freiexemplare überschreitenden Sonderabzüge berechnet.
- 12. Anfragen nach dem Verbleib nicht eingetroffener Berichte-Hefte oder Sonderdrucke sind zu richten an: Verlag Chemie GmbH, Pappelallee 3, Postfach 1260/1280, D-6940 Weinheim, Telefon (06201) 602-1.

Die Chemischen Berichte erscheinen monatlich. Der Jahresbezugspreis beträgt 670. – DM zuzügl. Versandgebühren. Einzelheft 76. – DM. In diesem Preis ist die Mehrwertsteuer enthalten. Die Bezugsbedingungen für Mitglieder der Gesellschaft Deutscher Chemiker werden auf Anfrage von der Geschäftsstelle, Carl-Bosch-Haus, Varrentrappstraße 40 – 42, Postfach 900440, D-6000 Frankfurt 90, mitgeteilt. – Bestellungen richten Sie bitte an Ihre Fachbuchhandlung oder unmittelbar an den Verlag. – Abbestellungen nur bis spätestens 2 Monate vor Ablauf des Kalenderjahres. – Die Lieferung erfolgt auf Rechnung und Gefahr des Empfängers. Gerichtsstand und Erfüllungsort: Weinheim/Bergstr.

Verlag und Anzeigenabteilung: Verlag Chemie GmbH, Pappelallee 3, Postfach 1260/1280, D-6940 Weinheim. Fernsprecher (06201) 602-1, Fernschreiber 465516 vchwh d.

For USA and Canada

Published monthly by Verlag Chemie GmbH, Weinheim, Federal Republic of Germany, Annual subscription price: \$ 455.00 including postage. Second-class postage paid at Jamaica, N. Y. Printed in the Federal Republic of Germany. Air-freighted and mailed in the United States by Publication Expediting Inc., 200 Meacham Avenue, Elmont. N. Y. 11003. Subscribers in North America should place their order through Verlag Chemie International Inc., Plaza Centre, Suite E, 1020 N. W. Sixth Street, Deerfield Beach, Florida 33441.

INHALT VON HEFT 12

114. Jahrgang 1981

ANORGANISCHE CHEMIE

Kaim Wolfgang: Vom Ionenpaar zum Radikalkomplex: Koordinationsverbindungen des reduzierten 2,2'-Bipyridins mit Organometall-Kationen	3789
Pieper Werner, Schmitz Dieter und Paetzold Peter: Borimide und Borylnitrene beim Zer- fall von Diaminoazidoboranen	3801
Lindner Ekkehard, Funk Guido und Hoehne Sigurd: Darstellung und Eigenschaften von und Reaktionen mit metallhaltigen Heterocyclen, XXI: Ringkontraktion, Kristall- strukturen, Eigenschaften und Stabilität von Manganacycloalkanen	3855

ORGANISCHE CHEMIE

Roth Wolfgang R. und Scholz Bernhard P.: Das Energieprofil des o-Chinodimethan Benzocyclobuten-Gleichgewichtes, II	3741
Lambrecht Johanna, Gambke Brigitte, Seyerl von Joachim, Huttner Gottfried, Koll- mannsberger-von Nell Georg, Herzberger Siegfried und Jochims Johannes C.: Stereoisomerisierungen von Keteniminen	3751
<i>Eisenhuth</i> Ludwig, <i>Siegel</i> Herbert und <i>Hopf</i> Henning: Alkine und Cumulene, XV: Über die Photodimerisierung konjugierter Enine	3772
Langhals Heinz, Range Günter, Wistuba Eckehardt und Rüchardt Christoph: Alkylwan- derungen bei Sextettumlagerungen	3813
Langhals Heinz und Rüchardt Christoph: Wanderungstendenzen cyclischer, polycycli- scher und methylverzweigter Alkylreste bei der Beckmann-Umlagerung	3831
Mayring Lothar und Severin Theodor: Umsetzungen mit Monohydrazonen von Dicar- bonylverbindungen, X: 2-(Dimethylhydrazono)propanal als Reagens zur Synthese von 1,4-Diketonen	3863
Franke Wilfried, Frenking Gernot, Schwarz Helmut und Wolfschütz Roland: Zur Kohlenstoff-Äquilibrierung in cyclischen C ₆ H ₁₁ -Kationen in der Gasphase und zum Mechanismus der unimolekularen Ethylen-Abspaltung	3878
Zoch Hans-Georg, Szeimies Günter, Butkowskyj Theodora, Van Meerssche Maurice, Germain Gabriel und Declercq Jean-Paul: Disila[4.1.1]propellane: Synthese und Struktur	3896
 White Emil H., Winter Rudolph E. K., Graeve Rolf, Zirngibl Ulrich, Friend Earl W., Maskill Howard, Mende Ulrich, Kreiling Gerda, Reisenauer Hans Peter und Maier Günther: Kleine Ringe, 33: Versuche zur Darstellung von Diphenyltetrahedran 	3906
Maier Günther und Reisenauer Hans Peter: Kleine Ringe, 34: Versuche zur Darstellung von Dimethyltetrahedran	3916
Maier Günther, Schneider Manfred, Kreiling Gerda und Mayer Wolfram: Kleine Ringe, 35: Versuche zur Darstellung von Tetramethyltetrahedran aus heterocyclischen Vor- stufen	3922

Maier Günther, Mayer Wolfram, Freitag Hans-Albrecht, Reisenauer Hans Peter und As- kani Rainer: Kleine Ringe, 36: Versuche zur Darstellung von Tetramethyltetrahedran aus alicyclischen Vorstufen	3935
Maier Günther und Reisenauer Hans Peter: Kleine Ringe, 37: Weitere Versuche zur Ma- trixisolierung von Tetramethyltetrahedran	3959
Maier Günther, Pfriem Stephan, Schäfer Ulrich, Malsch Klaus-Dieter und Matusch Ru- dolf: Kleine Ringe, 38: Tetra-tert-butyltetrahedran	3965
Maier Günther, Pfriem Stephan, Malsch Klaus-Dieter, Kalinowski Hans-Otto und Deh- nicke Kurt: Kleine Ringe, 39: Spektroskopische Eigenschaften von Tetra-tert-butyl- tetrahedran	3988
Bartels Herbert M., Boldt Peter und Schomburg Dietmar: Radikalische Additionen, X: Einfache Synthese einiger Spiro[2.4]heptan-4,4,7,7-tetracarbonitrile	3997
Boche Gernot und Fährmann Uwe: Stereospezifische Darstellung der (Z)- bzw. (E)-Iso- meren von einigen Vinylfluoriden	4005

CONTENTS OF No. 12

INORGANIC CHEMISTRY

Kaim Wolfgang: From Ion Pairs to Radical Complexes: Coordination Compounds of Reduced 2,2'-Bipyridine with Organometallic Cations	3789
Pieper Werner, Schmitz Dieter, and Paetzold Peter: Boron Imides and BoryInitrenes by Decomposition of Diaminoazidoboranes	3801
Lindner Ekkehard, Funk Guido, and Hoehne Sigurd: Preparation and Properties of, and Reactions with, Metal-Containing Heterocycles, XXI: Ring Contraction, Crystal Structures, Properties, and Stability of Manganacycloalkanes	3855

ORGANIC CHEMISTRY

Roth Wolfgang R. and Scholz Bernhard P.: Energy Profile of the o-Quinodimethane ≠ Benzocyclobutene Equilibrium, II 3'	741
 Lambrecht Johanna, Gambke Brigitte, Seyerl von Joachim, Huttner Gottfried, Koll- mannsberger-von Nell Georg, Herzberger Siegfried, and Jochims Johannes C.: Stereoisomerization of Ketene Imines	751
<i>Eisenhuth</i> Ludwig, <i>Siegel</i> Herbert, and <i>Hopf</i> Henning: Alkynes and Cumulenes, XV: On the Photodimerization of Conjugated Enynes	772
Langhals Heinz, Range Günter, Wistuba Eckekardt, and Rüchardt Christoph: Migration of Alkyl Groups in Sextett Rearrangements 33	813
Langhals Heinz and Rüchardt Christoph: Migration Aptitudes of Cyclic, Polycyclic, and Branched Alkyl Groups in the Beckmann Rearrangements	831
Mayring Lothar and Severin Theodor: Reactions with Monohydrazones of Dicarbonyl Compounds, X: 2-(Dimethylhydrazono)propanal as a Reagent for the Synthesis of 1,4-Diketones 33	863
 Franke Wilfried, Frenking Gernot, Schwarz Helmut, and Wolfschütz Roland: On the Carbon Equilibration of Cyclic C₆H⁺₁₁ Cations in the Gas Phase and the Mechanism of Unimolecular Ethylene Elimination 	878
 Zoch Hans-Georg, Szeimies Günter, Butkowskyj Theodora, Van Meerssche Maurice, Germain Gabriel, and Declercq Jean-Paul: Disila[4.1.1]propellanes: Synthesis and Structure	896
 White Emil H., Winter Rudolph E. K., Graeve Rolf, Zirngibl Ulrich, Friend Earl W., Maskill Howard, Mende Ulrich, Kreiling Gerda, Reisenauer Hans Peter, and Maier Günther: Small Rings, 33: Attempts to Synthesize Diphenyltetrahedrane	906
Maier Günther and Reisenauer Hans Peter: Small Rings, 34: Attempts to Synthesize Dimethyltetrahedrane 3	916
Maier Günther, Schneider Manfred, Kreiling Gerda, and Mayer Wolfram: Small Rings,35: Attempts to Synthesize Tetramethyltetrahedrane from Heterocyclic Precursors36: Attempts to Synthesize Tetramethyltetrahedrane from Heterocyclic Precursors	922
Maier Günther, Mayer Wolfram, Freitag Hans-Albrecht, Reisenauer Hans Peter, and Askani Rainer: Small Rings, 36: Attempts to Synthesize Tetramethyltetrahedrane from Alicyclic Precursors 3	935

Maier Günther and Reisenauer Hans Peter: Small Rings, 37: Further Attempts on Matrix Isolation of Tetramethyltetrahedrane	3959
Maier Günther, Pfriem Stephan, Schäfer Ulrich, Malsch Klaus-Dieter, and Matusch Rudolf: Small Rings, 38: Tetra-tert-butyltetrahedrane	3965
Maier Günther, Pfriem Stephan, Malsch Klaus-Dieter, Kalinowski Hans-Otto, and Dehnicke Kurt: Small Rings, 39: Spectroscopic Properties of Tetra-tert-butyltetra- hedrane	3988
Bartels Herbert M., Boldt Peter, and Schomburg Dietmar: Free Radical Additions, X: Simple Synthesis of Some Spiro[2.4]heptane-4,4,7,7-tetracarbonitriles	3997
Boche Gernot and Fährmann Uwe: Stereospecific Preparation of (Z)- and (E)-Isomers, Respectively, of Some Vinyl Fluorides	4005

AUTORENREGISTER

Askani, R. s. Maier, G.	3935
Bartels, H. M., Boldt, P. und	
Schomburg, D.	3997
Boche, G. und Fährmann, U	4005
Boldt, P. s. Bartels, H. M	3997
Butkowskyj, T. s. Zoch, HG	3896
Declercq, JP. s. Zoch, HG.	3896
Dehnicke, K. s. Maier, G.	3988
Eisenhuth, L., Siegel, H. und Hopf, H.	3772
Fährmann, U. s. Boche, G.	4005
Franke, W., Frenking, G., Schwarz, H.	
und Wolfschütz, R	3878
Freitag, HA. s. Maier, G.	3935
Frenking, G. s. Franke, W.	3878
Friend, E. W. s. White, E. H	3906
Funk, G. s. Lindner, E	3855
Gambke, B. s. Lambrecht, J.	3751
Germain, G. s. Zoch, HG.	3896
Graeve, R. s. White, E. H	3906
Herzberger, S. s. Lambrecht, J.	3751
Hoehne, S. s. Lindner, E.	3855
Hopf, H. s. Eisenhuth, L.	3772
Huttner, G. s. Lambrecht, J.	3751
Jochims, J. C. s. Lambrecht, J.	3751
Kaim, W	3789
Kalinowski, HO. s. Maier, G	3988
Kollmannsberger-von Nell, G. s.	
Lambrecht, J.	3751
Kreiling, G. s. Maier, G.	3922
– s. White, E. H	3906
Lambrecht, J., Gambke, B., Seyerl,	
von, J., Huttner, G., Kollmanns-	
berger-von Nell, G., Herzberger, S.	
und Jochims, J. C.	3751
Langhals, H., Range, G.,	
Wistuba, E. und Rüchardt, C.	3813
– und <i>Rüchardı</i> , <i>C</i>	3831
Lindner, E., Funk, G. und Hoehne, S	3855
Maier, G., Mayer, W., Freitag, HA.,	
Reisenauer, H. P. und Askani, R	3935

