Ultrafast Phenomena VI

Proceedings of the 6th International Conference, Mt. Hiei, Kyoto, Japan, July 12–15, 1988

Editors: T. Yajima, K. Yoshihara, C. B. Harris, and S. Shionoya

With 487 Figures

CNSTITUT FOR MED. OFTER DER UND VERSITÄT MÜNICHEN BARDAROSTA 16. TEL. (089) 185031/34 Sand LATIPICHEN 40

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo

Contents

Part I Generation, Amplification and Compression of Ultrashort Light Pulses

Chirped Pulse Amplification: Present and Future By P. Maine, D. Strickland, M. Pessot, J. Squier, P. Bado, G. Mourou, and D. Harter (With 5 Figures)	2
Generation of Intense 20-fs Pulses and Their Application in Multiphoton Ionization By P.B. Corkum, C. Rolland, and S.L. Chin (With 2 Figures)	8
Generation of Tunable 9-fs Optical Pulses in the Near Infrared By P.C. Becker, H.L. Fragnito, R.L. Fork, F.A. Beisser, and C.V. Shank (With 2 Figures)	.2
Amplification and Compression of 16-fs Spectrally Broadened Pulses to the Microjoule Level at 10 kHz By P. Georges, J.P. Chambaret, F. Salin, G.R. Boyer, M.A. Franco, G. Le Saux, G. Roger, and A. Brun (With 3 Figures)	5
Generation of High-Repetition-Rate 14-fs Amplified Pulses Using a Q-Switched CW YAG Pumping Laser By Y. Ishida, T. Tokizaki, and T. Yajima (With 2 Figures) 1	19
10 kHz-Rate Amplification of 40-fs Optical Pulses at Low PumpingEnergyBy E.V. Khoroshilov, I.V. Kryukov, P.G. Kryukov,and A.V. Sharkov (With 1 Figure)22	22
Generation of 29-fs Pulses from a Synchronously Pumped Dye Laser and Its Cavity-Dumping Technique By M. Nakazawa, H. Kubota, and K. Kurokawa (With 4 Figures) . 2	24
Colliding Pulse Mode-Locked Femtosecond Laser Using Binary- Energy-Transfer Gain Dye Mixture By M. Mihailidi, Y. Budansky, X.M. Zhao, Y. Takiguchi, and R.R. Alfano (With 3 Figures)	27

Saturable Amplification Without Pulse Broadening By J.D. Kafka and J.B. Clark (With 2 Figures)	30
General Analysis of Optical Cavities for Femtosecond Dye Lasers By S. De Silvestri, Liu Yu-Pu, V. Magni, and O. Svelto (With 3 Figures)	33
Chirp-Compensation Cavity-Mirrors of Small Third-Order Dispersion for a Femtosecond Pulse Laser By M. Yamashita, S. Kaga, K. Torizuka, and T. Sato (With 1 Figure)	37
Theoretical and Experimental Study of Synchronously Pumped Dispersion Compensated Femtosecond Fiber Raman Lasers and Amplifiers By E.A. Golovchenko, E.M. Dianov, P.V. Mamyshev, A.M. Prokhorov, and D.G. Fursa (With 3 Figures)	40
Compression of the High Energy Pulsed Mode-Locked Nd:YLF and Nd:YAG Lasers By P.H. Chiu, P. Pax, and R. Aubert (With 4 Figures)	44
Active Pulse Compression By B.H. Kolner (With 1 Figure)	47
Two Novel Techniques for Femtosecond Pulse Compression: Utilization of Induced Phase Modulation and Highly Nonlinear Organic-Fibers By M. Yamashita, K. Torizuka, T. Shiota, and T. Sato (With 2 Figures)	50
Generation of Sub-100-fs Pulses at 532 nm from Modulation Instability Induced by Cross-Phase Modulation in Optical Fibers By P.L. Baldeck, R.R. Alfano, and G.P. Agrawal (With 2 Figures)	53
Femtosecond Continuum Generation in Fibers Near 1.6 μ m By M.N. Islam, G. Sucha, J.P. Gordon, I. Bar-Joseph, and D.S. Chemla (With 3 Figures)	56
Picosecond Pulse Generation by Two-Photon Induced Amplified Spontaneous Emission By A. Penzkofer and P. Qiu (With 3 Figures)	61
Mode-Locked Continuous Wave Titanium Sapphire Laser By J.D. Kafka, A.J. Alfrey, and T. Baer (With 2 Figures)	64
Non-soliton Modelocking of an F-Centre Laser with a Nonlinear External Cavity	<i>(</i> 7
By K.J. Blow, D.S. Forrester, and B.P. Nelson (With 2 Figures)	67

Significance of Enhanced Differential Gain for Short Pulse Generation in Semiconductor Lasers By T. Sogawa, Y. Arakawa, and T. Kamiya (With 3 Figures)	70
Characteristics of Picosecond Pulse Amplification by a Traveling- Wave InGaAsP Optical Amplifier By J.M. Wiesenfeld, G. Eisenstein, R.S. Tucker, G. Raybon, and P.B. Hansen (With 4 Figures)	73
A Few Tens of Picoseconds Light Source of Continuous Spectrum with Cherenkov Radiation By S. Owaki, T. Okada, Y. Kimura, S. Nakahara, and K. Sugihara	
(With 4 Figures)	77

