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CHAPTER 24 

Comparison of two different protein trans
location mechanisms into chloroplasts 

JÜRGEN SOLL1, HEIKE ALEFSEN2, BIRGIT BÖCKLER1, BIRGIT 
KERBER3, MICHAEL SALOMON2 and KARIN WAEGEMANN1 

1 Botanisches Institut, Universität Kiel, Olshausenstraße 40 W-2300 Kiel 1, Germany, 
2Botanisches Institut, Universität München, Menzinger Straße 67 W-8000 München 19, 

Germany and 3Fachrichtung Botanik, Universität des Saarlandes, 
W-6600 Saarbrücken, Germany 

1. Introduction 
Chloroplas ts are highly structured plant specific organelles. They possess three dis
crete membrane systems which differ in composi t ion and function, i.e. the outer/ 
inner envelope and the thylakoid membranes . In addit ion three solute spaces can 
be distinguished, i.e. the space between the envelope membranes , the s t roma and the 
thylakoid lumen [1]. While most of the chloroplast ic proteins, which are synthesized 
as precursors in the cytosol, seem to follow a c o m m o n route of t ranslocat ion into 
the organelle, proteins of the outer envelope, which is in direct contact with the 
cytosol, are inserted ( imported) by a very different and distinct mechanism [2,3]. 

A typical polypeptide destined for the inside of the organelle, possesses a cleavable 
target sequence, retains a loosely folded conformat ion with the help of molecular 
chaperones , is recognized by pro te inaceous receptors on the organella!* surface, 
requires low concentrat ion (fiM) A T P for binding but high concentra t ions (mM) 
for complete translocation through the membranes [4,5]. Outer envelope polypeptides 
(OEP) studied so far, do not possess a cleavable target sequence, d o not require 
protease sensitive receptors on the organellar surface and do not require A T P for 
either binding or insertion into the outer envelope [3,6]. 

2. Results and discussion 
2.1. Import characteristics of pSSU and OEP 7 

A typical impor t experiment for a plastidic precursor protein destined for the inside 
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1 2 3 4 5 6 

p S S U -

s s u -

Fig. I. Characteristics o fpSSU import into chloroplasts. pSSU translation product (lane 1) is imported 
into chloroplasts and processed to its mature form (lane 2). SSU appears protease protected inside the 
organelle after thermolysin treatment (lane 3). Chloroplasts pretreated with thermolysin bind pSSU only 
to a very small extent in a non-productive way (lane 4). The import assay was either not depleted (lane 5) 
or depleted of ATP (lane 6) through the action of apyrase. Methods are described by Waegemann and Soli 
[15]. 

of the organelle is shown in Fig. 1. The precursor protein (pSSU) binds to the 
chloroplast outer envelope, it is subsequently translocated inside the organelle, p r o 
cessed to its ma tu re form and protected against externally added protease. Ch lo ro 
plasts pretreated by thermolysin, a protease which only digests surface exposed 
polypeptides [7,8], bind pSSU only to a very small extent in a non-product ive m a n 
ner [2]. Similar results are obtained if A T P is removed from the impor t incubat ion 
mixture by the A T P hydrolyzing enzyme apyrase. Binding is greatly reduced and 
impor t not observed, demonst ra t ing the A T P dependence of binding as well as 
t ranslocat ion [5]. 

The insertion ( import) of O E P 7 seems to follow a quite distinct pa thway. N o shift 
in molecular weight can be observed between the translat ion product and the inserted 
form, demonst ra t ing the absence of a cleavable transit sequence [3]. Trans locat ion 
experiments carried out in the light, i.e. in the presence of A T P , show no greater O E P 
7 translocat ion efficiency than those carried out in the dark , i.e. in the absence of A T P 
(Fig. 2). Neither apyrase t rea tment nor the s imultaneous inclusion of a non-hydro-
lysable A T P ana log , adeny ly l imidod iphospha te , influenced the yield of O E P 7 

Light - Dark - Str. Thyl. 

Protease , 
Pretreatment — — — 

Protease — _ + — _ _ _ + 

1 2 3 4 5 6 7 8 9 

Fig. 2. Characteristics of OEP 7 import (insertion) into chloroplasts. OEP 7 translation product (lane l) 
was incubated with intact chloroplasts either in the light (lane 2), i.e. presence of ATP, or in the dark (lane 
3), i.e. absence of ATP (translation product was apyrase treated). Protease treatment after import yields a 
protease protected breakdown product (lane 4). Pretreatment of intact chloroplasts by thermolysin does 
not influence the efficiency of OEP 7 import (lane 5). OEP 7 is localized in the envelope membranes (lanes 
6, 7). Lanes 8 and 9 show a silver stained gel of envelope membranes either not treated (lane 8) or treated 
(lane 9) with thermolysin. Protease treatment of imported OEP 7 and OEP 7 in situ gives identical 
proteolytic breakdown products (compare lanes 4 and 9). Methods are described by Salomon et al. [3]. 
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insertion into the outer envelope membrane of chloroplasts . Translocat ion of O E P 7 
followed by thermolysin t rea tment resulted in a lower molecular weight b reakdown 
product identical to that found if envelope membranes were treated with protease 
(Fig. 2). O E P 7 contains only the N-terminal methionine, which is not removed by 
either matura t ion or thermolysin t reatment . This clearly indicates that the N-termi-
nus is exposed to the in te rmembrane space and therefore protease protected, while the 
C-terminus is on the cytosolic leaflet of the membrane and susceptible to external 
protease. Analysis of the amino acid sequence of O E P 7 cor robora tes these results 
and predicts only one membrane span [3]. The outline of this t ranslocat ion route is 
suppor ted by findings described in [6] where an identical insertion mechanism is 
described for an outer envelope protein of pea chloroplasts . 