–, Pfriem, S., Malsch, KD.,
Kalinowski, HO. und
Dehnicke, K 3988
–, Pfriem, S., Schäfer, U., Malsch,
KD. und Matusch, R
- und Reisenauer, H. P 3916, 3959
–, Schneider, M., Kreiling, G.
und <i>Mayer, W.</i> 3922, 3935
– s. White, E. H
Malsch, KD. s. Maier, G 3965, 3988
Maskill, H. s. White, E. H
Matusch, R. s. Maier, G 3965
Mayer, W. s. Maier, G
Mayring, L. und Severin, T
Mende, U. s. White, E. H
Paetzold, P. s. Pieper, W 3801
Pfriem, S. s. Maier, G 3965, 3988
Pieper, W., Schmitz, D. und
Paetzold, P 3801
Range, G. s. Langhals, H 3813
Reisenauer, H. P. s. Maier, G. 3916, 3935, 3959
– s. White, E. H 3906
Roth, W. R. und Scholz, B. P 3741
Rüchardt, C. s. Langhals, H 3813, 3831
Schäfer, U. s. Maier, G 3965
Schmitz, D. s. Pieper, W 3801
Schneider, M. s. Maier, G 3922
Scholz, B. P. s. Roth, W. R 3741
Schomburg, D. s. Bartels, H. M 3997
Schwarz, H. s. Franke, W 3878
Severin, T. s. Mayring, L 3863
Seyerl, von, J. s. Lambrecht, J 3751
Siegel, H. s. Eisenhuth, L 3772
<i>Szeimies, G. s. Zoch, HG.</i> 3896
Van Meerssche, M. s. Zoch, HG 3896
White, E. H., Winter, R. E. K.,
Graeve, R., Zirngibl, U., Friend,
E. W., Maskill, H., Mende, U.,
Kreiling, G., Reisenauer, H. P.
und <i>Maier</i> , <i>G</i> 3906

ISSN 0009-2940 · CHBEAM 114 (12) 3741 – 4010 (1981)

Chem. Ber. 114, 3831 - 3854 (1981)

Wanderungstendenzen cyclischer, polycyclischer und methylverzweigter Alkylreste bei der Beckmann-Umlagerung¹⁾

Heinz Langhals und Christoph Rüchardt *

Chemisches Laboratorium der Universität Freiburg, Albertstr. 21, D-7800 Freiburg i. Br.

Eingegangen am 25. März 1981

Die Wanderungstendenzen von polycyclischen Brückenkopfresten, Cycloalkylresten sowie β -, γ und δ -verzweigten Alkylresten bei der Chapman-Variante der Beckmann-Umlagerung wurden bestimmt. Sie zeigen, daß die wandernde Gruppe im Übergangszustand **2** nicht Carbenium-Ionen-Charakter hat, sondern nach weitgehender Beibehaltung ihrer Geometrie eher einer fünffach koordinierten Carboniumstruktur entspricht, die im Zuge der Umlagerungsreaktion vertikal stabilisiert⁴) werden kann.

Migration Aptitudes of Cyclic, Polycyclic, and Branched Alkyl Groups in the Beckmann Rearrangements¹⁾

The migration aptitudes of polycyclic bridgehead groups, cycloalkyl groups as well as of β -, γ - and δ -branched alkyl groups in the Chapman variant of the Beckmann rearrangement were determined. From these data it is concluded that at transition state **2** the migrating group is not resembling a planarised carbenium ion R⁺, but rather a pentacoordinated carbonium ion structure. Because only small geometrical changes occur in the migrating group vertical stabilisation⁴) of charge at transition state is believed to have significant influence on the migration aptitudes.

Die vorstehende Arbeit²⁾ über die Wanderungstendenzen von Alkylresten bei Sextett-Umlagerungen hat zu dem Schluß geführt, daß bei der Chapman-Variante der Beckmann-Umlagerung³⁾ $1 \rightarrow 4$ am zentralen C-Atom der wandernden Gruppe eine re-

Pik = 2,4,6-Trinitrophenyl

lativ hohe positive Partialladung auftritt (ρ für R = substituiertes Benzyl = -2.2), obwohl an diesem C-Atom nur eine relativ schwache Substituenteneinebnung von ca. 7° eintritt. Der Rest R ist im Übergangszustand 2 der Reaktion demnach weniger mit einem planaren Carbenium-Ion als mit einer fünfbindigen nichtklassischen Struktur zu

Chem. Ber. 114 (1981)

© Verlag Chemie GmbH, D-6940 Weinheim, 1981 0009 - 2940/81/1212 - 3831 \$ 02.50/0 vergleichen. Bei der Stabilisierung der Ladung auf der wandernden Gruppe im Übergangszustand handelt es sich wegen der geringen geometrischen Veränderung also um eine vertikale Stabilisierung⁴⁾, die nicht streng mit der Carbeniumstabilität parallel laufen sollte.

Zur Prüfung dieser Vorstellungen untersuchten wir die Wanderungstendenzen von polycyclischen Brückenkopfresten, von Cycloalkylresten und von β -, γ - und δ -verzweigten Alkylresten. Da Beckmann-Umlagerungen in derartigen Systemen zwar präparativ bekannt sind, aber nie systematisch mechanistisch untersucht wurden – und das gilt auch für andere Sextett-Umlagerungen – schien uns diese Studie auch zur allgemeinen Erweiterung der Kenntnisse über Struktur-Reaktivitätsbeziehungen lohnend.

Die benötigten Methylketonoxim-pikrate 1 wurden, wie vorstehend beschrieben, aus den Carbonsäuren²⁾ oder aus den Nitrilen über deren Imine und Oxime dargestellt. Die Kinetik der Isomerisierung zu 4 wurde in 1,4-Dichlorbutan UV-spektroskopisch verfolgt²⁾.

Wanderungstendenzen polycyclischer Brückenkopfreste

Wie aus Tab. 1 zu ersehen ist, nehmen die Wanderungstendenzen der Brückenkopfreste in der Reihe 3-Homoadamantyl bis Bicyclo[2.2.1]hept-1-yl und damit mit steigender Ringspannung⁵⁾ ab.

R	$10^5 \cdot k_{80^{\circ}C}$	k	$\Delta H^{\pm b}$	$\Delta S^{\pm a,b}$	<u>г</u> с)	n ^d)	ΔT^{e}
	s '	Tei	kcal · mol '	e.u.			°C
tert-Butyl	60.3 ¹)	≡1	24.0 ^f)	- 5.6 ^{f)}	-	4	
Bicyclo[2.2.1]hept-1-yl	4.72	0.08	23.75	-11.4	- 0.9913	4	74 – 8 6
Bicyclo[2.2.2]oct-1-yl	51.5	0.85	24.13	- 5.5	- 0.9705	4	60 – 7 2
Bicyclo[3.2.1]oct-1-yl	87.5	1.5	25.19	- 1.5	- 0.9984	5	55 77
1-Twistyl	88.4	1.5	26.31	1.7	- 0.9990	4	50 - 81
Bicyclo[3.2.2]non-1-yl	239	4.0	26.02	2.8	- 0.9997	4	49 - 76
1-Adamantyl	520	8.6	21.20	-9.2	- 0.9991	4	38 - 50
Bicyclo[3.3.1]non-1-yl	902	15	22.97	- 3.2	- 0.99996	4	21 - 51
1-Homoadamantyl	1550	26	22.73	-2.8	- 0.9996	4	22 - 51
3-Homoadamantyl	4580	76	24.35	4.0	- 0.9985	4	18 – 39
1-Cubyl	126	2.1	25.98	1.5	- 0. 99 87	4	39 - 66
4-Homocubyl	192	3.2	23.98	- 3.4	- 0.9997	4	<u> 39 – 66</u>

Tab. 1. Kinetik der Beckmann-Umlagerung von Methylketoxim-pikraten $R - C(CH_3) = NOPik 1$ in 1,4-Dichlorbutan (UV-spektroskopisch gemessen)

a) Aktivierungsentropie in cal \cdot mol⁻¹ · K⁻¹. – b) Die Genauigkeit von ΔH^{\pm} und ΔS^{\pm} beträgt ca. 0.5 kcal \cdot mol⁻¹ und 2 e.u. Die Werte sind jedoch als Rechengröße mit größerer numerischer Genauigkeit angegeben, damit k auf andere Temperaturen extrapoliert werden kann. – c) Korrelationskoeffizient der Eyring-Beziehung. – d) Anzahl der Meßpunkte für die Eyring-Beziehung. – c) Temperaturbereich der kinetischen Messungen. – D Lit.⁷).

Hieraus wird geschlossen, daß Brückenkopfspannungseffekte, wie sie für Solvolysereaktionen diskutiert werden⁵⁾, auch die Wanderungstendenzen dieser Reste beeinflussen. Dieser Zusammenhang ist quantitativ als lineare, freie Enthalpiebeziehung in Abb. 1 zwischen den Solvolysekonstanten der Brückenkopfbromide in 80% Ethanol/Wasser bei 25 °C⁶⁾ und den Wanderungstendenzen dieser Reste dargestellt.

Abb. 1. Lineare freie Enthalpiebeziehung zwischen der Geschwindigkeitskonstante der Beckmann-Umlagerung von *anti*-Methylketoxim-pikraten 1 in 1,4-Dichlorbutan bei 80°C und der Solvolyse der Brückenkopfbromide RBr in 80% Ethanol/Wasser bei 25°C⁶⁾

Es resultiert eine relativ gute lineare Korrelation, jedoch mit einer Steigung von nur ca. 0.2. Die Frage nach der Ursache dieser Korrelation ist keineswegs trivial⁶⁾. Im Prinzip kann sie nämlich sowohl durch Zunahme der Brückenkopfspannung im Aktivierungsprozeß als andererseits auch durch das Auftreten von positiver Ladung auf der wandernden Gruppe im Übergangszustand verursacht sein⁶⁾.

Bei der Diskussion seien zwei Punkte in den Vordergrund gestellt: Einmal das Abweichen des *tert*-Butylrestes von der Korrelation. Zum anderen der Befund, daß eine Reihe von Brückenkopfresten sogar eine größere Wanderungstendenz zeigt als die *tert*-Butylgruppe.

Die Sonderstellung des *tert*-Butylrestes deuten wir durch dessen Flexibilität. Die hohe Geschwindigkeit der *tert*-Butylbromid-Solvolyse im Vergleich zu den Brückenkopfbromiden ist durch die Möglichkeit, ein planares *tert*-Butylcarbenium-Ion auszubilden – im Gegensatz zu der erzwungenen ungünstigen pyramidalen Geometrie der Brückenkopfcarbenium-Ionen – verursacht. Bei der Wanderung dieser Gruppen im Rahmen der Beckmann-Umlagerung tritt in jedem Fall nur geringfügige Einplanierung des zentralen C-Atoms der wandernden Gruppe ein²⁾, daher nimmt die *tert*-Butylgruppe bei der vertikalen Stabilisierung⁴⁾ einer positiven Partialladung im Übergangszustand der Isomerisierung²⁾ keine Sonderstellung mehr ein im Vergleich zu den Brückenkopfresten.