Part II Generation of Short-Wavelength Ultrashort Light Pulses

82
87
91
94
97
101

Part III Propagation, Control and Measurement of Ultrashort Light Pulses

Dispersive Pulse Shaping and Soliton-like Pulses in a Passively	
Mode-Locked Dye Ring Laser. By D. Kühlke, T. Bonkhofer,	
U. Herpers, and D. von der Linde (With 2 Figures)	106

Control and Characterization of Soliton-like Pulses in a Femtosecond Dye Laser	
By W.L. Nighan, Jr., T. Gong, and P.M. Fauchet (With 4 Figures)	109
Solitons in the Region of the Minimum Group Dispersion Wavelength of a Single Mode Optical Fibre. By A.S. Gouveia-Neto, M.E. Faldon, and J.R. Taylor (With 3 Figures)	112
Femtosecond Pulse Tailoring for Dark Soliton Propagation Studies By A.M. Weiner, J.P. Heritage, R.J. Hawkins, R.N. Thurston, E.M. Kirschner, D.E. Leaird, and W.J. Tomlinson (With 4 Figures)	115
White Light Interferometric Measurements of Femtosecond Group Delay in Optical Components with 1-fs Precision By W.H. Knox, N.M. Pearson, K.D. Li, and C.A. Hirlimann (With 5 Figures)	118
Caution! IR Pulses May Be Distorted After Propagation in Atmospheric Air By A. Seilmeier, M. Wörner, and W. Kaiser (With 2 Figures)	121
Pulse Front Distortion in Lens Systems By S. Szatmári and G. Kühnle (With 6 Figures)	124
Blue Shifting of Intense Femtosecond Pulses in Gas Breakdown and Solid State Plasmas. By M.C. Downer, G. Focht, D.H. Reitze, W.M. Wood, and T.R. Zhang (With 3 Figures)	128
Time Domain Phase Conjugation and Twin Fields of Picosecond Light Continuum By A. Jankauskas, A. Piskarskas, and A. Stabinis (With 2 Figures)	132
Picosecond to Femtosecond Optical Synthesizers By T. Kobayashi, A. Morimoto, M. Doi, Bong Young Lee, and T. Sueta (With 5 Figures)	135
Synthesis and Applications of Arbitrarily Shaped Optical Pulses in Coherent Spectroscopy and Nonlinear Pulse Propagation By M. Haner and W.S. Warren (With 2 Figures)	139
A New Method for Measuring Ultrashort Optical Pulses By K. Naganuma, K. Mogi, and H. Yamada (With 5 Figures)	142
A Phase Sensitive Single Pulse Autocorrelator for Ultrashort Laser Pulses. By G. Szabó, Z. Bor, and A. Müller (With 2 Figures)	146
Single Shot Measurement of Optical Phase Modulation with Subpicosecond Resolution by Temporal Holography By F. Reynaud, F. Salin, A. Barthélémy, A. Brun, and C. Froehly	
(With 3 Figures)	149

A Method of Evaluation of Ultrashort Light Pulses Based on Self- Phase Modulation	
By H. Yoshiyama, Y. Shio, A. Imaizumi, H. Motoyama, M. Nakajima, S. Tanaka, H. Kobayashi, A. Watanabe, and H. Saito (With 3 Figures)	153
Measurement of Femtosecond Pulsewidths Using Interference Autocorrelation By Gong Zhenglie, Huang Zhengyi, Xu Ziguang, Qian Shurong, Xiang Wanghua, and Wang Qingyue (With 4 Figures)	156
Recent Advances Towards a 100-fs-Resolution Streak Camera By A. Finch, Y. Liu, H. Niu, W. Sibbett, W.E. Sleat, D.R. Walker, Q.L. Yang, and H. Zhang (With 3 Figures)	159

Part IV Opto-Electronics and Communications

Advanced Optical Communications Technologies Utilizing Ultrashort Optical Pulses By M. Saruwatari, K. Nakagawa, S. Kawanishi, and A. Takada (With 5 Figures)	164
Femtosecond All-Optical Switching in Nonlinear Directional Couplers By A.M. Weiner, Y. Silberberg, S.R. Friberg, B.G. Sfez, and P.W. Smith (With 8 Figures)	169
Picosecond Switching of Surface-Emitting Laser Diodes By K. Kojima and K. Kyuma (With 7 Figures)	174
Ultrafast Optical Switching Based on Stimulated Emission in GaAs/AlGaAs Multiple Quantum Wells By J.L. Oudar, C. Tanguy, J.P. Chambaret, and D. Hulin (With 2 Figures)	179
Picosecond Characterization of InGaAs/InAlAs Resonant Tunneling Barrier Diode by Electro-Optic Sampling By A. Tackeuchi, T. Inata, S. Muto, and E. Miyauchi (With 3 Figures)	182
Tunneling-Time Measurements of a Resonant Tunneling Diode By J.F. Whitaker, T.B. Norris, G. Mourou, T.C.L.G. Sollner, W.D. Goodhue, X.J. Song, and L.F. Eastman (With 3 Figures)	185
Electro-Optic Sampling of a Flip-Chip with a Distributed Feedback Laser Diode By K. Joshin, K. Kamite, T. Mimura, and M. Abe (With 3 Figures)	189

