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High voltage activated calcium channels: molecular 
composition and function 

V . F L O C K E R Z I , E. BOSSE, Μ . B I E L * , R. H U L L I N * A N D F . H O F M A N N * 

Medizinische Biochemie, Universität des Saarlandes, 6650 Homburg, Germany, and * Institut für Pharmakologie 
und Toxikologie Technische Universität München 8000 München 40, Germany 

KEY WORDS: Ca 2 + channel, cDNA cloning, phosphorylation, expression. 

Voltage-activated calcium channels comprise a group of similar yet distinct proteins or protein complexes that differ in 
electrophysiological properties, modulation by phosphorylation and GTP-binding proteins and in their relative sensitivity 
to organic calcium channel blockers. Cloning of the cDNA of L-type calcium channels from skeletal muscle, heart and 
smooth muscle opens the way to understanding the molecular basis of channel function and regulation and provides 
means of studying calcium channels in other tissues. 

Introduction 

Voltage activated calcium channels are membrane-span
ning proteins that allow the controlled entry of calcium 
ions into the cytoplasm of cells and thereby contribute 
to the genesis of action potentials1 "-4]. By raising [Ca] i 5 

calcium channels transduce electrical signals to chemical 
signals that command changes in secretion, metabolism, 
contraction or excitability when decoded by appropriate 
calcium receptor proteins such as calmodulin, troponin, 
and calcium-activated potassium channels. Calcium 
channels are vital for several processes of the cardiovas
cular system. In the healthy heart, they are essential for 
generation of normal cardiac rhythm, to induce propaga
tion through the atrioventricular node, and for contrac
tion in atrial and ventricular muscle. In diseased myocar
dium, calcium channels can contribute to abnormal 
impulse generation and cardiac arrhythmias. In blood 
vessels they provide a direct supply of activating calcium, 
which controls smooth muscle contraction and vascular 
tone. At least three types of voltage-activated calcium 
channels have been distinguished on the basis of their 
voltage dependence, time dependence, conductance and 
pharmacology: namely, L-, T- and N-type channels 
(Table l ) t l _ 3 ] . L-type channels are virtually ubiquitous 
and are the major pathway for voltage-gated calcium 
entry in heart and most kinds of smooth muscle. The 
L-type channel is high voltage activated, has a high Ca 2 + 

conductance contributing to a long-lasting current and 
is readily blocked by calcium channel blockers such as 
nifedipine and verapamil. In cardiac muscle, ß-
adrenergic agonists increase the probability of this chan
nel type being open, [ 5 ] either by phosphorylation of the 
channel itself or by stabilizing the open state via the a 
subunit of the GTP-binding protein Gs C 3 ' 6 l Although 
work on many cell systems has contributed to current 
understanding of calcium channel function the structural 
properties of the channel have been investigated most 
thoroughly in skeletal muscle which is particularly rich 
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in the specific high affinity receptor for calcium channel 
blockers (CaCB receptor) [ 7 ]. 

Biochemistry of the skeletal muscle CaCB 
receptor/calcium channel 

When purified from rabbit skeletal muscle, the calcium 
channel consists of three main subunits with molecular 
masses of 165 000 (CaCB receptor or a, subunit), 55 000 
(β) and 32 000 Da (γ) (Table 2) [ 8 " , 2 J . A further polypep
tide consisting of a disulphide-linked dimer of a 130 000 
(a2) and a 28 000 (δ) protein is present in this prepar
ation at a variable concentration^2J. The subunits have 
been reconstituted to functional calcium channels which 
were modulated by phosphorylation^ 1 and by mono
specific antibodies for the α, , β and γ subunits [ , 4 , I 5 ] . 
The CaCB receptor is the principal transmembrane unit, 
which forms the ion-conducting pore. This protein binds 
calcium channel blockers 1 4 ' 1 2 , 1 6 , 1 7 1 such as dihy-
dropyridines and phenylalkylamines with 1:1 
stoichiometry (for each compound one site per CaCB 
receptor) and is phosphorylated in vitro at Ser687 by 
cAMP-dependent protein kinase f l 8 ]. The β subunit, but 
not the γ subunit, contains multiple phosphorylation 
sites1'91. Neither of the subunits binds calcium channel 
blockers. Attempts to isolate only the CaCB receptor 
under non-denaturing conditions have not been success
ful so far, suggesting that the β and γ subunit stabilize 
the channel in a high-affinity CaCB-binding conforma
tion. At present, it is not known whether the 130/28 kDa 
protein belongs to this structure [ 1 , ] or is only a 
contaminant. 