Für die größere Wanderungstendenz einiger Brückenkopfreste als von *tert*-Butyl machen wir 1,3-Wechselwirkungen⁴⁾ im Übergangszustand verantwortlich, die zur Delokalisierung der positiven Partialladung um so mehr beitragen, je besser elektronenliefernd das β -C-Atom ist ($C_{prim.} < C_{sek.} < C_{tert.}$). Bei 1-Adamantyl-Kationen wurden diese Wechselwirkungen spektroskopisch belegt^{8,9}, im *tert*-Butyl-Kation fehlen stabilisierende β -C-Atome. Die Feststellung, daß die Isomerisierung des (1,1-Diethylpropyl)methylketonoxim-pikrats fast gleich schnell erfolgt (s. Tab. 3) wie die des Adamantylmethylketonoxim-pikrats stützt diese Annahme.

Schließlich ist noch zu erwarten, daß im Übergangszustand der Umlagerungsreaktion die Bindung zum wandernden C-Atom gelockert wird und damit eine größere Flexibilität für Bindungswinkel-Deformationen an diesem C-Atom resultiert. Bei Brückenkopfsystemen mit mittleren Ringen könnte hierdurch ein Nachlassen von transanularer Spannung erreicht werden, das zur Beschleunigung der Reaktion führt. Unterschiede in der Bedeutung der Einebnung einerseits und der 1,3-Wechselwirkung andererseits können auch für das Abweichen von der Korrelation in Abb. 1 verantwortlich sein.

Von besonderem Interesse ist es, die Wanderungstendenzen hochgespannter Brückenkopfreste wie des Cubyl- und 4-Homocubylrestes zu untersuchen, die jeglicher Brückenkopf-Einebnung erheblichen Widerstand entgegensetzen sollten. (Der Cubylrest besitzt bereits eine Grundzustandsspannung von ca. 170 kcal \cdot mol^{-1 10}.) Nach Tab. 1 sind die Wanderungstendenzen dieser Reste bemerkenswert groß und übertreffen sogar noch die des *tert*-Butylrestes. Dies steht qualitativ mit der Beobachtung im Einklang, daß 4-Homocubancarbonsäure ohne Probleme nach Curtius zum Amin abgebaut werden kann. Auch bei der Beckmann-Umlagerung bleibt das Cuban-Skelett während der Umlagerung erhalten, wie ein NMR-Vergleich des Reaktionsproduktes mit dem Edukt zeigt. Eine Ursache für die großen Wanderungstendenzen dieser beiden Gruppen sehen wir wieder in der oben beschriebenen 1,3-Wechselwirkung, die bei diesen Resten wegen der geringen Abstände über die Flächendiagonalen des Würfels sehr effizient erfolgen sollte.

Die gemessenen Geschwindigkeitskonstanten für die Wanderung des Cubyl- und 4-Homocubylrestes ermöglichen unter Verwendung der linearen Beziehung von Abb. 1 eine Abschätzung der Solvolysekonstanten der entsprechenden Brückenkopfbromide bei $25 \,^{\circ}$ C in 80% Ethanol/Wasser. Der berechnete Wert für die Solvolyse von etwa $10^{-6} \, \text{s}^{-1}$ kann zwar nur als obere Grenze betrachtet werden, da außer den beschriebenen noch weitere Effekte von Einfluß sein dürften, wie vor allem der sterische. Es erscheint aber möglich, daß in sehr polaren Medien, wie z. B. Hexafluorisopropylalkohol/Wasser¹¹) Solvolysereaktionen an diesen Systemen ausgeführt werden können. Diese Untersuchungen sind z. Zt. in Arbeit.

Wanderungstendenzen von Cycloalkylresten

Als weitere Sonde zur Klärung von Struktur und Reaktivitätsbeziehungen hat sich der Einfluß der Ringgröße von Cycloalkylresten auf die Reaktivität bewährt¹²⁻¹⁴⁾. In Tab. 2 sind kinetische Messungen der Beckmann-Isomerisierung von *anti*-Cycloalkylmethylketonoxim-pikraten 1 ($\mathbf{R} = \text{Cycloalkyl}$) aufgeführt, zusammen mit ergänzenden Messungen an den entsprechenden 1-Methyl- und 1-Phenylcycloalkyl-Derivaten 1 ($\mathbf{R} = 1$ -Methylcycloalkyl bzw. 1-Phenylcycloalkyl).

	•			,		
Rest ^{a)}	$k_{80^{\circ}C} \cdot 10^{5}$ b)	$\Delta T^{(c)}$	$\frac{\Delta H^{\pm d}}{ kca \cdot mol^{-1}}$	$\frac{\Delta S = e,d}{e.u.}$	r f)	n ^{g)}
Cyclopropyl	0.41	95.9 - 100.6 ^h)	34.46	14.1	- 0.92548	4
Cyclobutyl	7.99	75.4 - 89.5	24.23	- 9.0	- 0.98492	4
Cyclopentyl	2.28	75.1 - 87.9	27.65	-1.8	- 0.99929	4
Cyclohexyl	38.8	59.9-80.2	21.60	-13.3	- 0.99184	4
Cycloheptyl	177	40.6-81.3	21.20	-11.4	- 0.99895	6
Cyclooctyl	366	32.0-61.1	24.95	0.7	- 0.99991	4
Cyclononyl	193	39.7 - 66.6	23.28	- 5.3	- 0.99937	4
Cyclodecyl	346	32.1-60.9	25.63	2.5	- 1.0000	4
Cycloundecyl	227	31.5 - 70.1	24.80	-0.7	- 0.99984	5
Cyclododecyl	160	31.3 - 68.8	25.70	1.1	- 0.99961	5
1-Methylcyclopropyl	31.4	50.75 - 80.3	26.61	0.5	- 1.0000	4
1-Methylcyclobutyl	73.8	48.7 – 74.7	24.58	-3.6	- 0.99959	4
1-Methylcyclopentyl	116	49.15 - 75.7	26.86	3.8	-0.99784	4
1-Methylcyclohexyl	592	32.0-60.95	23.24	-2.9	- 1.0000	4
1-Methylcycloheptyl	303	31.6-59.8	23.46	- 3.9	- 0.99828	4
1-Methylcyclooctyl	1270	22.2 - 50.6	24.24	1.1	- 0.99999	4
1-Phenylcyclopropyl	15.6	56.1-95.6	27.56	1.8	- 0.99949	5
1-Phenylcyclobutyl	261	39.1 - 56.1	25.63	1.9	- 0.99866	4
1-Phenylcyclopentyl	1630	29.8 - 57.35	24.81	3.2	- 0.99983	4
1-Phenylcyclohexyl	4120	16.9 - 39.1	22.72	-0.8	- 0.99904	4
Bicyclo[2.2.1]hept-7-yl	10.5	66.7 - 98.3	28.03	2.3	- 0.99655	4

Tab. 2. Geschwindigkeitskonstanten der Beckmann-Umlagerung von *anti*-Cycloalkylmethylketoxim-pikraten 1 (R = Cycloalkyl) (80°C, 1,4-Dichlorbutan)

^{a)} Wandernde Gruppe. – ^{b)} Geschwindigkeitskonstante der Umlagerung in sec⁻¹. – ^{c)} Untersuchter Temperaturbereich. – ^{d)} Die Genauigkeit von ΔH^{\pm} und ΔS^{\pm} beträgt 0.5 kcal·mol⁻¹ bzw. 2 e.u. Die Werte sind jedoch mit größerer numerischer Genauigkeit angegeben, damit *k* auf andere Temperaturen extrapoliert werden kann. – ^{e)} Aktivierungsentropie in cal·mol⁻¹·K⁻¹. – ⁰⁾ Korrelationskoeffizient der Eyring-Beziehung. – ^{g)} Anzahl der Meßtemperaturen. – ^{h)} Bei Temperaturen oberhalb von 100°C tritt Zersetzung auf.

Die Werte zeigen, daß Cycloalkylreste mittlerer Ringgröße besser wandernde Gruppen sind als Fünf- und Sechsring. Das qualitativ gleiche Phänomen wurde auch bei der Solvolyse von 1-Methylcycloalkylchloriden oder Cycloalkyltosylaten¹²⁾ sowie bei zahlreichen Radikalbildungsreaktionen^{13,14)} festgestellt. Es besteht aber keine Korrelation zwischen den Solvolysedaten und den Wanderungstendenzen der Cycloalkylreste. Dies ist nicht unerwartet. Der mittlere Ringeffekt bei Solvolysereaktionen wird durch die Änderung der mittleren Ringspannung (I-Strain) im Aktivierungsprozeß verursacht¹²⁾. Die Änderung der dafür verantwortlichen transanularen Van-der-Waals-Abstoßungen und der Pitzer-Spannung ist durch die Veränderung der Geometrie am Reaktionszentrum im Zuge der Solvolysen verursacht. Da gezeigt wurde²⁾, daß am zentralen C-Atom der wandernden Gruppe in der Beckmann-Umlagerung nur eine geringfügige Einplanierung im Zuge der Isomerisierung eintritt, kann man nicht erwarten, daß der kinetische mittlere Ringeffekt der Beckmann-Umlagerung mit den Daten der Solvolysereaktionen, bei denen eine Umhybridisierung von sp³ nach sp² anzunehmen ist, korreliert.

Es hat sich andererseits gezeigt, daß die Wanderungstendenzen der Cycloalkylreste $(C_5 - C_{12})$ von Tab. 2 in einer guten Korrelation mit den ¹³C – H-Kopplungskonstanten der entsprechenden Cycloalkane stehen (s. Abb. 2).

Abb. 2. Beziehung zwischen $\log k$ der Isomerisierung von *anti*-Cycloalkylmethylketoxim-pikraten 1 (R = Cycloalkyl) in 1,4-Dichlorbutan bei 80°C und den ¹³C – H-Kopplungskonstanten ¹⁵) der Cycloalkane (die Zahlen entsprechen der Ringgröße der Cycloalkylgruppen bzw. Cycloalkane)

Foote¹⁵⁾ hat darauf hingewiesen, daß zwischen diesen Kopplungskonstanten und dem CCC-Bindungswinkel eine lineare Beziehung besteht. Daraus folgt, daß die Wanderung von Cycloalkylresten bei der Beckmann-Umlagerung um so beschleunigter eintritt, je größer der CCC-Bindungswinkel am wandernden C-Atom ist. Da ein größerer Bindungswinkel am wandernden C-Atom einer Annäherung an die Geometrie eines wandernden Carbenium-Ions gleichkommt, läßt sich der bei der Beckmann-Umlagerung festgestellte Ringgrößeneffekt wieder durch die unterschiedliche Qualität der Cycloalkylgruppen zur vertikalen Stabilisierung⁴⁾ einer positiven Partialladung im Übergangszustand **2** der Isomerisierung deuten.

Die in Abb. 2 erkennbare, durch eine hohe Wanderungstendenz gekennzeichnete Sonderstellung des Cyclobutylrestes ist auch bei anderen Umlagerungsreaktionen beobachtet worden¹⁶). Sie ist quantenchemisch gedeutet worden¹⁷⁾ und kann als vertikale Stabilisierung über 1,3-Wechselwirkungen nach dem Modell von *Traylor*⁴⁾ verstanden werden. Diese sollte, wie bei der Wanderung des Cubyl- und Homocubylrestes bereits erwähnt, beim Cyclobutanring sehr effizient erfolgen, da der Abstand zwischen der 1- und der 3-Position gering ist, nur etwa das $\sqrt{2}$ -fache des C-C-Bindungsabstandes, und alle Substituenten in 1- und 3-Position in einer Ebene liegen.

Der Einfluß von Methyl- oder Phenylsubstituenten in 1-Stellung der wandernden Cycloalkylringe wirkt lediglich nivellierend auf den Ringgrößeneffekt (s. Tab. 2). Insbesondere in der 1-Phenylcycloalkyl-Reihe ist der Reaktivitätsunterschied zwischen fünf- und sechsgliedrigem Ring nurmehr gering. Die Möglichkeit zur Ladungsdelokalisierung durch den α-Phenylrest ist nun der offensichtlich von der Ringgröße wenig abhängige dominierende Faktor.