A New Scheme of Resolution Improved Electrooptic Sampling By T. Kamiya, R. Takahashi, H. Kamiyama, H.F. Liu, and I. Tanaka (With 1 Figure)	192
Metal-Semiconductor-Metal Photodiode on GaInAs Exhibiting Very Fast Response By O. Wada, H. Nobuhara, H. Hamaguchi, T. Mikawa, A. Tackeuchi, and T. Fujii (With 3 Figures)	195
Picosecond HEMT Photodetector: Improvement of Response Speed at Low Temperatures By T. Umeda, Y. Cho, H. Tanaka, and Nion Sock Chang (With 2 Figures)	198
Picosecond Transient Propagation Studies on Thin-Film Y-Ba-Cu-OTransmission LinesBy J.M. Chwalek, D.R. Dykaar, J.F. Whitaker, T.Y. Hsiang,G. Mourou, D.K. Lathrop, S.E. Russek, and R.A. Buhrman(With 2 Figures)	201
Greater than 100 GHz Traveling Wave Modulator By J. Nees, S. Williamson, and G. Mourou (With 4 Figures)	205

Part V Applications to Solid-State Physics

Ultrafast Scattering and Energy Relaxation of Optically Excited Carriers in GaAs and AlGaAs By W.Z. Lin, R.W. Schoenlein, M.J. LaGasse, B. Zysset, E.P. Ippen, and J.G. Fujimoto (With 7 Figures)	210
Time-Resolved Terahertz Conductivity of Photoinjected Hot Electrons in Gallium Arsenide By M.C. Nuss (With 2 Figures)	215
Femtosecond Transients and Dynamic Stark Effect inSemiconductorsBy N. Peyghambarian, B. Fluegel, S.W. Koch, J. Sokoloff,M. Lindberg, M. Joffre, D. Hulin, A. Migus, and A. Antonetti(With 3 Figures)	218
Bleaching of an Exciton Line Using Sub-T ₂ Pulses: Artifact or Reality? By M. Joffre, D. Hulin, J.P. Chambaret, A. Migus, A. Antonetti, and C. Benoit à la Guillaume (With 2 Figures)	223
Picosecond-Laser-Driven Shock Wave Dynamics in Semiconductors By X.Z. Lu, R. Garuthara, S. Lee, and R.R. Alfano (With 6 Figures)	226

Hole Burning in the Free Exciton Line in GaSe By F. Minami, A. Hasegawa, K. Azuma, and K. Inoue (With 2 Figures)	229
High Density Femtosecond Excitation of Hot Carrier Distributions in InP and InGaAs By W. Kütt, K. Seibert, and H. Kurz (With 2 Figures)	233
Single-Shot Reflectivity Study of the Picosecond Melting of Silicon Using a Streak Camera By Juen-Kai Wang, P. Saeta, M. Buijs, M. Malvezzi, and E. Mazur (With 2 Figures)	236
Subpicosecond Transient Grating Experiments in Amorphous Semiconductors By G. Noll, E. Göbel, and U. Siegner (With 2 Figures)	240
Femtosecond Dynamics of Optical Nonlinearities in Wide-Gap II–VI Semiconductors By J. Puls, W. Rudolf, F. Henneberger, D. Lap, V. Petrov, U. Stamm, and B. Wilhelmi (With 2 Figures)	243
Nonlinear Process-Induced Higher-Order Components of a Picosecond Transient Grating in CdS By H. Saito and A. Watanabe (With 3 Figures)	246
Dynamics of Exciton-Polariton Luminescence with High Repetition Tunable UV Picosecond Pulses By T. Kuga, M. Kuwata, H. Akiyama, T. Hirano, and M. Matsuoka (With 3 Figures)	249
Picosecond Dynamics of Exciton Polaritons in CuCl Single Crystals By T. Itoh, Jin Fashan, Y. Iwabuchi, and T. Ikehara (With 2 Figures)	252
Dynamics of Free and Momentarily Localized Excitons in HgI_2 and PbI_2 . By J. Takeda, T. Goto, and M. Matsuoka (With 3 Figures)	256
Formation and Relaxation of Excitonic Magnetic Polarons in $Cd_{1-x}Mn_xTe$ and $Cd_{1-x}Mn_xSe$ By Y. Oka, I. Souma, and Y. Kashiwagi (With 3 Figures)	259
Space- and Time-Resolved Spectroscopy of the Ultrafast Exciton Motion at a Stacking Fault Interface in Layered Bil ₃ Crystals By T. Karasawa, T. Kawai, I. Akai, and Y. Kaifu (With 3 Figures)	262
Ultrafast Optical Dephasing of Two-Dimensional Excitons in Bil ₃ By A. Nakamura, Y. Ishida, T. Yajima, T. Karasawa, I. Akai, and Y. Kaifu (With 3 Figures)	266