2.2. Specificity and mechanism of OEP 7 insertion 

The impor t route outlined above for O E P 7 is very distinct and also differs from that 
described for proteins localized in the outer mitochondria l membrane , which require 
protease sensitive receptors and A T P for correct rout ing and efficient t ranslocation 
[9]. Experiments were carried out to address the problems of specificity and mechan
ism of O E P 7 import . In an initial experiment, chloroplasts and mi tochondr ia , bo th 
isolated from pea leaves, were incubated in the same impor t assay with O E P 7 
translat ion product . After complet ion of the impor t reaction, chloroplasts were 
separated from mi tochondr ia by differential centrifugation and each organelle type 
analyzed, respectively. The results (Fig. 3) demonst ra te that O E P 7 binds to the 
surface of chloroplasts as well as mi tochondr ia . Trea tment of the organelles with 
thermolysin, however, clearly demonst ra tes that O E P 7 integrates only into the out
er envelope of chloroplasts in the proper way but not into the outer membrane of 
mi tochondr ia as judged from the protease protected b reakdown product . 

It has been shown that precursor proteins have to retain a loosely folded ( t ranspor t 
competent) conformat ion in order to be translocated through the import appara tus 
of either mi tochondr ia [9,10] or chloroplas ts [4]. They do this with the help of 

Chloropl. M i t o c h . 

Protease + + 
1 2 3 4 

Fig. 3. OEP 7 specifically inserts into chloroplast but not mitochondrial membranes. Chloroplasts and 
mitochondria, isolated from pea leaves, were incubated in the same incubation assay with OEP 7 
translation product. After completion of the reaction, organelles were separated by differential 
centrifugation and either not treated or treated by thermolysin prior to SDS-PAGE and fluorography. 
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100 
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Fig. 4. Efficient insertion of OEP 7 into chloroplasts requires a special conformation. OEP 7 was 
synthesized either at 26°C (H ) or 37°C ( • ) in a reticulocyte lysate system. Only OEP 7 synthesized at 26CC 
inserts efficiently into the outer envelope of chloroplasts (not shown). OEP 7 synthesized at 26 °C (•) is 
more susceptible to trypsin treatment (units/ml) than OEP 7 synthesized at 37°C(n). 

molecular chape rones , e.g. hsc70 [11,12]. We therefore addressed the ques t ion 
whether it was possible to distinguish between impor t competent and impor t incom
petent O E P 7. 

This was indeed found to be the case. O E P 7 synthesized in a reticulocyte lysate 
system at 37°C under improper cofactor condi t ions and prolonged reaction time d id , 
no longer insert in to the ou te r envelope of ch lorop las t s (not shown) . Trypsin 
t rea tment of impor t incompetent O E P 7 demonst ra tes that it is much less sensitive 
to protease than the impor t competent form of O E P 7 (Fig. 4). The da ta strongly 
indicate tha t O E P 7 like other precursor polypept ides needs to retain a special 
conformat ion until it has been inserted into the outer envelope membrane . The 
outer chloroplast envelope has a unique lipid and protein composi t ion in compar
ison not only to other organellar membranes exposed to the cytosol but also to the 
other membrane systems of the chloroplast . Phosphat idylchol ine for example is not 
present in thylakoids. Monogalactosyldiglyceride and digalactosyldiglyceride which 
are exclusively found in plastidal membrane systems are also major lipid consti tuents 
of the outer envelope [1], The specificity of O E P 7 insertion into the outer envelope 
could therefore be, at least in par t , due to the specific lipid composi t ion. 

Most likely the interaction of O E P 7 with other outer envelope proteins aids the 
insertion specificity. This can be deduced from experiments presented in Fig. 5. 
Purified chloroplast membranes , i.e. outer envelope, inner envelope and thylakoids, 
were incubated with O E P 7 translat ion product . Only the interaction of O E P 7 with 
ou te r envelope m e m b r a n e vesicles, ei ther p re t rea ted with or wi thou t pro tease , 
resulted in the correct insertion of the protein into the membrane bilayer. O E P 7 
also bound to the other chloroplast membranes but we could not detect the typical 
proteolytic b reakdown product , indicating that O E P 7 was either surface exposed and 
thus protease sensitive or inserted incorrectly into the membranes . 
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Fig. 5. OEP 7 integrates correctly only into isolated outer chloroplast envelopes. Chloroplasts were 
separated into outer/inner envelopes and thylakoids prior to incubation with OEP 7. All other 
manipulations are indicated on the top of each fluorogram. Methods as in Salomon et al. [3]. 