Wanderungstendenzen verzweigter Alkylgruppen

Die Wanderungstendenzen von polycyclischen Brückenkopfresten und von Cycloalkylresten haben gezeigt, daß nicht nur α -ständige²⁾, sondern auch β -ständige Alkylgruppen im wandernden Rest R von 1 reaktionsbeschleunigend wirken. Da dieser Effekt vor allem an starren Ringsystemen aufgetreten ist, wurde geschlossen, daß es sich nicht um eine sterische Beschleunigung (Grundzustandseffekt in 1), sondern vielmehr um eine vertikale elektronische Stabilisierung^{4,8,9)} der positiven Ladung im Übergangszustand 2 handelt.

Die Existenz einer derartigen Stabilisierung ist deshalb interessant, weil das wandernde C-Atom in 2 fünffach koordiniert ist und formal einer nichtklassischen Struktur entspricht. Da z. Zt. noch wenige experimentelle Untersuchungen über Stabilisierungsmöglichkeiten solcher Strukturen durch elektronische Effekte vorliegen, bietet die Untersuchung des Substituenteneinflusses von Alkylgruppen in β , γ - und δ -Position der wandernden Gruppe R auf die Wanderungstendenz die Möglichkeit, auf experimentellem Wege Einblicke in diese Zusammenhänge zu erhalten.

Deshalb wurde der Einfluß von Kettenverzweigungen in wandernden Alkylgruppen auf die Geschwindigkeitskonstante der Beckmann-Umlagerung bearbeitet. Um sterische Effekte minimal zu halten, wurden Modellverbindungen gewählt, die am wandernden C-Atom drei primäre Alkylgruppen oder eine Phenyl- und zwei primäre Alkylgruppen tragen. Der Einfluß von Methylsubstitution in β -, γ - oder δ -Position vom wandernden zentralen C-Atom ist dabei an verschieden langen Alkylketten untersucht worden. Zur weiteren Abrundung sind noch stärker verzweigte Reste wie Neopentyl, Triptyl, Neophyl und Cyclopropylmethyl einbezogen worden.

Die Ergebnisse der reaktionskinetischen Messungen sind in Tab. 3 aufgelistet. Es ist zu sehen, daß die Wanderungstendenzen von Alkylgruppen durch Kettenverlängerung (vgl. Nr. 9/11, 12/14, 15/17 und 23/26 in Tab. 3; vgl. aber auch 1/2) und -verzweigung (vgl. Nr. 1, 3, 4 und 6/8) erhöht werden, unabhängig davon, ob es sich um rein aliphatische Reste oder um Benzylreste handelt. Die Aktivierungsentropien sind für die meisten Umlagerungsreaktionen positiv und liegen um + 3 Clausius. Wegen des Einflusses systematischer Fehler auf die Größe und die damit verbundenen Unsicherheiten wird sie hier nicht weiter behandelt.

Dabei erhöht die Substitution eines β -ständigen Wasserstoffatoms durch eine Methylgruppe die Wanderungstendenz des Restes um bis zu einen Faktor von 2.8 (vgl. Nr. 1, 3, 4; 6, 8; 12, 13; und 15, 16 in Tab. 3). Dieser Wert muß in Relation zur etwa zehnTab. 3. Kinetik der Umlagerung von anti-Methylketoxim-pikraten 1

=N $OC_6H_2(NO_2)_3$ -(2,4,6) in 1,4-Dichlorbutan

ILC

Nr.	R ^{a)}	$10^{5} \frac{k_{1}}{s^{-1}} \frac{(80 ^{\circ}\text{C})}{(80 ^{\circ}\text{C})}$	$\Delta T^{\rm c}$	$\frac{\Delta H^{\pm d}}{\text{kcal} \cdot \text{mol}^{-1}}$	$\Delta S = d.e, e.u.$	n D	/· g)
1	n-Propyl	0.847	75.8 - 114.1	26.36	- 7.4	4	- 0.99859
2	n-Pentyl	0.672	84.85 - 114.1	29.76	1.8	4	- 0.99777
3	lsobutyl	1.20	79.45 - 109.3	29.35	1.8	4	- 0.99826
4	Neopentyl	1.32	75.7 - 107.5	29.41	2.1	5	- 0.99577
5	1-Ethylpropyl	87.7	48.45 - 75.7	26.14	1.2	4	- 0.99632
6	1,1-Dimethylpropyl	149	39.35 - 74.65	26.66	3.7	5	- 0.99821
7	1,1-Dimethylbutyl	153	39.4 - 66.8	26.78	4.1	4	- 0.99994
8	1,1,2,2-Tetramethylpropyl	888	29.8 - 56.9	24.56	1.3	4	- 0.99915
9	1-Ethyl-1-methylpropyl	306	39.2-66.5	26.35	4.3	4	- 0.99960
10	1,1-Diethylpropyl	633	39.25 - 66.6	25.52	3.4	4	-1.00000
11	1,1-Diethylbutyl	1030	29.9 - 56.55	27.01	8.6	4	- 0.99861
12	1-Methyl-1-propylbutyl	368	39.3 - 66.2	25.71	2.8	4	- 0.99931
13	1-Ethyl-1-propylbutyl	1040	39.3 - 57.1	26.66	7.6	4	- 0.99994
14	1,1-Dipropylbutyl	909	29.75 - 56.7	24.71	1.8	4	- 1.00000
15	2-Methyl-1-propylhexyl	485	30.05 - 57.4	25.96	4.1	4	- 0.99998
16	1-Butyl-1-ethylpentyl	1170	20.7 - 56.45	25.87	5.6	5	- 0.99948
17	1-Butyl-1-propylpentyl	1420	20.8 - 47.6	26.49	7.7	4	-0.99985
18	1,1-Dibutylpentyl	1200	29.8 - 56.75	24.91	2.9	4	- 0.99980
19	Cyclopropylmethyl	11.3	56.85 - 87.0	26.61	-1.5	6	- 0.99094
20	1-Phenylethyl	74.9	48.6-75.7	25.82	0.0	4	- 0.99961
21	Neophyl ^{h)}	8.48	76.0-98.3	20.84	- 18.5	4	- 0.99972
22	Benzhydryl	81.6	51.0-80.65	28.93	9.0	4	- 0.99957
23	1-Methyl-1-phenylethyl	229	32.0 - 60.8	24.38	-1.9	4	- 0.99991
24	1-Ethyl-1-phenylpropyl	1400	20.3 - 47.7	25.93	6.1	4	- 0.99982
25	1-Propyl-1-phenylbutyl	1740	20.8 - 48.75	25.41	5.1	4	-0.99988
26	1-Butyl-1-phenylpentyl	1800	20.35 - 47.6	24.40	2.3	4	-0.99888

a) Wandernde Gruppe. – b) Für R = tert-Butyl ist k_1 (80 °C) = 51.7 · 10⁻⁵ s⁻¹ (s. Lit.²). – c) Untersuchter Temperaturbereich. – d) Die Genauigkeit von ΔH^{\pm} und ΔS^{\pm} beträgt ca. 0.5 kcal · mol⁻¹ und 2 e.u. Die Werte sind jedoch als Rechengröße mit größerer numerischer Genauigkeit angegeben, damit k auf andere Temperaturen extrapoliert werden kann. – e) In cal · mol⁻¹ · K⁻¹. – D Anzahl der Einzelmessungen. – g) Korrelationskoeffizient der Eyring-Beziehung. – b) 2-Methyl-2-phenylpropyl.

3838

fachen Beschleunigung durch α -Methylverzweigung²⁾ gesehen werden und läßt dann auf eine spezielle Stabilisierung durch β -Methylgruppen schließen. Mit einem vertikalen Stabilisierungsmechanismus⁴⁾ ist im Einklang, daß die erste eingeführte β -Methylgruppe den größten Stabilisierungseffekt hat. Bei den nächsten ist dieser dann deutlich geringer (vgl. z. B. die Reste *tert*-Butyl und Nr. 6, 9 und 10 in Tab. 3). Dieser zuletzt diskutierte Zusatzeffekt ist jedoch klein und reicht an die Größe der Meßunsicherheit heran. γ , δ und entfernter stehende Verzweigungen ergeben allgemein geringere Beschleunigungseffekte (s. Tab. 3).

Ein weiterer Hinweis auf die erwähnte β -Stabilisierung sind die vergleichsweise großen Wanderungstendenzen des Cyclopropylmethylrestes und des Neophylrestes. Ohne die ungewöhnlich negative Aktivierungsentropie wäre die Wanderungstendenz des letzteren sogar noch größer. Die NMR-spektroskopische Untersuchung der Reaktionsprodukte ergab, daß die genannten Reste ohne Umlagerung oder Ringöffnung wandern. Die hohe Umlagerungstendenz dieser Reste ist insofern bemerkenswert, als durch induktive elektronenanziehende Wirkung sowohl des Phenyl- als auch des Cyclopropylrestes eine Reaktionsverlangsamung auftreten sollte. Diese Wanderungstendenzen können daher als weitere Bestätigung für den 1,3-Stabilisierungsmechanismus⁴⁾ aufgefaßt werden.

Der Einfluß der β -Substituenten wird in Abb. 3 besonders deutlich. Sie zeigt in Form einer linearen freien Enthalpiebeziehung, daß die Wanderungstendenz einer Alkylgruppe um einen konstanten Faktor ansteigt, wenn in der α -Position, also am zentralen wandernden C-Atom, eine Methylgruppe gegen einen Phenylrest ausgetauscht wird. Erstaunlich ist, daß der Austausch einer Methylgruppe in β -Stellung der wandernden Gruppe durch Phenyl, wie wir ihn beim Vergleich von Neopentyl- und Neophylwanderungen feststellen, eine Beschleunigung um den gleichen Faktor bewirkt. Substituenten

Abb. 3. Lineare freie Enthalpiebeziehung zwischen der Geschwindigkeit der Beckmann-Umlagerung von α -Phenyl- (X = Phenyl) und α -Methyl- (X = CH₃) substituierten Alkylmethylketoxim-

pikraten
$$\prod_{H_3C} C=N_{OC_6H_2(NO_2)_3-(2,4,6)}$$
 in 1,4-Dichlorbutan bei 80°C

(In der Abb. sind die Alkylreste R eingezeichnet)

Chem. Ber. 114 (1981)

in β -Position der wandernden Gruppe können also die Wanderungstendenz in vergleichbarem Maß beeinflussen wie in α -Position.

Eine interessante semiquantitative Beziehung zwischen den Wanderungstendenzen von Alkylgruppen (ΔG^*) und den Ionisationspotentialen der den wandernden Gruppen entsprechenden Radikale zeigt Abb. 4. Auffallend ist dabei, daß die substituierten Benzylreste (Nr. 13–16) auf einer getrennten Geraden liegen, auf die allerdings auch Cyclopentyl und Cyclopropyl fallen. Ein entsprechender Zusammenhang mit ähnlicher Steigung wurde bei einer modifizierten Curtius-Umlagerung festgestellt¹⁸⁾.

Da die Ionisationspotentiale vertikale Übergänge beschreiben, wurde aus der Beziehung mit lg k bzw. ΔG^* auf geringe Veränderung der Geometrie am wandernden α -C-Atom und auf Übernahme einer positiven Partialladung durch die wandernde Gruppe im Übergangszustand geschlossen¹⁸⁾. Diese Aussage stimmt mit unseren Vorstellungen überein.

Abb. 4. Beziehung zwischen der Aktivierungsenthalpie der Umlagerung von anti-Methylketoximpikraten und den Ionisationspotentialen I der den wandernden Gruppen entsprechenden Radikale R.

$$R_{C=N} = N_{OC_6H_2(NO_2)_3 - (2, 4, 6)}$$

1 1,1-Dimethylpropyl ^{a,b)}	7 Cyclopentyl ^{a,g)}	13 p-Methoxybenzyl ^{e,i)}
2 Benzhydryl ^{c,d)}	8 Cyclopropyl ^{a, g)}	14 p-Methylbenzyl ^{e,i)}
3 tert-Butyle, f)	9 2-Methylpropyl ^{a, f)}	15 Benzyl ^{e,i)}
4 Cyclohexyl ^{a,g)}	10 Neopentyl ^{a,b)}	16 p-Chlorbenzyl ^{e,i)}
5 Isopropyl ^{e, f)}	11 Propyl ^{a, f)}	17 Phenyl ^{j,k}
6 Cyclobutyl ^{a,g)}	12 Ethyl ^{d, h)}	

a) ΔG^{\pm} aus dieser Arbeit. - b) / aus Lit.¹⁹. - c) ΔG^{\pm} aus Lit.¹⁾. - d) / aus Lit.²⁰. - e) ΔG^{\pm} aus Lit.². - f) / aus Lit.²¹. - g) / aus Lit.²². - h) / aus Lit.²³. - i) / aus Lit.²⁴. - j) / aus Lit.²⁷. - k) ΔG^{\pm} aus Lit.²⁵.26).