Ultrafast Relaxation of Localized Excitations in Solids By Y. Kayanuma (With 4 Figures)	269
Double Laser Excitation Spectroscopy on Picosecond Photochemical Reactions in Alkali Halide Crystals By Y. Suzuki, H. Abe, and M. Hirai (With 3 Figures)	274
Femtosecond to Microsecond Dynamics of Photoexcitations in a Polydiacetylene Film By T. Kobayashi, M. Yoshizawa, K. Ichimura, and M. Taiji (With 3 Figures)	277
Ultrashort Surface-Plasmon and Phonon Dynamics By M. van Exter and A. Lagendijk (With 2 Figures)	280
Femtosecond Image-Potential Dynamics in Metals By R.W. Schoenlein, J.G. Fujimoto, G.L. Eesley, and W. Capehart (With 2 Figures)	283

Part VI Dynamical Processes in Semiconductor Quantum Wells and Microstructures

Femtosecond Luminescence Spectroscopy: Investigation of Semiconductors and Semiconductor Microstructures By J. Shah, T.C. Damen, and B. Deveaud (With 5 Figures)	288
Femtosecond Carrier–Carrier Scattering Dynamics in p-Type and n- Type Modulation-Doped Quantum Wells By W.H. Knox, D.S. Chemla, G. Livescu, J.E. Henry, J.E. Cunningham, and S.M. Goodnick (With 2 Figures)	294
Cooling of Hot Carriers in Three- and Two-Dimensional Ga _{0.47} In _{0.53} As By H. Lobentanzer, W. Stolz, and K. Ploog (With 3 Figures)	297
Tunneling Processes in AlAs/GaAs Double Quantum Wells By T. Tada, A. Yamaguchi, T. Ninomiya, H. Uchiki, T. Kobayashi, and T. Yao (With 4 Figures)	300
Picosecond Laser Study of Electron Dynamics in Resonant Tunneling Structures By M. Tsuchiya, T. Matsusue, and H. Sakaki (With 3 Figures)	304
Phase Relaxation of Two-Dimensional Excitons in a GaAs Single Quantum Well By A. Honold, L. Schultheis, J. Kuhl, and C.W. Tu (With 1 Figure)	307

Intra-Well and Cross-Well Transport Measurements in Multiple Quantum Wells Using Transient Gratings By R.J. Manning, A. Miller, D.W. Crust, D. Herbert, and K. Woodbridge (With 3 Figures)	311
Pulse Propagation in GaAs Quantum Wells By Y. Masumoto and M. Adachi (With 3 Figures)	315
Excitonic-Polariton Propagation in a GaAs/AlGaAs Quantum Well By K. Ogawa, T. Katsuyama, and H. Nakamura (With 2 Figures) .	318
Investigation of Intersubband Relaxation in $GaAs/Al_xGa_{1-x}As$ Quantum Well Structures by an Infrared Bleaching Technique By A. Seilmeier, M. Wörner, HJ. Hübner, G. Weimann, and W. Schlapp (With 2 Figures)	321
Time-Resolved Photoluminescence Spectroscopy of GaAs Quantum Wells with 1W Picosecond Light Pulses Generated from a Visible Diode Laser	
By H. Yokoyama, M. Fujii, M. Sugimoto, H. Iwata, K. Onabe, and T. Suzuki (With 3 Figures)	324
Light-Induced Selection Rules in Semiconductors Using Ultrashort Pulses	
By M. Joffre, D. Hulin, A. Migus, A. Antonetti, and M. Combescot (With 2 Figures)	328
Simultaneous Virtual and Two-Photon Femtosecond Excitations in GaAs MQWS	
By W.H. Knox, J.B. Stark, D.S. Chemla, D.A.B. Miller, and S. Schmitt-Rink (With 3 Figures)	331
Ultrafast Control of Quantum Interference Currents by Virtual Charge Polarizations in Biased Quantum Well Structures By M. Yamanishi, M. Kurosaki, Y. Osaka, and S. Datta	224
(With 2 Figures)	334
Semiconductor Quantum Dots By T. Takagahara	337
Ultrafast Optical Nonlinearity in Semiconductor-Doped Glasses Controlled Through the Trapping State	
By M. Tomita, T. Matsumoto, and M. Matsuoka (With 6 Figures) .	340

Part VII	Nonlinear Optics, Coherent Spectroscopy and Spectroscopic Methods	
By C.V. Sh	d Photon Echoes ank, P.C. Becker, H.L. Fragnito, and R.L. Fork ures)	344
Femtosecon	nsform Spectroscopy in Dye-Doped Polymer Films Using d Accumulated Photon Echo n (With 3 Figures)	349
Aggregates	vnamics of Excitons and Polarons in Molecular over and D.A. Wiersma (With 2 Figures)	354
Femtosecon Molecules	d Relaxation Studies of Semiconductors and Large	554
and E. Wac Coherent Ti	hman (With 3 Figures)me- and Frequency-Domain Spectroscopy with a	357
By G.M. G	Distributed Feedback Dye Laser ale, P. Schanne, and P. Ranson (With 2 Figures)	363
Scattering C	ntum Beats Obtained by Impulsive Stimulated Raman Close to an Electronic Resonance noy and A. Mokhtari (With 3 Figures)	366
Materials By D. Cotte	Pump-Probe Interferometry of Nonlinear-Refractive er, C.N. Ironside, B.J. Ainslie, and H.P. Girdlestone ures)	369
Doped Glass	t of Ultrashort Phase Relaxation Time of Semiconductor- ses with Chirped Pulses aki, Y. Ishida, and T. Yajima (With 4 Figures)	372
	norometry Using Temporally Incoherent Light a and K. Watanabe (With 3 Figures)	375
Wave Mixin	d Kerr Dynamics and Three-Beam Degenerate Four- g with Incoherent Light ri, A. Terasaki, Xusan Cheng, and T. Kobayashi ure)	378
with Incohe By H. Naka	tsuka, Y. Katashima, K. Inouye, and R. Yano	
(With 3 Fig	ures)	381