Molecular biology of the skeletal muscle calcium 
channel 

Complementary DNAs for the skeletal muscle calcium 
channel were isolated on the basis of peptide sequences 
derived from the purified proteins [ , 7 ' 2 0 2 2 ] . The cDNA 
of the CaCB receptor encodes a large polypeptide 
(212 kDa) which is structurally similar to voltage acti
vated sodium channels. As with the sodium channel, the 

© 1991 The European Society of Cardiology 
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Table I Properties of the three types of mammalian voltage activated calcium channels 

Channel type Τ Ν L 

elect rophysiology 
threshold potential low high high 
inactivation fast intermediate slow 
pharmacology 
dihydropyridine-sensitive - - + 
phenylalkylamine block (+ ) - + 
* Ω-conotoxin block ( + ) + + 
inorganic ion block N i 2 + C d 2 + C d 2 + 

occurence ubiquitous neurons ubiquitous 

* Omega-conotoxin appears to bind to N-type calcium channels in brain thereby 
blocking channel function (McCleskey, EW, Fox AP, Feldman D H et al. 1987; Proc 
Natl Acad Sei USA 84: 4327-31). 

Table 2 Subunit structure of the skeletal muscle calcium channel 

subunit (kDa) CaCB Phosphorylation Glycosylation 
Primary 

structure 
Possible 
function 

(CaCB-receptor) 
165 dhp 

paa 
dil 

Ser 6 8 7 weak 1873 aa ion-conducting 
voltage sensor unit 

ß 

Ύ 

55 

32 

dhp 
paa 
dil 

Ser i 8 2 

T h r 2 0 5 

no 

strong 

524 aa 

222 aa 

regulatory 

regulatory 

α , 
δ 

130 
28 — 

— strong 
strong 

1106 aa 
n.d. 

*) 
0 

Abbreviations: CaCB, calcium channel blocker; dhp, dihydropyridine; paa, phenylalkylamine; d i l , diltiazem; aa, amino-acid; n.d., not 
determined. 

CaCB receptor possesses four internal repeats which are 
48 to 55% homologous (Fig. 1). Each repeat is composed 
of five putative transmembrane α-helices and one 
amphophilic segment, S4, which contains five or six 
positively charged amino-acids. Homologous S4 seg
ments are present in the potassium and sodium channels 
from a variety of different species suggesting that this 
highly conserved segment is an essential part of a voltage 
activated cation channel. It is thought that S4 responds 
to a change in the membrane potential with a slight 
intramembrane shift of its positive charges, and thereby 
induces a conformational change in the protein which 
leads to channel opening or closing [ 2 3 ]. The deduced 
amino-acid sequence of the skeletal muscle CaCB recep
tor contains seven potential phosphorylation sites for 
cAMP-dependent protein kinase c i ? 1. One of these sites, 
Ser6 8 7, is readily phosphorylated by cAMP kinase in 
vi tro [ 1 8 ] . Microinjection of an expression plasmid carry
ing the CaCB receptor cDNA induces a high voltage 
activated calcium current in dysgenic muscle [ 2 4 ] and in 
non-excitable mouse L cells [ 2 l , 2 2 ] . In addition, it restores 
excitation contraction coupling in myocytes of dysgenic 
(mdg) mice [ 2 4 ], suggesting that the skeletal muscle CaCB 
receptor functions both as a calcium channel and as a 
voltage sensor coupling extra-cellular excitation to the 
release of calcium from the sarcoplasmic reticulum. It 
is not known whether these two functions require the 
presence of the other subunits. 