Bemerkenswert ist Meßpunkt Nr. 17, der Phenylrest als wandernde Gruppe. Seine Wanderungstendenz ist ca. 10⁴mal größer als nach Abb. 4 erwartet und läßt auf einen abweichenden Mechanismus der Phenylwanderung schließen. Dies stimmt mit der Feststellung von *Huisgen*^{25,26)} überein, daß die Phenylwanderung über eine Phenonium-Zwischenstufe erfolgt, die den Übergangszustand stabilisiert. Für eine Erhöhung der Wanderungstendenz durch diese Stabilisierung findet er ebenfalls einen Faktor von ca. 10⁴.

Auch bei der verwandten Neopentyl-Umlagerung wurde jüngst von Ando und Shiner aus Isotopeneffekten geschlossen, daß im Übergangszustand der Methylwanderung der zentrale Kohlenstoff einem nichtklassischen fünfbindigen Bindungszustand (o-Nachbargruppenbeteiligung) nähersteht als einem dreibindigen Carbeniumzustand (Hyperkonjugation)²⁸⁾.

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Förderung dieser Arbeit.

Experimenteller Teil

Die Bestimmung der physikalischen Konstanten und die Ausführung der kinetischen Messungen wurden vorstehend²⁾ beschrieben.

Darstellung tert. Nitrile durch Alkylierung²⁹: Die Lösung von 18 g (785 mmol) Natrium in 250 ml flüssigem Ammoniak wurde mit einer Spur Eisen(III)-nitrat versetzt und 1 h unter Trockeneiskühlung stehengelassen. Innerhalb 1 h wurde unter Rühren eine Lösung von 113 mmol Acetonitril (oder 170 mmol eines primären oder 340 mmol eines sekundären Nitrils) und 700 mmol *n*-Alkylbromid in 150 ml absol. Ether eingetropft. Die Reaktionslösung wurde 1 h unter Trockeneiskühlung gerührt und das Ammoniak während 8 h abgedampft. Der Rückstand wurde mit 250 ml absol. Ether versetzt und anschließend 1 Tag bei Raumtemp. gerührt. Das überschüssige Natriumamid wurde durch vorsichtige Zugabe von 50 ml absol. Ethanol zerstört. Die Mischung wurde mit Wasser hydrolysiert und mit verd. Schwefelsäure angesäuert. Die etherische Phase wurde abgetrennt und die wäßrige dreimal mit je 50 ml Ether extrahiert. Die vereinigten Etherphasen wurden mit Magnesiumsulfat getrocknet. Der Ether wurde abdestilliert und der Rückstand destilliert. Ausbeuten und physikalische Daten siehe Tab. 4.

Darstellung der Methylketone $R - CO - CH_3$

a) Aus den Nitrilen R - CN mit Methyllithium ³⁸): Die Lösung von 100 mmol Nitril in 110 ml absol. Ether wurde unter Rühren und Schutzatmosphäre mit 75 ml 2 M etherischer Methyllithiumlösung versetzt. Die Reaktionslösung wurde 60 h unter Rückfluß gekocht und anschließend vorsichtig unter Eiskühlung mit Wasser hydrolysiert. Die Etherphase wurde abgetrennt und die wäßrige Phase noch dreimal mit je 50 ml Ether extrahiert. Die vereinigten Etherphasen wurden mit Magnesiumsulfat getrocknet. Der Ether wurde abdestilliert und der Rückstand destilliert. Als Reaktionsprodukt wurde je nach Verseifbarkeit des Imins das Keton, Ketimin oder eine Mischung beider isoliert. Das Destillat wurde direkt für die Synthese der Oxime eingesetzt. Ausbeuten und physikalische Daten siehe Tab. 5.

Chem. Ber. 114 (1981)

Tab. 4. Dargestellte Nitrile R – CN													
Substanz	Ausb. %	Sdp. °C/Torr	n ²⁰ _D	Summenformel (Molmasse)		С	н	N	Lit.	Ausgangs- material			
2-Cyan-2-methylbutan	34	30-31/18	1.3951						30)	Isobutyronitril			
2-Cyan-2-methylpentan	39	38-40/18	1.4030	C ₇ H ₁₃ N (111.2)	Ber. Gef.	75.61 75.83	11.79 11.60	12.60 12.63	31)	Isobutyronitril			
2-Cyan-2-methylhexan	64	55 - 56/18	1.4108						32)	Isobutyronitril			
3-Cyan-3-methylpentan	35	40/18	1.4094						33)	Propionitril			
3-Cyan-3-ethylpentan	42	58/18	1.4220						29)	Acetonitril			
3-Cyan-3-ethylhexan	41	69-71/18	1.4254						34)	Valeronitril			
4-Cyan-4-methylheptan	20	70 - 71/18	1.4208	C ₉ H ₁₇ N (139.2)	Ber. Gef.	77.63 77.18	12.31 12.69	10.06 10.46		Propionitril			
4-Cyan-4-ethylheptan	55	85/18	1.4294	C ₁₀ H ₁₉ N (153.3)	Ber. Gef.	78.36 78.48	12.50 12.53	9.14 9.10		Butyronitril			
4-Cyan-4-propylheptan ^{a)}	51	94/12	1.4323						35)	Valeronitril			
5-Cyan-5-methylnonan	66	100 - 101/18	1.4292	C ₁₁ H ₂₁ N (167.3)	Ber. Gef.	78.97 78.28	12.65 12.91	8.37 8.61		Propionitril			
5-Cyan-5-ethylnonan	40	110 - 112/18	1.4362	C ₁₂ H ₂₃ N (181.3)	Ber. Gef.	79.49 79.51	12.79 12.79	7.73 7.75	36)	Butyronitril			
5-Cyan-5-propylnonan	39	118 - 120/18	1.4380	C ₁₃ H ₂₅ N (195.3)	Ber. Gef.	-	12.90 13.20			Valeronitril			
5-Butyl-5-cyannonan	48	95/0.4	1.4410						35)	Acetonitril			
3-Cyan-3-phenylpentan	44	75/0.2	1.5040	C ₁₂ H ₁₅ N (173.3)	Ber. Gef.	83.19 83.16	8.73 8.72	8.09 8.17	37)	Benzylcyanid			
4-Cyan-4-phenylheptan	47	95/0.2	1.4980	C ₁₄ H ₁₉ N (201.3)	Ber. Gef.			6.96 7.10	37)	Benzylcyanid			
5-Cyan-5-phenylnonan	80	103 - 105/0.2	1.4953	C ₁₆ H ₂₃ N (229.4)	Ber. Gef.	83.78 83.55	10.11 10.49	6.11 6.14	35)	Benzylcyanid			

a) Als Nebenprodukt entstehen 7% 4-Propylheptan ($n_D^{20} = 1.4129$; M⁺ = m/e = 142).

Chem. Ber. 114 (1981)

Substanz	Ausb.	Sdp. °C/Torr	n_{10}^{20}	IR a) cm ^{- 1}	Ref.	Bemerkungen ^{b)}
3,3-Dimethyl-2-pentanon	55	125 - 128	1.4100	_	39)	_
3,3-Dimethyl-2-hexanon	77	42/18	1.4196	1705 u. 1630	40)	80% Keton
3,3-Dimethyl-2-heptanon	76.5	56/18	1.4220	1705 u. 1635	41)	95% Keton
3-Ethyl-3-methyl-2-pentanimin	77	50/18	1.4376	1700 u. 1630	-	95% Ketimin
3,3-Diethyl-2-pentanimin	69.5	65 - 66/18	1.4479	1640		>99.9% Ketimin
3,3-Diethyl-2-hexanimin	84.2	75/18	1.4482	-	-	90% Ketimin
3-Methyl-3-propyl-2-hexanon	72.7	74 - 75/18	1.4370	1705 u. 1635		50% Keton
3-Ethyl-3-propyl-2-hexanimin	84.8	90/18	1.4486	-	-	90% Ketimin
3,3-Dipropyl-2-hexanimin	69.5	99 - 101/18	1.4499	_		100% Ketimin
3-Butyl-3-methyl-2-heptanimin	83.0	102 - 105/18	1.4470	1705 u. 1625	-	85% Ketimin
3-Butyl-3-ethyl-2-heptanimin	77.8	115/18	1.4509	1700 u. 1625	-	90% Ketimin
3-Butyl-3-propyl-2-heptanimin	70.7	126 - 128/18	1.4521	1660	_	100% Ketimin
3,3-Dibutyl-2-heptanimin	83.1	127 - 129/18	1.4538		-	100% Ketimin
3-Ethyl-3-phenyl-2-pentanimin ^{c)}	85.5	80-81/0.1	1.5240	1660	-	-
3-Phenyl-3-propyl-2-hexanimin ^d	76.8	98 - 100/0.1	1.5138	1660	-	-
3-Butyl-3-phenyl-2-heptanimin ^{e)}	76.7	110/0.1	1.5082	1660	-	-

Tab. 5. Dargestellte Methylketone RCOCH₃ und Ketimine

a) IR-Absorptionsfrequenz von C = O bzw. C = NH in cm⁻¹. - b) GC-Analyse der Gemische, Säule: SE 30, 15%, 2 m. Das Ketimin hatte jeweils etwa 20% höhere Retentionszeit als das Keton.

 $\stackrel{\rm c)}{\subset} \stackrel{\rm C_{13}H_{19}N}{\subset} (189.3) \quad \text{Ber.} \quad C \ 82.48 \quad H \ 10.12 \quad N \ 7.40 \quad \text{Gef.} \quad C \ 82.51 \quad H \ 10.40 \quad N \ 6.82 \\ \stackrel{\rm d)}{\subseteq} \stackrel{\rm C_{13}H_{23}N}{C} (217.3) \quad \text{Ber.} \quad C \ 82.89 \quad H \ 10.67 \quad N \ 6.45 \quad \text{Gef.} \quad C \ 82.32 \quad H \ 10.95 \quad N \ 6.48 \\ \stackrel{\rm e)}{\subseteq} \stackrel{\rm C_{17}H_{27}N}{C} (245.4) \quad \text{Ber.} \quad C \ 83.20 \quad H \ 11.09 \quad N \ 5.70 \quad \text{Gef.} \quad C \ 82.92 \quad H \ 11.32 \quad N \ 5.70 \\ \end{array}$

R	Ausb. %	Sdp. °C/Torr	$n_{\rm D}^{20}$	Summenformel (Molmasse)		С	н	0	Ref. ^{a)}	Ref. ^{b)}
Cyclopropyl	63	110							42)	46)
Cyclobutyl	66	75/100							43)	46)
Cyclohentyl	85	95 5 - 96 5/21							44)	46)
Cycloactyls	70	106 = 108/18	1 4724						45)	46)
Cyclononyl	81	118 - 121/18	1.4809	C ₁₁ H ₂₀ O (168.3)	Ber. Gef.	78.51 78.26	11.98 11.74			46)
Cyclodecyl	76	110-115/1.0	1.4837	C ₁₂ H ₂₂ O (182.3)	Ber. Gef.	79.05 78.98	12.06 12.18	8.78 9.02		46)
Cycloundecyl	88	114/0.2		C ₁₃ H ₂₄ O (196.3)	Ber. Gef.	79.52 79.54	12.32 12.30	8.15 8.27		46)
Cyclododecyl	50	38 - 39.5 ^d)		C ₁₄ H ₂₆ O (210.4)	Ber. Gef.	79.93 79.72	12.46 12.45	7.61 7.85	47)	46)
1-Methylcyclopropyl	73	130 - 131	1.4331						48)	46)
1-Methylcyclobutyl ^{e)}	48	40 - 45/18	1.4323							46)
1-Methylcyclopentyl	76	56/18	1.4458						49)	46)
1-Methylcyclohexyl	79	72/18	1.4544						50)	46)
1-Methylcycloheptyl	78	87 - 88/18	1.4629	C ₁₀ H ₁₈ O (154.2)	Ber. Gef.		11.76 11.64			46)
1-Methylcyclooctyl	79	70/0.2	1.4737	C ₁₁ H ₂₀ O (168.3)	Ber. Gef.	78.51 78.31	11.98 12.01			46)
1-Phenylcyclopropyl	85	75/0.1	1.5343						52)	51)
1-Phenylcyclobutyl	82	74/0.05	1.5258						53)	51)
1-Phenylcyclopentyl	67	98-100/0.2	1.5307						53)	51)
1-Phenylcyclohexyl	88	95/0.1	1.5260						54)	51)

