Hydra: Research Methods

Edited by Howard M. Lenhoff

University of California Irvine, California

PLENUM PRESS • NEW YORK AND LONDON

Library of Congress Cataloging in Publication Data

Main entry under title:

Hydra: research methods.

Includes bibliographical references and index.

1. Hydra. I. Lenhoff, Howard M.

QL377.H9H93 1982

593.7/1

82-24648

ISBN 0-306-41086-9

Bayerische Staatsbibliothek München

Cover photo courtesy of Regula Bänninger and Prof. Pierre Tardent, Zoological Institute, University of Zurich, Switzerland.

1983 Plenum Press, New York
 A Division of Plenum Publishing Corporation
 233 Spring Street, New York, N.Y. 10013

All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher

Printed in the United States of America

Contents

	Introduction	1
1.	Terminology for Morphology and Cell Types	5
<i>I</i> .	Culture and Handling	
2.	Collecting Hydra	17
3.	Identifying Hydra Species	19
4.	Water, Culture Solutions, and Buffers	29
5.	Visual Monitoring of pH in Solutions with Phenol Red M. Rahat and Vanda Reich	35
6.	Hatching Brine Shrimp Larvae Axenically and/or in a Range of Quantities	39

xxvi Contents

7.	Budding Rates of Individual Hydra Howard M. Lenhoff	47
8.	Culturing Large Numbers of Hydra Howard M. Lenhoff	53
9.	Turbidimetric and Pipetimetric Measurements of Number of Hydra	63
10.	Culturing Hydra of the Same Species but of Different Sizes	67
11.	Culturing Sexually Differentiated Hydra	71
12.	Preparing Axenic Hydra M. Rahat and Vanda Reich	79
II.	Histology	
13.	Preparing Hydra for Transmission Electron Microscopy Richard L. Wood	87
14.	Preparing Hydra for Scanning Electron Microscopy Richard L. Wood	95
15.	Preparing Hydra for Freeze-Fracture and Freeze-Etching Richard L. Wood	105
16.	Whole Mounts for Light Microscopy	117
17.	Preparing Histological Sections for Light Microscopy Richard D. Campbell	121

Contents xxvii

18.	Vital Staining: Fluorescent and Immunofluorescent, and Review of Nonfluorescent Dyes	131
	John F. Dunne and C. Lynne Littlefield	
III.	Macrophotography	
19.	Macrophotography	143
IV.	Quantitative Cytology	
20.	Dissociating Hydra Tissue into Single Cells by the Maceration Technique	153
21.	Cell Cycle Analysis of Hydra Cells Charles N. David	157
22.	Mitotic Index	165
23.	Measuring Numbers of Nematoblasts, Nematocytes, and Nematocysts	169
24.	Marking Epithelial Cells in Living Hydra with Indian Ink	183
<i>V</i> .	Techniques Using Isotopes	
25.	Incorporating [³H Thymidine into Hydra by Microinjection	189
26.	Labeling with Gaseous ¹⁴ CO ₂ or by Feeding Hydra on	

xxviii Contents

	Radioactive Tissues Howard M. Lenhoff	193
27.	Fractionating Small Amounts of Radioactive Tissue Howard M. Lenhoff	197
28.	Rapid Whole-Mount Radioautography Howard M. Lenhoff	205
VI.	Isolating Hydra Mutants by Sexual Inbreeding	
29.	Isolating Hydra Mutants by Sexual Inbreeding Tsutomu Sugiyama	211
VII.	Manipulating Tissue Organization	
30.	Grafting: A Rapid Method for Transplanting Tissue Harry K. MacWilliams	225
31.	Quantitative Interpretation of Transplantation Phenomena	233
32.	Dissociated Tissues into Cells and the Development of Hydra from Aggregated Cells	251
33.	Culturing Interstitial Stem Cells in Hydra Aggregates Charles N. David	. 261
34.	Separating Viable Tissue Layers	267
35.	Preparing Ectoderm/Endoderm Chimeras	273