ι n m Jg 
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 
3QB3I I 30061 • 00361 I 300 31 I 

H 2 N 

extracellular 
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/membrane 

intracellular 

COOH 

INo-channei] rat A L 

fly G L 

eel A L 
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|K-channelj fly vi 

mouse vi 

rat vi 

H ITF 

R T F 

F T F 

Κ A F 

R L V 

L V 

L V 
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V L 

BlVL 

R V L 

R | V F 

V F 
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R | A L 

A L 

T I S V I P G L 
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RJH SjKjG L Ο 
(•> (*J I») 

Figure / Transmembrane folding model of the CaCB subunit 
(upper part) and conservation of the amino-acids of the positively 
charged segment S4 among voltage activated cation channels 
(lower part). The internal repeats I , I I , I I I and IV each composed 
of six transmembrane segments are shown. Ρ indicates phosphory
lation site which is phosphorylated in vitro in the skeletal muscle 
CaCB receptor ( • ) and which is conserved in the skeletal, cardiac 
and smooth muscle CaCB receptor (O). Alignment o f S4 segments 
from voltage activated Na+ , Ca2+ and K + channels. The one 
letter code for amino-acids is used. R, Arg; Κ, Lys. 
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The β subunit consists of 524 amino-acids l2:>1. It con
tains four homologous a helical segments. In contrast 
to the CaCB receptor, the β subunit is substantially 
hydrophilic suggesting that it is a peripheral membrane 
protein. Further analysis of its primary structure reveals 
multiple potential phosphorylation sites, two of which, 
Ser,*:12^ and Thr 2(, 5

| 2 i > l , are readily phosphorylated by 
cAMP-dependent protein kinase in vitro. 

The γ subunit consists of 222 amino-acids1 2 7'2 8 1. It is 
very hydrophobic and contains four typical membrane 
spanning regions. Thus it is reasonable to assume that 
the amino and carboxy termini are localized intracel
lular^ whereas the four hydrophobic segments cross the 
cell membrane12?l. This model (Fig. 2) is consistent with 
the two potential N-glycosylation sites being located on 
the extracellular site. In vivo the y subunit is highly 
glycosylated, and this accounts for the difference in 
molecular mass between the natural y subunit 
(—32 kDa) and the predicted mature unglycosylated 
polypeptide (—25 kDa). The primary structure of the y 
subunit shows no homology to other known protein 
sequences. However, 34-1% of a sequence of 44 amino-
acids within the y subunit are identical with a similar 
sequence of the multidrug resistance protein 2 (mdr 2 
or P-glycoprotein) l 29 ]. Interestingly, mdr2 binds calcium 
channel blockers130'. Although the γ subunit does not 
bind these compounds by itself, it cannot be excluded 
that the similar amino-acid sequences are indirectly 
involved in calcium channel blocker binding to the CaCB 
receptor and the mdr2 protein, respectively. 

L-Type calcium channel proteins in smooth and cardiac 
muscle 

Complementary DNAs for the CaCB receptor have 
been isolated from rabbit heart1 3 1 1 and rabbit smooth 
muscle'3 2 1 on the basis of sequence homology with their 
skeletal muscle counterpart. Both the cardiac and 
smooth muscle cDNAs encode large polypeptides (2171 
and 2166 amino-acids, respectively) showing an overall 
homology of 66% (cardiac) and 65% (smooth muscle) 
to the skeletal muscle CaCB receptor. The amino-acid 
sequence of the smooth muscle CaCB receptor differs 
from the rabbit heart receptor at four sites comprising 
the amino terminus, segments IS6 and IVS3 and an 
intervening sequence between repeats 1 and I I [ 3 2 J . Both 