Tab. 6 (Fortsetzung)													
R	Ausb. %	Sdp. °C/Torr	$n_{\rm D}^{20}$	Summenformel (Molmasse)		С	н	0	Ref. ^{a)}	Ref. ^{b)}			
Bicyclo[2.2.1]hept-1-yl	56	92/20							55)	6)			
Bicyclo[2.2.2]oct-1-yl	82	115/118							38)	6)			
Bicyclo[3.2.1]oct-1-yl	84	108/18	1.4840	C ₁₀ H ₁₆ O (152.2)	Ber. Gef.	78.91 78.80	10.61 10.76	10.51 10.44		6)			
1-Twistyl	81	128/18							56)	6)			
Bicyclo[3.2.2]non-1-yl	87	119/18	1.4949	C ₁₁ H ₁₈ O (166.3)	Ber. Gef.	79.46 79.70	10.91 11.19	_		6)			
Bicyclo[3.3.1]non-1-yl	81	116/20	1.4909						57)	6)			
1-Homoadamantyl	76	95/0.05	1.5150						58)	58)			
3-Homoadamantyl	88	110/0.2							58)	58)			
9-Triptycyl	93	196.5 – 197 ^d)		C ₂₂ H ₁₆ O (296.4)	Ber. Gef.	89.25 89.33	5.44 5.46	5.40 5.10		6)			
Cubyl ^{e)}	50	98/18	1.5233							1,586)			
4-Homocubyl ^{e)}	67	106 - 107/18	1.5124							6)			
Bicyclo[2.2.1]hept-7-yl	80	79 - 80/18	1.4742							46)			

^{a)} Lit. für Methylketon. – ^{b)} Lit. für Carbonsäure RCO₂H. – ^{c)} Dargestellt durch Oxidation von 1-Cyclooctylethanol mit 1/3 Äquiv. Kaliumdichromat in H_2SO_4 . – ^{d)} Schmp. in °C. – ^{e)} Elementaranalyse siehe Oxim.

Wanderungstendenzen von Alkylresten bei der Beckmann-Umlagerung

Tab. 7. Aliphatische Methylketoxime $\frac{R}{H_{gC}}$ C=N											
Oxim von	Ausb.	Sdp. (Schmp.) °C/Torr	n ²⁰ _D	Summenformel (Molmasse)	С	: н	N	Lit.			
2-Pentanon	78	72 - 73/18	1.4453					59)			
2-Heptanon	84	99 - 100/18	1.4500					60)			
4-Methyl-2-pentanon	82	78/18	1.4439					61)			
4,4-Dimethyl-2-pentanon	86	84/18	1.4488	C ₇ H ₁₅ NO (129.2)	Ber. 65. Gef. 65.	07 11.70 60 11.54	12.38 12.85				
3-Ethyl-2-pentanon	92	87 - 88/18	1.4505					62)			
3,3-Dimethyl-2-pentanon	73	82/18	1.4566								
3,3-Dimethyl-2-hexanon	84	(57.7 – 58)	-					40)			
3,3-Dimethyl-2-heptanon	72	105/18	1.4576	C ₉ H ₉ NO (157.3)	Ber. 68. Gef. 68.	74 12.18 66 12.20	10.17 10.29				
3,3,4,4-Tetramethyl-2-pentanon	20	(118 – 119)	-					63)			
3-Ethyl-3-methyl-2-pentanon	61	(55 - 56)	_	C ₈ H ₁₇ NO (143.2)	Ber. Gef.		9.78 10.03	64)			
3,3-Diethyl-2-pentanon	92	(100.5 - 101.5)	-					65)			
3,3-Diethyl-2-hexanon	88	(90-91)		C ₁₀ H ₂₁ NO (171.3)	Ber. Gef.		8.18 8.21				
3-Methyl-3-propyl-2-hexanon	85	115 - 117/18	-								
3-Ethyl-3-propyl-2-hexanon	95	(71 – 72.5)	-	C ₁₁ H ₂₃ NO (185.3)	Ber. Gef.		7.56 7.66				

	Tab. 7 (Fortsetzung)											
Oxim von	Ausb. %	Sdp. (Schmp.) °C/Torr	n ²⁰ _D	Summenformel (Molmasse)		С	н	N	Lit.			
3,3-Dipropyl-2-hexanon	94	(100-100.2)		C ₁₂ H ₂₅ NO (199.3)	Ber. Gef.	72.30 72.37	12.64 12.76	7.03 6.99				
3-Butyl-3-methyl-2-heptanon	93	-	-	C ₁₂ H ₂₅ NO (199.3)	Ber. Gef.	72.30 71.95	12.64 12.94	7.03 6.94				
3-Butyl-3-ethyl-2-heptanon	94	(36 – 37)	-	C ₁₃ H ₂₇ NO (213.4)	Ber. Gef.	73.18 72.87	12.76 13.05	6.57 6.53				
3-Butyl-3-propyl-2-heptanon	96	(65 – 67)	-	C ₁₄ H ₂₉ NO (227.4)	Ber. Gef.			6.16 6.30				
3,3-Dibutyl-2-heptanon	98	(80.5 - 81.5)	-									
1-Cyclopropyl-2-propanon	72	92/18	1.4693	C ₆ H ₁₁ NO (113.2)	Ber. Gef.	63.68 63.91	9.80 10.03					
3-Phenyl-2-butanon	99	(52.5 - 53.5)	-						66)			
3-Methyl-3-phenyl-2-butanon	78	(55 - 56.5)	_						67)			
1,1-Diphenylpropanon	61	(168 – 168.5)	_						68)			
3-Methyl-3-phenyl-2-butanon	83	(101 – 102.5)	-	C ₁₁ H ₁₅ NO (177.3)	Ber. Gef.	74.54 74.43	8.53 8.45	7.90 7.76				
3-Ethyl-3-phenyl-2-pentanon	94	(136 – 137)		C ₁₃ H ₁₉ NO (205.3)	Ber. Gef.	-	9.33 9.74	6.82 7.12				
3-Phenyl-3-propyl-2-hexanon	95	(121 – 122)	-	C ₁₅ H ₂₃ NO (233.3)	Ber. Gef.	77.20 76.50	9.94 9.94	6.00 6.13				
3-Butyl-3-phenyl-2-heptanon	95	(94.5 – 95.5)	-	C ₁₇ H ₂₇ NO (261.4)	Ber. Gef.	78.11 77.73	10.41 10.57	5.36 5.27				

R	Ausb. %	Sdp. (Schmp.) °C/Torr	n ²⁰ _D	Summenformel (Molmasse)		С	н	N	0	Lit.
Cyclopropyl	81	(47 – 48)								69)
Cyclobutyl	55									
Cyclopentyl	79	-								
Cyclohexyl	55	(65 – 65.6)								70)
Cycloheptyl	78	(48 – 50)		C ₉ H ₁₇ NO (155.2)	Ber. Gef.	69.63 69.34	11.04 10.96	9.02 8.89	10.31 10.64	
Cyclooctyl	73	115/0.02	1.4988	C ₁₀ H ₁₉ NO (169.3)	Ber. Gef.	70.96 71.10	11.32 11.31	8.28 7.56	9.45 10.10	
Cyclononyl	88	(55 – 57)								
Cyclodecyl	82	(68 – 72)		C ₁₂ H ₂₃ NO (197.3)	Ber. Gef.	73.04 72.31	11.75 11.80	7.10 7.12	8.11 8.28	
Cycloundecyl	91	(46 – 49)		C ₁₃ H ₂₅ NO (211.3)	Ber. Gef.	73.88 73.18	11.92 11.85	6.63 6.43	7.57 7.56	
Cyclododecyl	80	(121.5 – 122)		C ₁₄ H ₂₇ NO (225.4)	Ber. Gef.	74.61 74.13	12.08 12.13	6.22 6.17	7.10 6.97	
1-Methylcyclopropyl	30	(84.5 - 85)								
1-Methylcyclobutyl	72	88/18	1.4667							
1-Methylcyclopentyl	79	80/0.05	1.4865	C ₈ H ₁₅ NO (141.2)	Ber. Gef.	68.04 67.47	10.71 11.05	9.92 9.77	11.33 11.71	
1-Methylcyclohexyl	90	(36 – 37)		C ₉ H ₁₇ NO (155.2)	Ber. Gef.	69.63 69.40	11.04 11.02	9.02 9.18		50)
1-Methylcycloheptyl	70	(47 – 50)		C ₁₀ H ₁₉ NO (169.3)	Ber. Gef.	70.96 70.17	11.32 11.40	8.28 8.28	9.45 10.00	
1-Methylcyclooctyl	93	(69 – 72)		C ₁₁ H ₂₁ NO (183.3)	Ber. Gef.	72.08 72.10	11.55 11.65	7.64 7.46	8.73 9.12	

Tab. 8 (Fortsetzung)												
R	Ausb.	Sdp. (Schmp.) °C/Torr	n _D ²⁰	Summenformel (Molmasse)		С	н	N	0	Lit.		
1-Phenylcyclopropyl	79	(57 – 57.5)										
1-Phenylcyclobutyl	89	(83 - 83.5)										
1-Phenylcyclopentyl	94	(67.5 - 68)										
1-Phenylcyclohexyl	81	(135 - 135.5)										
Bicyclo[2.2.1]hept-1-yl	84	(100 - 101)		C ₉ H ₁₅ NO (153.2)	Ber. Gef.	70.55 70.69	9.87 9.25	9.14 9.10	10.44 10.78			
Bicyclo[2.2.2]oct-1-yl	98	(145 – 146)										
Bicyclo[3.2.1]oct-1-yl	65	_		C ₁₄ H ₂₇ NO (225.4)	Ber. Gef.	71.81 71.94	10.24 9.64	8.38 8.23	9.57 10.19			
1-Twistyl	100	(152-152.5)								56)		
Bicyclo[3.2.2]non-1-yl	86	(122.5 - 125)		C ₁₁ H ₁₉ NO (181.3)	Ber. Gef.	72.88 72.57	10.56 10.54	7.73 7.67				
1-Adamantyl	93	(181 - 181.5)										
Bicyclo[3.3.1]non-1-yl	78	(107 – 108)		C ₁₁ H ₁₉ NO (181.3)	Ber. Gef.	72.88 72.43	10.57 10.59	7.73 7.69				
1-Homoadamantyl	100	(160 - 161)								58)		
3-Homoadamantyl	82	(166 – 167)								58)		
9-Triptycyl	55	(216 - 216.5)		C ₂₂ H ₁₇ NO (311.4)	Ber. Gef.	84.86 84.08	5.50 5.43	4.50 4.42	5.14 5.17			
Cubyl	46	(146 - 148)										
4-Homocubyl	65	(99 – 100)										
Bicyclo[2.2.1]hept-7-yl	59	103.5 - 104.5		C ₉ H ₁₅ NO (153.2)	Ber. Gef.	70.55 70.47	9.87 9.87	9.14 9.03				