New Method for the Measurement of Dephasing Time Using Incoherent Light with Reduced Noise and Its Application to CdS Fine Particles. By K. Misawa, T. Hattori, Y. Ohashi, H. Itoh, and T. Kobayashi (With 4 Figures)	384
Estimation of Ultrafast Relaxation Parameters from Excitation Spectra for Second-Order Optical Processes By S. Kinoshita and T. Kushida	387
Rise–Fall Ambiguities and Their Removal from Frequency-Domain Ultrafast-Measurement Techniques. By R. Trebino, C.E. Barker, and A.G. Kostenbauder (With 2 Figures)	390
Time-Resolved Resonant Light Scattering of an Electron–Hole System in an Intense Laser Field By T. Iida and T. Higashimura (With 4 Figures)	393
Microscopic Theory of Ultrafast Nonlinear Optical Phenomena in an Electron–Phonon System By M. Hama, M. Aihara, and M. Yokota (With 2 Figures)	396
Weak Localization of Femtosecond Laser Pulses by Random Media By R. Vreeker, M.P. van Albada, R. Sprik, and A. Lagendijk (With 2 Figures)	399
Measurements of the Electronic Wave Function in the Time Domain By L.D. Noordam, A. ten Wolde, and H.B. van Linden van den Heuvell (With 1 Figure)	402
Above-Threshold Ionization Observed in the Femtosecond Regime By H.B. van Linden van den Heuvell, H.G. Muller, P. Agostini, G. Petite, A. Antonetti, M. Franco, and A. Migus (With 1 Figure) .	404
Two-Photon Absorption Sampling Spectroscopy for Fast Transient Luminescence Measurements By Y. Takagi and K. Yoshihara (With 3 Figures)	407
Application of the Time Characteristics of Synchrotron Radiation to Transient Spectroscopy By T. Mitani, H. Okamoto, Y. Takagi, I. Yamazaki, M. Watanabe,	
K. Fukui, S. Koshihara, and C. Ito (With 4 Figures)	410

Part VIII Dynamics on Surfaces and at Interfaces

Femtosecond Laser Photoionization Mass Spectrometry of Molecules on Surfaces. By S.V. Chekalin, V.V. Golovlev, A.A. Kozlov, V.S. Letokhov, Y.A. Matveetz, and A.P. Yartsev (With 3 Figures) . 414

Picosecond Photoionization Mass Spectroscopy and Optical Spectroscopy of Hot Semiconductor Surfaces By D. von der Linde, B. Danielzik, K. Sokolowski-Tinten, and P. Harten (With 4 Figures)	420
Picosecond Surface Reaction Dynamics and Carrier Processes at Semiconductor Interfaces By R.J. Dwayne Miller, J.J. Kasinski, L.A. Gomez-Jahn, and L. Min (With 3 Figures)	424
Direct Observation of Photodynamics in Opaque Organic Microcrystals: A Picosecond Diffuse Reflectance Laser Photolysis Study By N. Ikeda, M. Koshioka, H. Masuhara, N. Nakashima,	
and K. Yoshihara (With 3 Figures)	428
Sequential Excitation Energy Transport in Stacking Multilayers: A Comparative Study Between Photosynthetic Antenna and Langmuir- Blodgett Multilayers	
By I. Yamazaki, N. Tamai, and T. Yamazaki (With 1 Figure)	431
Fluorescence Lifetime of Dye Molecules Near a Metal Surface By F.R. Aussenegg, A. Leitner, M.E. Lippitsch, and H. Reinisch (With 3 Figures)	434
Molecular Aspects of Fast Fluorescence Dynamics in Amorphous	101
Poly(N-Vinylcarbazole) Films By H. Sakai, A. Itaya, and H. Masuhara (With 2 Figures)	437
Part IX Energy Transfer and Relaxation	
Picosecond and Femtosecond Infrared Spectroscopy with CW Diode Lasers	
By P. Anfinrud, C. Han, P.A. Hansen, J.N. Moore, and R.M. Hochstrasser (With 4 Figures)	442
Vibrational Relaxation Measurements of Carbon Monoxide on Metal Clusters	
By E.J. Heilweil, R.R. Cavanagh, and J.C. Stephenson (With 1 Figure)	447
Vibrational Relaxation Pathways of the N-H Stretch of Pyrrole in Liquids	
By J.R. Ambroseo and R.M. Hochstrasser (With 2 Figures)	450
Picosecond Infrared Spectroscopy of Semiconductors and Molecules By W. Kaiser, R.J. Bäuerle, T. Elsaesser, HJ. Hübner,	450
and A. Seilmeier (With 4 Figures)	452