Figure 2 Transmembrane folding model of the y subunit of the 
skeletal muscle calcium channel. The four transmembrane seg
ments are indicated. Amino and carboxy termini are localized 
intracellularly. Potential N-glycosylation sites (Asn 43 and Asn 
79) are indicated in the first extracellular loop. 

channel proteins are differentially expressed. The 
mRNA of the cardiac channel is exclusively expressed 
in heart whereas the mRNA of the smooth muscle chan
nel is present in airway and vascular smooth muscle 
cells, which exist in lung, trachea, heart, aorta and brain 
(Table 3 ) [ 3 2 ] . Cardiac ventricular and smooth muscle 
myocytes express mainly high voltage activated calcium 
channels, with the slow inactivating properties classified 
as L-type, which are sensitive to calcium channel 
blockers. In agreement with this, microinjected synthetic 
RNA derived from the cloned cardiac and smooth 
muscle CaCB receptor cDNA directs the synthesis of 
similar channels in Xenopus oocytes t 3 l , 3 2 ]. These results 
indicate that the cardiac and smooth muscle CaCB 
receptors alone are sufficient to induce calcium channel 
activity. 

Conclusion 

In vivo, the skeletal muscle CaCB receptor functions 
both as voltage sensor, which directly controls release 
of calcium from the sarcoplasmic reticulum, and as 
calcium channel.The similar tissue specific expression 
of the mRNA encoding the skeletal muscle CaCB recep
tor (aj), β and y subunit (Table 3) suggests that the 
three proteins contribute to these functions. In contrast 
to the skeletal muscle CaCB receptor, the cardiac recep
tor functions only as calcium channel and, when injected 
into myotubes of dysgenic mice, it releases calcium by 
an indirect calcium-dependent mechanism1331. Hence, 
different CaCB receptor proteins and their association 
with other components, such as β and y subunits, may 

Table 3 Hybridization specificity of the calcium c hannel subunits 

c D N A probe smooth cardiac skeletal 

CaCB receptor 
common 8-9/(15-5) 8-9/(15-5) 6-5/(8-9) 
smooth 8-9/(15-5) 8-9/(15-5) — 
cardiac — 8-9/(15-5) — 
skeletal — — 6-5 

a2 subunit 8-0 8-0 8-0 
β subunit — — 1-9 
γ subunit (1-3) — 1-3 

Numbers indicate length of hybridizable mRNAs of rabbit smooth, cardiac, and skeletal 
muscle in kilobases using the respective c D N A probes (for details see refs 17, 20, 25, 
27, 28, 31, 32). 
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be the structural basis for differences in function among 
various L-type calcium channels. This hypothesis is 
strongly supported by the isolation of partial cDNA 
clones encoding various CaCB receptor-like proteins in 
rat aorta [ 3 4 ] and brain [ 3 5 ] , suggesting that at least a por
tion of calcium channel diversity is the result of the 
expression of distinct CaCB receptors. 

In vivo, L-type calcium channels from cardiac and 
smooth muscle have similar electrophysiological proper-
ties [ , , 2 ] . The primary sequences of the cardiac and lung 
CaCB receptor contain identical sites that might be 
phosphorylated by cAMP-dependent protein kinase in 
v ivo [ 3 1 , 3 2 ] . However, the biochemical modulation of both 
channels appears to be different. cAMP-dependent 
phosphorylation increases the cardiac calcium cur-
rent [ 5 , 3 6 ] , whereas it has little or no effect on the smooth 
muscle current^71. Therefore, stimulation of the calcium 
current might be not due to phosphorylation of the CaCB 
receptor itself. Further work involving the stable 
expression of the CaCB-receptor in cells exhibiting 
appropriate signal transduction pathways will be 
required to test this hypothesis. 

We thank R. Nagel for expert technical assistance and H. 
Siepmann for the graphical work. This work was supported by 
Deutsche Forschungsgemeinschaft, Thyssen, and Fond der 
Chemischen Industrie. 
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