			Н ₃ С	Ъс⁰н	2(NO2)3-	(2,4,6)	I	
Oxim-pikrat von	Ausb. %	Schmp. °C	Summenformel (Molmasse)		С	н	N	0
2-Pentanon	88	58 - 59	C ₁₁ H ₁₂ N ₄ O ₇ (312.2)	Ber. Gef.	42.31 42.99	3.87 3.87	17.95 17.92	35.87 35.19
2-Heptanon	94	35 - 36	C ₁₃ H ₁₆ N ₄ O ₇ (340.3)	Ber. Gef.	45.88 45.85	4.74 4.73	16.47 14.44	32.91 32.81
4-Methyl-2-pentanon	85	74 – 75	C ₁₂ H ₁₄ N ₄ O ₇ (326.3)	Ber. Gef.	44.17 44.20	4.33 4.32	17.17 17.09	34.33 34.32
4,4-Dimethyl- 2-pentanon	49	76 – 77	C ₁₃ H ₁₆ N ₄ O ₇ (340.3)	Ber. Gef.	45.88 45.99	4.74 4.82	16.47 16.39	32.91 32.81
3-Ethyl-2-pentanon	51	101.5 - 102.5	C ₁₃ H ₁₆ N ₄ O ₇ (340.3)	Ber. Gef.	45.88 46.08	4.74 4.75	16.47 16.37	32.91 32.81
3,3-Dimethyl- 2-pentanon	54	75 - 75.5						
3,3-Dimethyl-2-hexanon	57	82 - 83	C ₁₄ H ₁₈ N ₄ O ₇ (354.3)	Ber. Gef.	47.45 47.58	5.12 5.12	15.81 15.59	31.61 31.50
3,3,4,4-Tetramethyl- 2-pentanon	53	81-82.5	C ₁₅ H ₂₀ N ₄ O ₇ (368.3)	Ber. Gef.	48.91 48.66	5.47 5.47	15.21 15.38	30.41 30.59
3-Ethyl-3-methyl- 2-pentanon	84	77 – 77.5	C ₁₄ H ₁₈ N ₄ O ₇ (354.3)	Ber. Gef.	47.45 47.45	5.12 5.08	15.81 15.77	31.61 31.55
3,3-Diethyl-2-pentanon	69	89 - 90	C ₁₅ H ₁₈ N ₄ O ₇ (366.3)	Ber. Gef.	48.91 48.79	5.47 5.32	15.21 15.26	30.41 30.48
3,3-Diethyl-2-hexanon	85	77 – 77.5	C ₁₆ H ₂₂ N ₄ O ₇ (382.4)	Ber. Gef.	50.26 50.29	5.80 5.69	14.65 14.54	29.29 29.20
3-Methyl-3-propyl- 2-hexanon	31	87 – 88	C ₁₆ H ₂₂ N ₄ O ₇ (382.4)	Ber. Gef.	50.26 50.34	5.80 5.93	14.65 14.71	29.29 29.19
3-Ethyl-3-propyl- 2-hexanon	32	88 - 89	C ₁₇ H ₂₄ N ₄ O ₇ (396.5)	Ber. Gef.	51.51 51.63	6.10 6.00	14.14 14.17	28.26 28.22
3,3-Dipropyl-2-hexanon	32	97 - 97.5	C ₁₈ H ₂₆ N ₄ O ₇ (410.5)	Ber. Gef.	52.67 53.03	6.39 6.40	13.65 13.30	27.29 27.41
3-Butyl-3-methyl- 2-heptanon	65	80.5 - 81.5	C ₁₈ H ₂₆ N ₄ O ₇ (410.5)	Ber. Gef.	52.67 52.63	6.39 6.50	13.65 13.63	27.29 27.26
3-Butyl-3-ethyl- 2-heptanon	13	65 - 66	C ₁₉ H ₂₈ N ₄ O ₇ (424.5)	Ber. Gef.	53.76 54.07	6.65 6.63	13.20 13.09	26.39 26.39
3-Butyl-3-propyl- 2-heptanon	20	71 – 72	C ₂₀ H ₃₀ N ₄ O ₇ (438.5)	Ber. Gcf.	54.78 54.79	6.90 6.89		25.54 25.34
3,3-Dibutyl- 2-heptanon ^{a)}	99	74 – 75						
Cyclopropyl-2-propanon	91	61 - 62	C ₁₂ H ₁₂ N ₄ O ₇ (324.3)	Ber. Gef.	44.45 44.51	3.73 3.69	17.28 17.20	34.54 34.70
3-Phenyl-2-butanon	91	93.5 - 94	C ₁₆ H ₁₄ N ₄ O ₇ (374.3)	Ber. Gef.	51.34 51.40	3.77 3.66	14.97 15.07	29.92 30.25
3-Methyl-3-phenyl- 2-butanon	54	87-88.5	C ₁₇ H ₁₆ N ₄ O ₇ (388.3)	Ber. Gef.	52.58 52.58	4.15 4.14	14.43 14.41	28.84 28.84
4-Methyl-4-phenyl- 2-pentanon	65	72 - 72.5	C ₁₈ H ₁₈ N ₄ O ₇ (402.4)	Ber. Gef.	52.73 53.72	4.51 4.50	13.93 13.80	27.84 28.09
3-Ethyl-3-phenyl- 2-pentanon	67	92-92.5	C ₁₉ H ₂₀ N ₄ O ₇ (416.4)	Ber. Gef.	54.80 55.00	4.84 4.82	13.46 13.39	26.90 26.70
3-Phenyl-3-propyl- 2-hexanon	66	98 - 98.5	C ₂₁ H ₂₄ N ₄ O ₇ (444.4)	Ber. Gef.	56.75 56.94	5.44 5.42	12.61 12.51	25.20 25.19
3-Butyl-3-phenyl- 2-heptanon ^{a)}	62	88 - 89						

Tab. 9. Aliphatische Methylketoxim-pikrate

a) Wegen Zersetzlichkeit des Pikrats konnte keine Elementaranalyse durchgeführt werden.

R	Ausb. %	Schmp. °C	Summenformel (Molmasse)		С	н	Ν	0
Cyclopropyl	54	81 - 83.5	C ₁₁ H ₁₀ N ₄ O ₇ (310.2)	Ber. Gef.	42.58 42.54	3.25 3.30	18.06 18.67	
Cyclobutyl	7	42.5 - 43.5 a)	$C_{12}H_{12}N_4O_7$ (324.3)	Ber. Gef.	44.45 44.26	3.73 3.80	18.06 17.80	
Cyclopentyl	24	51.5 - 53 ^{b)}	$C_{13}H_{14}N_4O_7$ (338.3)	Ber. Gef.	46.15 46.11	4.17	16.56	33.11 32.96
Cyclohexyl	46	89.5 - 90.5	$C_{14}H_{16}N_4O_7$ (352.3)	Ber. Gef.	47.73	4.58	15.90	31.79 32.16
Cycloheptyl	86	70 – 72	$C_{15}H_{18}N_4O_7$	Ber. Gef	49.18	4.95	15.30	30.57
Cyclooctyl	83	65.5 - 66.5	$C_{16}H_{20}N_4O_7$ (380.4)	Ber. Gef	50.52 50.45	5.30	14.73	29.45
Cyclononyl	98	86 - 87	$C_{17}H_{22}N_4O_7$ (394.4)	Ber. Gef	51.77	5.62	14.21	28.40
Cyclodecyl	69	97 – 99.5	$C_{18}H_{24}N_4O_7$	Ber. Gef	52.93 52.95	5.92 5.91	13.72	27.42
Cycloundecyl	91	111 - 111.5	$C_{19}H_{26}N_4O_7$ (422 4)	Ber. Gef	54.02 54.14	6.20 6.30	13.26 13.28	26.51
Cyclododecyl	28	119 - 120.5	$C_{20}H_{28}N_4O_7$ (436.5)	Ber. Gef	55.03	6.47 6.43	12.84	25.66
1-Methylcyclopropyl	81	93 - 94.5	$C_{12}H_{12}N_4O_7$ (324-3)	Ber. Gef	44.45	3.73	17.28	34.54 34.57
1-Methylcyclobutyl	60	75 – 76	$C_{13}H_{14}N_4O_7$ (338.3)	Ber. Gef	46.16	4.17	16.56	51157
1-Methylcyclopentyl	53	72 – 73	$C_{14}H_{16}N_4O_7$ (352.3)	Ber. Gef.	47.73	4.58	15.90	31.79
1-Methylcyclohexyl	41	87 – 88	$C_{15}H_{18}N_4O_7$ (366.3)	Ber. Gef.	49.18 49.20	4.95 4.90	15.30	30.57 30.51
1-Methylcycloheptyl	6	50 - 52	()					
1-Methylcyclooctyl	52	89 - 90	C ₁₇ H ₂₂ N ₄ O ₇ (394.4)	Ber. Gef.	51.77 51.98	5.62 5.57	14.21 14.10	28.40 28.40
1-Phenylcyclopropyl	66	112 - 113	C ₁₇ H ₁₄ N ₄ O ₇ (386.3)	Ber. Gef.	52.85 52.78	3.65 3.58	14.50 14.46	28.99 28.92
1-Phenylcyclobutyl	24	101 - 101.5	$C_{18}H_{16}N_4O_7$ (400.3)	Ber. Gef.	54.00 54.08	4.03 3.94	14.00 13.84	27.98 28.66
1-Phenylcyclopentyl	81	78.5 – 79	$C_{19}H_{18}N_4O_7$ (414.4)	Ber. Gef.	55.07 55.11	4.38	13.52 13.72	27.03
1-Phenylcyclohexyl	28	80-80.5	$C_{20}H_{20}N_4O_7$ (428.4)	Ber. Gef.	56.07 55.69	4.71 4.64	13.08 12.79	
Bicyclo[2.2.1]hept-1-yl	85	93.5 - 95.5	$C_{15}H_{16}N_4O_7$ (364.3)	Ber. Gef.	49.45 49.19	4.43	15.38	30.74
Bicyclo[2.2.2]oct-1-yl	80	113 - 114	$C_{16}H_{18}N_4O_7$ (378.4)	Ber. Gef.	50.79 50.31	4.79	14.81	29.60 30.37
Bicyclo[3.2.1]oct-1-yl	71	100 - 102	$C_{16}H_{18}N_4O_7$ (378.4)	Ber. Gef	50.79 50.48	4.79	14.81	29.60 29.74
1-Twistyl	70	120 - 121.5	$C_{18}H_{20}N_4O_7$ (404.4)	Ber. Gef.	53.46 53.34	4.99 4.98	13.86 13.83	27.70 27.95

Tab. 10. Cyclische und polycyclische Methylketoxim-pikrate $R_{H_3C} = N_{OC_6H_2(NO_2)_3-(2,4,6)}$

rau. 10 (roriseizung)												
R	Ausb. %	Schmp. °C	Summenformel (Molmasse)		С	н	N	0				
Bicyclo[3.2.2]non-1-yl	61	97 – 98 (Zers.)	C ₁₇ H ₂₀ N ₄ O ₇ (392.4)	Ber. Gef.	52.04 52.23	5.14 5.07	14.28 13.71	28.55 29.20				
1-Adamantyl	87	105 - 108	C ₁₈ H ₂₀ N ₄ O ₇ (404.4)	Ber. Gef.	53.46 53.82	4.99 4.99	13.86 13.83	27.70 27.36				
Bicyclo[3.3.1]non-1-yl	51	100.5 - 102	C ₁₇ H ₂₀ N ₄ O ₇ (392.4)	Ber. Gef.	52.04 52.02	5.14 5.12	14.28 14.17	28.55 28.58				
1-Homoadamantyl	96	95 - 96	C ₁₉ H ₂₂ N ₄ O ₇ (418.4)	Ber. Gef.	54.54 54.84	5.30 5.27		26.77 26.90				
3-Homoadamantyl	63	84 - 84.5										
Cubyl	60	103 (Zers.)	C ₁₆ H ₁₂ N ₄ O ₇ (372.3)	Ber. Gef.	51.62 51.52	3.25 3.16	15.05 15.06	30.08 30.13				
4-Homocubyl	96	83 - 84	C ₁₇ H ₁₄ N ₄ O ₇ (386.4)	Ber. Gef.	52.85 52.89	3.65 3.49	14.50 14.35	28.99 28.18				
Bicyclo[2.2.1]hept-7-yl	97	108 - 109	C ₁₅ H ₁₆ N ₄ O ₇ (364.3)	Ber. Gef.	49.45 49.55	4.43 4.22	15.38 15.01					

a) Schmp. der syn-Form 102.5 – 104 °C. – b) Schmp. der syn-Form 105 – 108 °C.