Time- and Frequency-Resolved Infrared Spectroscopy with Picosecond Pulses. By H. Graener, TQ. Ye, R. Dohlus, and A. Laubereau (With 2 Figures)	458
Femtosecond Dephasing Processes of Molecular Vibrations By W. Zinth, W. Holzapfel, and R. Leonhardt (With 3 Figures)	461
Effects of Coherence Transfer on Time-Resolved Coherent Anti- Stokes Raman Scattering and Transient Response of Resonant Light Scattering from Molecules By M. Hayashi, Y. Nomura, Y. Fujimura, and Y. Ohtsuki (With 2 Figures)	464
Vibrational Dynamics in the S_1 and S_0 States of Dye Molecules, Studied Separately by Femtosecond Polarization Spectroscopy By G. Angel, R. Gagel, and A. Laubereau (With 2 Figures)	467
Femtosecond Time and Frequency Resolved Fluorescence Spectroscopy of a Dye Molecule By A. Mokhtari, J. Chesnoy, and A. Laubereau (With 3 Figures)	470
Supercontinuum Spectroscopy of Ethyl Violet Using a Simple Pulse Compression Technique. By M.M. Martin, F. Nesa, E. Breheret,	470
and Y.H. Meyer (With 6 Figures) The Effect of Overlapping Electronic Excited States on the Subpicosecond Fluorescence Anisotropy Decay Behavior of Tryptophan in Water By A. Ruggiero, D. Todd, and G.R. Fleming (With 2 Figures)	473 477
External Magnetic Field Effect on the Fluorescence of CS_2 Excited to the $V {}^1B_2$ State By H. Abe, H. Hayashi, T. Imamura, and S. Nagakura (With 3 Figures)	480
Picosecond Pulse Laser Photoelectron Spectra of Some Molecular Excited States By K. Kimura, K. Sato, K. Okuyama, and M. Takahashi (With 3 Figures)	483
Simultaneous Analysis of the Fluorescence Decay Surface of Tryptophan as a Function of Temperature, pH, Quencher and Emission Wavelength By N. Boens, L.D. Janssens, and F.C. De Schryver	486
Picosecond Laser Photolysis of 1,8-Dibromoanthraquinone in Carbon Tetrachloride at Room Temperature By T. Nakayama, M. Ito, Y. Yuhara, K. Ushida, and K. Hamanoue	
(With 3 Figures)	489

Double- to Triple-Minima Change in the Adiabatic Potential Ex Curve and Exciton Relaxation Dynamics in α -Perylene Crystal By K. Mizuno, M. Furukawa, A. Matsui, N. Tamai, and I. Yan (With 2 Figure)	s nazaki
(With 2 Figures) Time-Resolved Exciton Self-Trapping in Pyrene Crystals By H. Port and R. Seyfang (With 3 Figures)	····· 492 ···· 495
By H. Polt and K. Seylang (while 5 Figures)	493
Part X Chemical Reaction and Solvation Dynamics	5
Femtosecond Spectroscopy of Transition States in Reactions By A.H. Zewail (With 6 Figures)	
Phase-Coherent Molecular Dynamics and Phase-Coherent Cl Observation and Manipulation of Elementary Molecular Mo	
Chemical Change By A.G. Joly, S. Ruhman, B. Kohler, and K.A. Nelson	
(With 4 Figures)	506
Ultrafast Laser Spectroscopy of Transient Ion Pair States in By N. Mataga, H. Miyasaka, T. Asahi, S. Ojima, and T. Ok (With 3 Figures)	
Geminate Recombination in Excited State Proton Transfer R Picosecond Dynamics in Electrolyte Solutions By E. Pines, D. Huppert, and N. Agmon (With 2 Figures)	
Barrierless Isomerization in Solution Studied by Pico- and Subpicosecond Spectroscopy. By U. Åberg, E. Åkesson, H. Bergström, T. Gillbro, and V. Sundström (With 2 Figure	s) 520
Freezing of an Isomerization Reaction at Phase Transition By J. Korppi-Tommola, A. Hakkarainen, T. Hukka, and J. S. (With 3 Figures)	
Trapping and Solvation of Electrons in Aqueous Media By A. Migus, S. Pommeret, N. Yamada, A. Antonetti, and Y. Gauduel (With 2 Figures)	527
Dynamics of Polar Solvation By G.R. Fleming and M.P. Maroncelli (With 4 Figures)	532
Ultrafast Molecular Dynamics in Solvating Liquids By W.T. Lotshaw, D. McMorrow, C. Kalpouzos, and G.A. Wallace (With 5 Figures)	
Unified Theory of Solvation Dynamics in Nonlinear Optical Processes and Electron Transfer By S. Mukamel and Yi Jing Yan (With 2 Figures)	