Contents xxix

VIII	. Manipulating Cellular Composition in Vivo	
36.	Eliminating All Nonepithelial Cells Using Colchicine Beverly A. Marcum and Richard D. Campbell	281
37.	Culturing Epithelial HydraBeverly A. Marcum	287
38.	Reducing Populations of Interstitial Cells and Nematoblasts with Hydroxyurea Hans R. Bode	291
39.	Preparing Hydra viridis with Nerve Cells and No Interstitial Cells, or with Neither of These Cell Types	295
40.	Eliminating Interstitial Cells with Nitrogen Mustard	299
41.	Altering Cell Population Levels by Gamma Irradiation Cheng-Mei Fradkin	303
42.	Reducing Number of Nematocytes in the Tentacles	305
IX.	Assay and Isolation of Substances Controlling Morphogenesis in Hydra	
43.	Assay and Isolation of Substances Controlling Morphogenesis in Hydra H. Chica Schaller, Cornelis J. P. Grimmelikhuijzen, and Tobias Schmidt	311

X. Isolation and/or Properties of Acellular Mesoglea and Nematocysts

xxx Contents

44.	Isolating Mesolamellae	327
45.	Isolating Undischarged and Discharged Nematocysts from Acontiate Sea Anemones	331
46.	Dissolving the Nematocyst Capsule Wall and Identifying Its Protein Component(s)	335
47.	Purifying an Inhibitor of Succinoxidase Activity from Hydra littoralis Edward S. Kline and Vaman S. Waravdekar	341
48.	Assays for Activities of Nematocyst Venoms and Their Components David A. Hessinger	347
XI.	Analytical Procedures	
49.	·	361
50.	Extracting and Characterizing Hydra RNA: Modifications to Allow Extraction of Undegraded Material in the Presence of High Levels of Degradative Enzymes	373
51.	Colorimetric Analysis for Protein of Hydra	379
52.	Determining Respiration and Oxygen Evolution of Green Hydra with the Rank Brothers Oxygen Electrode Donald W. Phinns, Ir	383

Contents xxxi

XII.	Symbiotic Relationships	
53.	Isolating Endosymbiotic Algae from <i>Hydra viridis</i> L. Muscatine	391
54.	Preparing Aposymbiotic Hydra	393
55.	Introducing Symbiotic Algae into Aposymbiotic Hydra R. L. Pardy	399
56.	Measuring Number of Algal Symbionts in <i>Hydra viridis</i> R. L. Pardy	401
57.	Measuring in Vivo Translocation of Reduced Organic Carbon Compounds from Endosymbiotic Algae to Hydra L. Muscatine	407
58.	Spectrophotometric Assay for Maltose	411
XII	I. Methods for Epizootilogical Research with Hydra	
59.	Methods for Epizootilogical Research with Hydra	417
XIV	. Electrophysiology and Behavior	
60.	Recording Electrical Activity	429
61.	Bioassay for, and Characterization of, Activators and Inhibitors of the Feeding Response	443
	Index	453

Contributors

- Richard S. Blanquet, Department of Biology, Georgetown University, Washington, D.C. 20057
- Hans R. Bode, Developmental Biology Center and Department of Developmental and Cell Biology, University of California, Irvine, California 92717
- Patricia M. Bode, Developmental Biology Center and Department of Developmental and Cell Biology, University of California, Irvine, California 92717
- Richard D. Campbell, Department of Developmental and Cell Biology, University of California, Irvine, California 92717
- Jean Danner, Biochemistry Section, NIOSH, Morgantown, West Virginia 26505
- Charles N. David, Department of Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461
- Robert M. Day, Department of Developmental and Cell Biology, University of California, Irvine, California 92717
- John F. Dunne, Developmental Biology Center, University of California, Irvine, California 92717
- Kristine M. Flick, Developmental Biology Center and Department of Developmental and Cell Biology, University of California, Irvine, California 92717

vi Contributors

Cheng-Mei Fradkin, Department of Developmental and Cell Biology. University of California, Irvine, California 92717