T 1 40 (F

R	Ausb.	Schmp. °C	Summenformel (Molmasse)		С	н	N	0
Bicyclo[2.2.1]hept-1-yl	40	154 – 155	C ₁₅ H ₁₆ N ₄ O ₇ (364.3)	Ber. Gef.	49.49 49.55	4.42 4.65	15.39 14.70	30.76 31.10
Bicyclo[2.2.2]oct-1-yl	30	195.5 – 196	C ₁₆ H ₁₈ N ₄ O ₇ (378.3)	Ber. Gef.	50.79 50.92	4.80 4.82	14.81 14.63	29.60 29.63
Bicyclo[3.2.1]oct-1-yl	30	144 - 145	C ₁₆ H ₁₈ N ₄ O ₇ (378.3)	Ber. Gef.	50.79 51.09	4.80 5.08	14.81 14.17	29.60 29.76
1-Adamantyl	50	182 – 184	C ₁₈ H ₂₀ N ₄ O ₇ (404.4)	Ber. Gef.	53.46 53.64	4.99 5.01	13.86 13.79	27.70 27.56

Tab. 11. N-Alkyl-N-pikrylacetamide R - N(Pik) - COCH₃

b) Aus Carbonsäuren RCO_2H und Methyllithium: Die Arbeitsweise wurde in Lit.²⁾ beschrieben. Ausbeuten und physikalische Daten finden sich in Tab. 6.

Methylketonoxime und Oxim-pikrate: Die Darstellung erfolgte, wie in Lit.²⁾ beschrieben. Ausbeuten, Analysen und physikalische Daten finden sich in Tab. 7–10.

N-Alkyl-N-pikrylacetamide: Bei präparativen Versuchen in 1,4-Dichlorbutan wurden nach 10 Halbwertszeiten durch Einengen i. Vak. und Umlösen *N-*Alkyl-*N-*pikrylacetamide isoliert. Die in Tab. 11 angegebenen Ausbeuten beziehen sich auf das umgelöste Reinprodukt.

¹⁾ Aus der Dissertation H. Langhals, Univ. Freiburg 1974.

²⁾ H. Langhals, G. Range, E. Wistuba und C. Rüchardt, Chem. Ber. 114, 3813 (1981), vorstehend.

³⁾ A. W. Chapman und F. A. Fiedler, J. Chem. Soc. 1936, 448.

⁴⁾ T. G. Traylor, W. Hanstein, H. J. Berwin, N. A. Clinton und R. S. Brown, J. Am. Chem. Soc. **93**, 5715 (1971).

⁵⁾ R. C. Fort und P. v. R. Schleyer, Adv. Alicycl. Chem. 1, 284 (1966).

- ⁶⁾ Siehe C. Rüchardt, V. Golzke und G. Range, Chem. Ber. 114, 2769 (1981); V. Golzke, F. Groeger, A. Oberlinner und C. Rüchardt, Nouv. J. Chimie 2, 169 (1978).
- 7) H. P. Fischer und F. Funk-Kretschmar, Helv. Chim. Acta 52, 913 (1969).
- ⁸⁾ H. Fujimoto, Y. Kitagawa, H. Hao und K. Fukui, Bull. Chem. Soc. Jpn. 43, 52 (1970).
- 9) P. v. R. Schleyer, C. R. Fort, W. E. Watts, M. B. Comisarow und G. A. Olah, J. Am. Chem. Soc. 86, 4195 (1964).
- ¹⁰⁾ W. Weltner jr., J. Am. Chem. Soc. 75, 4224 (1953).
- ¹¹⁾ B. Allard, A. Casdevall, E. Casadevall und C. Largeau, Nouv. J. Chim. 4, 539 (1980).
- ¹²⁾ E. L. Eliel, Stereochemistry of Carbon Compounds, 1. Aufl., S. 267, McGraw Hill Book Co., New York 1962.
- 13) H. D. Beckhaus, J. Schoch und C. Rüchardt, Chem. Ber. 110, 878 (1977).
- 14) J. M. Tedder und J. C. Walton, Adv. Free-Radical Chem. 6, 155 (1980).
- ¹⁵⁾ C. S. Foote, Tetrahedron Lett. 1963, 579.
- ¹⁶⁾ S. A. Monti und C. K. Ward, Tetrahedron Lett. 1971, 697; S. L. Friess und R. Pinson jr., J. Am. Chem. Soc. 74, 1302 (1952).
- 17) M. Saunders, J. Chandrasekhar und P. v. R. Schleyer in Rearrangements in Ground and Excited States, Vol. 1, S. 1, Academic Press, New York 1980.
- 18) H. P. Benecke und J. H. Wikel, Tetrahedron Lett. 1972, 289; H. P. Benecke, Tetrahedron Lett. 1977, 997.
- 19) R. Taubert und F. P. Lossing, J. Am. Chem. Soc. 84, 1523 (1962).
- ²⁰⁾ A. G. Harrison und F. P. Lossing, J. Am. Chem. Soc. 82, 1052 (1960).
- ²¹⁾ J. B. de Sousa und F. P. Lossing, J. Am. Chem. Soc. 81, 281 (1959).
- ²²⁾ R. F. Pottie, A. G. Harrison und F. P. Lossing, J. Am. Chem. Soc. 83, 2304 (1961).
 ²³⁾ J. B. Farmer und F. P. Lossing, Can. J. Chem. 33, 861 (1955).
- ²⁴⁾ A. G. Harrison, P. Kebarle und F. P. Lossing, J. Am. Chem. Soc. 88, 777 (1961).
- ²⁵⁾ R. Huisgen, J. Witte und I. Ugi, Chem. Ber. 90, 1844 (1957).

- ²⁶ R. Huisgen, J. Witte und W. Jira, Chem. Ber. **90**, 1850 (1957).
 ²⁷⁾ I. P. Fisher, T. F. Palmer und F. P. Lossing, J. Am. Chem. Soc. **86**, 2741 (1964).
 ²⁸⁾ 2^{8a)} T. Ando, H. Yamataka, H. Morisaki, J. Yamawaki, J. Kuramochi und Y. Yukawa, J. Am. Chem. Soc. **103**, 430 (1981). ^{28b)} V. J. Shiner und J. J. Tai, J. Am. Chem. Soc. **103**, 436 (1981).
- ²⁹⁾ C. Schuerch und E. H. Huntress, J. Am. Chem. Soc. 70, 2824 (1948).
- ³⁰ N. L. Drake, G. M. Kline und W. G. Rose, J. Am. Chem. Soc. 56, 2076 (1934).
 ³¹ J. J. Lucier, E. C. Tuazon und F. F. Bentley, Spectrochim. Acta Part A 24, 771 (1968).
- 32) G. M. Steinberg, H. B. Hass und E. T. McBee, J. Org. Chem. 13, 413 (1948).
- 33) T. Saegusa, N. Taka-Ishi und Y. Ito, J. Org. Chem. 34, 4040 (1969).
- 34) R. F. Raffauf, J. Am. Chem. Soc. 74, 4460 (1952).
- 35) N. Sperber, D. Papa und E. Schwenk, J. Am. Chem. Soc. 70, 3091 (1948).
- ³⁶⁾ E. A. Zuech, R. F. Kleinschmidt und J. E. Mahan, J. Org. Chem. 31, 3713 (1966).
- ³⁷⁾ M. F. Bodroux und F. Tabourg, C. R. Acad. Sci. 150, 1241 (1910).
- 38) H. P. Fischer und C. A. Grob, Helv. Chim. Acta 47, 564 (1964).
- 39) W. L. Evers, H. S. Rothrock, H. M. Woodburn, E. E. Stukly und F. C. Whitmore, J. Am. Chem. Soc. 55, 1136 (1933).
- 40) R. Loquin, L. Leers und M. A. Haller, C. R. Acad. Sci. 178, 2095 (1924).
- 41) F. C. Whitmore und D. E. Badertschler, J. Am. Chem. Soc. 55, 1559 (1933).
- 42) G. W. Cannon, R. E. Ellis und J. R. Leal, Org. Synth., Coll. Vol. 4, 597 (1963).
- 43) R. Pinson und L. S. Fries, J. Am. Chem. Soc. 72, 5333 (1950).
- 44) L. S. Fries und R. Pinson, J. Am. Chem. Soc. 74, 1302 (1952).
- ⁴⁵⁾ L. Ruzicka und H. A. Boeckenhoogen, Helv. Chim. Acta 14, 1319 (1931).
- ⁴⁶⁾ P. Lorenz, C. Rüchardt und E. Schacht, Chem. Ber. 104, 3429 (1971).
- 47) J. Graefe, M. Mühlstädt und D. M. Müller, Tetrahedron 26, 2677 (1970).
- ⁴⁸⁾ H. Monti und H. Normant, C. R. Acad. Sci. 265, 522 (1967).
- ⁴⁹⁾ H. Meerwein, Liebigs Ann. Chem. **405**, 129 (1914).
- ⁵⁰⁾ H. Meerwein und J. Schäfer, J. Prakt. Chem. Neue Folge 104, 289 (1922).
- ⁵¹⁾ J. Bonnekessel und C. Rüchardt, Chem. Ber. 106, 2890 (1973).
- ⁵²⁾ C. Pupin und R. F. Jullien, Bull. Soc. Chim. Fr. 1964, 1993.
- 53) S. McKenzie, S. F. Marsocci und H. C. Lampe, J. Org. Chem. 30, 3328 (1965).
- ⁵⁴⁾ G. G. Lyle, R. A. Corey und R. E. Lyle, J. Am. Chem. Soc. 76, 2713 (1954).
- ⁵⁵⁾ F. D. Greene, M. L. Savitz, F. D. Osterholz, H. H. Lau, W. N. Smith und P. M. Zaneth, J. Org. Chem. 28, 60 (1963).
- ⁵⁶⁾ A. Belanger, Y. Lambert und A. Deslonchamps, Can. J. Chem. 47, 795 (1969).

Chem. Ber. 114 (1981)

- 57) J. A. Marshall und H. Faube, J. Am. Chem. Soc. 92, 948 (1970).
- 58) 58a) H. Langhals und C. Rüchardt, Chem. Ber. 107, 1245 (1974). 58b) H. Langhals und C. Rüchardt, Chem. Ber. 108, 2156 (1975).
- 59) C. Tropesojanz, Ber. Dtsch. Chem. Ges. 26, 1428 (1893).
- 60) Ch. Moureu und R. Delange, Bull. Soc. Chim. Fr. t 3, 25, 418 (1901).
- ⁶¹⁾ G. Kavon und Krajcinovic, Bull. Soc. Chim. Fr. 43, 231 (1928).
 ⁶²⁾ A. Haller und E. Bauer, C. R. Acad. Sci. 150, 582 (1910).
- 63) R. Loquin, W. Sung und M. A. Haller, C. R. Acad. Sci. 178, 1179 (1924).
- 64) H. D. Zook, W. E. Smith und J. L. Greene, J. Am. Chem. Soc. 79, 4436 (1957).
- 65) F. C. Whitmore und C. E. Lewis, J. Am. Chem. Soc. 64, 1618 (1942).
- 66) G. Soliman und R. W. West, J. Chem. Soc. 1944, 53.
- 67) A. Hoffmann, J. Am. Chem. Soc. 51, 2542 (1929).
- 68) M. J. Hatch und D. J. Cram, J. Am. Chem. Soc. 75, 38 (1953).
- 69) J. D. Roberts und V. C. Chambers, J. Am. Chem. Soc. 73, 3176 (1951).
- ⁷⁰⁾ M. Godechot, C. R. Acad. Sci. 151, 1131 (1910).

[111/81]