Coherent Vibrational Motion in Liquids: The Inhomogeneously Broadened Distribution of Intermolecular Oscillators By D. McMorrow, W.T. Lotshaw, T.R. Dickson, and G.A. Kenney- Wallace (With 2 Figures)	545
Hydrodynamic and Molecular Contributions to Rotational Diffusion in Liquids By D. Ben-Amotz, T.W. Scott, and J.M. Drake (With 2 Figures)	548
Influence of Functional Groups and Solvent on the Photoisomerization of Stilbenes. By N.S. Park, N. Sivakumar, E.A. Hoburg, and D.H. Waldeck (With 4 Figures)	551
Dynamics of Intramolecular Electron Transfer in Viscous Polar Solvents. By T. Okada, K. Nakatani, M. Hagihara, and N. Mataga (With 2 Figures)	555
Picosecond Investigation of Photoinduced Intramolecular Charge Transfer and Solvent Cage Relaxation Processes: Laser Dye DCM By J.C. Mialocq and M. Meyer (With 3 Figures)	559
Picosecond Ultraviolet Multiphoton Ionization and Geminate Charge Recombination in Hydrocarbon Solvents By Y. Hirata and N. Mataga (With 3 Figures)	562
Picosecond Ketyl Radical Spectroscopy By N.A. Borisevich, N.A. Lysak, S.A. Tikhomirov, and G.B. Tolstorozhev (With 3 Figures)	565
Electron Transfer Rates in Covalently Linked Donor–Acceptor Systems. By S. Doraiswamy, G.B. Maiya, N. Periasamy, and B. Venkataraman (With 2 Figures)	568
Excitation Transfer and Photo-Induced Electron Transfer in Conformationally Restricted Porphyrin Systems By A. Osuka, K. Maruyama, I. Yamazaki, and N. Tamai	
(With 2 Figures)	571

Part XI Dynamics of Biological Processes

Ultrafast Spectroscopy of Biological Processes By J.W. Petrich, J.L. Martin, and J. Breton (With 5 Figures)	576
Femtosecond Excited-State Reaction Dynamics of Retinal-Containing Photosystems	
By W. Zinth, J. Dobler, K. Dressler, and W. Kaiser (With 2 Figures)	581

Direct Observation of the Femtosecond Excited-State cis-trans Isomerization in Bacteriorhodopsin	
By R.A. Mathies, W.T. Pollard, C.H. Brito Cruz, and C.V. Shank (With 2 Figures)	584
Polarized Pump-Probe Spectroscopy of Exciton Transport in Bacteriochlorophyll <i>a</i> -Protein from <i>Prosthecochloris aestuarii</i> By T.P. Causgrove, S. Yang, and W.S. Struve (With 2 Figures)	590
Picosecond Excitation Transport in Photosynthesis: Factors for Optimization of Light Harvesting By A. Freiberg, T. Pullerits, and K. Timpmann (With 2 Figures)	593
Excitation Energy Annihilation in Aggregates of Chlorophyll a/b Complexes By T. Gillbro, Å. Sandström, M. Spangfort, R. van Grondelle, and V. Sundström (With 2 Figures)	596
Picosecond Studies of Dynamic Solvent Effects on a DNA Intercalator by a Synchroscan Streak Camera System By M. Ishikawa (With 3 Figures)	599
Picosecond Fluorescence and Absorbance Study of Charge Separation and Charge Stabilization Processes in Photosystem II Particles. By A.R. Holzwarth, G.H. Schatz, H. Brock, and C.G. Colombano (With 2 Figures)	602
Picosecond Absorption Spectra of a Reaction Center from a Novel Thermophilic Photosynthetic Bacterium <i>Chromatium tepidum</i> By T. Nozawa, M. Terauchi, T. Kobayashi, and M. Hatano (With 2 Figures)	606
Time-Resolved Fluorescence Spectra of D-Amino Acid Oxidase: A New Fluorescent Species of the Coenzyme By F. Tanaka, N. Tamai, and I. Yamazaki (With 2 Figures)	610
Index of Contributors	613

Femtosecond Excited-State Reaction Dynamics of Retinal-Containing Photosystems

W. Zinth, J. Dobler, K. Dressler, and W. Kaiser

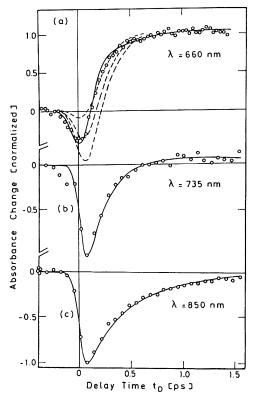
Physik Department E11, Technische Universität München, Arcisstraße 21, D-8000 München 2, Fed. Rep. of Germany

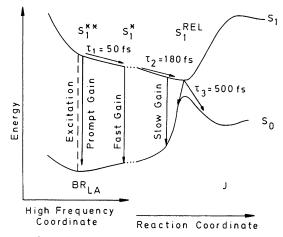
Bacteriorhodopsin (BR) is one of the best studied photoreactive systems. It functions as a light-driven proton pump building up a proton gradient across the cell membrane of halobacterium halobium /l/. The reaction scheme of BR may be understood as follows: In the primary step, light absorption initiates the isomerization of the retinal chromophore from the all-trans to the 13-cis configuration. This reaction establishes the starting condition for the subsequent much slower proton transport process /2-4/. It is the purpose of this paper to reveal the ultrafast molecular processes which proceed during the primary reaction. Due to the recent development of femtosecond techniques these ultrafast phenomena may now be directly studied /5,6,7/.