It has been shown that thylakoid membranes are isolated as outside-out vesicles 
[13]. The same was found to be the case for isolated outer envelope membranes [14]. 
These findings are impor tan t to interpret the described da ta correctly. Outs ide-out 
envelope vesicles were also used to study their interaction with pSSU, a normal 
precursor [15]. As in the orgahellar system, pSSU requires A T P and protease sensitive 
receptors to bind to the envelope surface (Fig. 6). The interaction between pSSU and 
the isolated envelope membrane does not halt at the binding stage but pSSU is partly 
inserted into the t rans locat ion appa ra tu s as characterized by protease protected 
t ranslocat ion intermediates [15]. Isolated outer envelope membranes therefore con
tain at least par t of the chloroplast impor t machinery in a functionally active manner . 
Early events in binding and t ranslocat ion can thus be analyzed in this isolated and 
partially purified system in vitro. 

O u r results indicated that the precursor was not translocated into the inside of the 
vesicle but was stuck in the t ranspor t appara tus . Solubilization of precursor loaded 
outer envelope membrane vesicles followed by sucrose density centrifugation resulted 
in the isolation of a membrane fraction with precursor protein still bound to it (Fig. 7) 
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Fig. 6. Isolated outer envelope membrane vesicles represent a bonafide system to study pSSU binding. 
pSSU binding to isolated outer envelope was analyzed (column 1). Interaction is dependent on 
thermolysin (Th) sensitive receptors (column 2) and the presence of ATP (column 3). Results were 
quantified by laser densitometry of an exposed X-ray film. Methods as in Waegemann and Soil [15]. 
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Fig. 7. A membrane complex loaded with pSSU can be isolated from outer envelope membranes. Purified 
outer envelopes were incubated with pSSU translation product, re-isolated, solubilized by digitonin and 
subjected to fractionation on a linear sucrose density gradient. pSSU distribution was determined by 
liquid scintillation counting (graph) or SDS-PAGE and fluorography (insert). Free pSSU stays on top of 
the gradient while complex bound pSSU migrates to higher density in the sucrose density gradient. 
Methods as described by Waegemann and Soil [15]. 

[15]. When the same experiment was carried out using O E P 7 translat ion product , no 
r a d i o l a b e l e d protein was detectable in fractions 14-18 of the sucrose gradient 
(compare Fig. 7) (not shown). This might indicate that O E P 7 does not enter the 
common impor t appara tus to be inserted into the outer envelope. 

The membrane fraction recovered from the sucrose density gradient was shown to 
contain all the proteins necessary for a transit sequence and A T P dependent insertion 
of pSSU into the isolated complex [16]. The interaction of pSSU with the isolated 
complex also gave rise to the t ranspor t intermediates described for the chloroplast 
system. Isolation of an active impor t appa ra tus represents a major advantage to study 
the function of single components in the translocat ion event. So far we have identified 
an outer envelope localized hsc70 homologue and O E P 86 as consti tuents of the 
isolated impor t complex. The hsc70 homologue localized in the import appara tus 
could act in sequence with its cytosolic and stromal counterpar ts in an unidirectional 
import process [15,16]. 

The polypeptide composi t ion of the isolated import appara tus together with results 
from crosslink studies imply the involvement, either direct or indirect, of a number of 
proteins in the t ranslocat ion event. A schematic view of the different t ranspor t 
pa thways into chloroplasts is depicted in Fig. 8. 

The major envelope prote in which was described as the mas te r receptor for 
ch loroplas t pro te in impor t [17] and subsequent ly found to be identical to the 
phosphate- t r iose phospha t e t rans loca tor of the inner envelope [18,19] is neither 
found in isolated outer envelope membranes which are active in pSSU recognition 
and insertion nor in the isolated impor t complex. Together with da ta presented in [20] 
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Fig. 8. Schematic view of two import pathways into chloroplasts. The scheme comprises proteins which 
have been implied to function in the import process in papers mentioned in the text. The number of 
proteins involved in the import and shown in the scheme is probably underestimated. We propose that the 
import apparatus forms a proteinaceous pore in the membranes which could be coated by hsc70 
homologues to guide the passage of a precursor through the membrane. Other proteins of the complex are 
most likely also in close contact with the precursor protein on route to the inside of the organelle. This is 
not represented in the drawing. Much less is known about the insertion pathway of OEP 7. No envelope 
components have been identified so far which influence the insertion of OEP 7. 

we conclude that a receptor for chloroplast ic precursor proteins still remains to be 
identified. 
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