In our experiments we work with amplified pulses from a CPM dye-laser (Cu vapor pumped amplifier) for excitation (λ = 620 nm) and with probe pulses at different wavelengths selected from a femtosecond continuum. The change of transmission of the sample induced by the exciting pulses is measured with high precision as a function of time delay. The time resolution of the experiment depends on the width Δt of the cross-correlation function between exciting and probing pulses. Typical values of Δt = 90 fs are obtained in our apparatus permitting the investigation of dynamic processes faster than 50 fs.

The choice of the probing wavelength is of major importance for the interpretation of the observed absorption transients. (i) At short probing wavelengths in the region of the 0-0 transition of the molecule the absorption changes may be related to different processes, e.g. to cross relaxation of an inhomogeneous ground-state distribution, to excited-state processes, and to the formation of photoproducts. (ii) Working at longer wavelengths in the fluorescent region of the molecule, the ground-state processes may be neglected, i.e. a more straightforward interpretation of the experiment is possible /5,6/.

Time resolved changes of absorption observed on light-adapted Bacteriorhodopsin at room temperature are shown in Fig.1 for three probing wavelengths in the gain region of BR. At long probing wavelengths (λ = 850 nm, Fig.1c) a pronounced gain is found (the transmitted pulse is larger than the incident pulse). The gain decays at later time with a time constant of 500 fs. A slight 180 fs contribution is present at very early times. With decreasing probing wavelength the 500 fs contribution disappears. At 735 nm (Fig.1b) a 180 fs process dominates the decay of the gain. Fig.1a is taken at a still shorter probing wavelength of 660 nm, where the S₁-S₀ absorption of BR may still be neglected. At late times the build-up (with 500 fs) of an induced absorption of the intermediate J is seen. Around time zero we observe a very short-lived gain. A detailed analysis of the experimental data with a precise determination of time zero is due to an additional intermediate with a lifetime of approximately 50 fs (50±25 fs).




Fig. 1 Time-resolved changes of absorption (negative values correspond to gain) induced by exciting femtosecond pulses at $\lambda = 620$ nm. The probing wavelengths are $\lambda = 660$ nm (a), $\lambda = 735$ nm (b), $\lambda = 660$ nm (c). The solid curves are calculated using the decay kinetics discussed in the text. The broken curves are calculated excluding the 50 fs kinetic.

The experimental data indicate that there exists an interesting rapid sequence of events in S_1 , the excited electronic state, with time values of $\tau_1 = 50$ ps, $\tau_2 = 180$ ps, and $\tau_3 = 500$ ps.

Taking into account the spectral properties of the transient signal and the known molecular data of retinal the following microscopic picture of the very early reactions is suggested (see Fig.2): The incident photons promote the retinal to the Franck-Condon state S1** on the S1 potential surface, where a number of vibrational modes are displaced relative to the S1 equilibrium position /8/. Within 50 fs after light absorption an equilibration of vibrational modes occurs. During this first reaction the molecule remains practically unchanged along the coordinates of the low-frequency modes. The following slower reactive motion of the retinal is related to the 180 fs gain kinetics. In this process, part of the isomerization (presumably a rotation by 60 to 90 degree around the Cl3-Cl4 double bond) takes place and the molecules arrive at the bottom of the S1 potential surface. From this energy position the isomerization continues to form the intermediate product J or the molecule returns via internal conversion to the original ground state with a time constant of 500 fs. Numerical estimates of the isomerization motion support the present interpretiations.

In conclusion it should be noted that additional experiments on other retinal containing systems gave evidence for a very similar hierarchy of events, indicating that the reaction mechanisms found in Bacteriorhodopsin is of a more general nature.

582

Acknowledgement: the experimental work was done in collaboration with Prof. D. Oesterhelt.

References

- J.K. Lanyi: In <u>Bioenergetics</u>, ed. L. Ernster (Elsevier, Amsterdam 1984) p.314;
 W. Stockenius, R.A. Bogomolni, Ann. Rev. Biochem. <u>52</u>, 587 (1982)
- 2. M.C. Nuss, W. Zinth, W. Kaiser, E. Kölling, D. Oesterhelt: Chem. Phys. Lett. <u>117</u>, 1 (1985)
- H.J. Polland, M.A. Franz, W. Zinth, W. Kaiser, E. Kölling, D. Oesterhelt: Biophys. J. <u>49</u>, 651 (1986);
 H.J. Polland, W. Zinth, W. Kaiser: In <u>Ultrashort Phenomena</u>, Vol.4, eds. D.H. Auston, K.B. Eisenthal (Springer, Berlin 1984) p. 456
- D.H. Auston, K.B. Eisenthal (Springer, Berlin 1984) p. 456
 H.J. Polland, M.A. Franz, W. Zinth, W. Kaiser, E. Kölling, D. Oesterhelt: Biochem. Biophys. Acta <u>767</u>, 635 (1984)
- 5. J. Dobler, W. Zinth, W. Kaiser, D. Oesterhelt: Chem. Phys. Lett. <u>144</u>, 215 6. W. Zinth: Naturwiss. <u>75</u>, 173 (1988)
- (1988) 7. R.A. Mathies, C.H. BritoCruz, W.T. Pollard, C.V. Shank: Science <u>240</u>, 777 (1988)
- 8. E.J. Heller, Acc. Chem. Res. 14, 368 (1981)