- Cornelius J. P. Grimmelikhuijzen, Max-Planck-Institut für medizinische Forschung, Abteilung Biophysik, 6900 Heidelberg, Federal Republic of Germany
- Wyrta Heagy, Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003
- David A. Hessinger, Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California 92350
- Jeanne Ivy, Department of Developmental and Cell Biology, University of California, Irvine California 92717
- Robert K. Josephson, School of Biological Science, University of California, Irvine, California 92717
- Edward S. Kline, Department of Biochemistry, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298
- Howard M. Lenhoff, Department of Developmental and Cell Biology. University of California, Irvine, California 92717
- Georgia E. Lesh-Laurie, Department of Biology, Cleveland State University, Cleveland, Ohio 44115
- C. Lynne Littlefield, Developmental Biology Center, University of California, Irvine, California 92717
- Stephen S. Macintyre, Department of Anatomy, Case Western Reserve University, Cleveland, Ohio 44106
- Harry K. MacWilliams, Department of Anatomy, University of Massachusetts Medical Center, Worcester, Massachusetts 01605
- Beverly A. Marcum, Department of Biological Sciences, California State University, Chico, California, 95929
- L. Muscatine, Department of Biology, University of California, Los Angeles, California 90024

Contributors vii

That T. Ngo, Department of Developmental and Cell Biology, University of California, Irvine, California 92717

- Patricia Novak, Department of Developmental and Cell Biology, University of California, Irvine, California 92717
- Joann J. Otto, Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
- R. L. Pardy, School of Life Sciences, University of Nebraska, Lincoln, Nebraska 68588
- Donald W. Phipps, Jr., School of Life Sciences, University of Nebraska, Lincoln, Nebraska 68588
- M. Rahat, Department of Zoology, The Hebrew University of Jerusalem, Israel
- Vanda Reich, Department of Zoology, The Hebrew University of Jerusalem, Israel
- Norman Rushforth, Department of Biology, Case Western Reserve University, Cleveland, Ohio 44106
- Charles L. Rutherford, Biology Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
- H. Chica Schaller, Max-Planck-Institut für medizinsche Forschung, Abteilung Biophysik, 6900 Heidelberg, Federal Republic of Germany
- Tobias Schmidt, Max-Planck-Institut für medizinsche Forschung, Abteilung Biophysik, 6900 Heidelberg, Federal Republic of Germany
- G. Scott Smith, Developmental Biology Center and Department of Developmental and Cell Biology, University of California, Irvine, California 92717
- Alan E. Stiven, Department of Biology 046A, University of North Carolina, Chapel Hill, North Carolina 27514
- Tsutomu Sugiyama, National Institute of Genetics, Mishima, Shizuoka-ken 411. Japan

viii Contributors

Joseph R. Voland, Department of Pathology, University of California, San Diego, La Jolla, California

- Nancy Wanek, Developmental Biology Center and Department of Developmental and Cell Biology, University of California, Irvine, California 92717. Current address: Department of Biology and Health Science, Chapman College, Orange, California 92666.
- Vaman S. Waravdekar, Microbiological Associates, Bethesda, Maryland 20016
- Richard L. Wood, Department of Anatomy, University of Southern California, School of Medicine, Los Angeles, California 90007

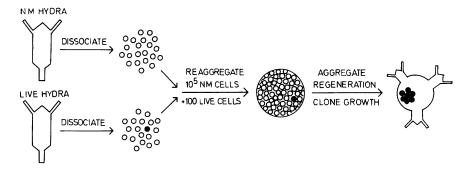
Chapter 33

Culturing Interstitial Stem Cells in Hydra Aggregates

Charles N. David

PURPOSE

To investigate the growth and differentiation of interstitial stem cells of hydra, we have developed a method for culturing those cells within aggregates of cells taken from hydra previously treated with nitrogen mustard (NM) (David and Murphy, 1977; Sproull and David, 1979).


INTRODUCTION

When small numbers of cells are seeded in such NM aggregates, which serve as "feeder layers," individual stem cell clones can be identified and counted. In addition, the feeder layer technique is suitable for following the differentiation of interstitial cells committed to become nerve cells or nematocytes (Gierer et al., 1972; Venugopal and David, 1981; Fujisawa and David, 1981; Yaross et al., 1982).

GENERAL COMMENTS

The procedure for culturing stem cells in NM aggregates is outlined schematically in Fig. 1. Treat hydra with NM to destroy endogenous

Charles N. David • Department of Molecular Biology, Albert Einstein College of Medicine, Bronx, New York.

FIGURE 1. Schematic representation of method for cloning interstitial stem cells in aggregates of NM-treated cells. (•) Stem cell.

interstitial cells (see Chapter 40). Dissociate the treated hydra to yield a cell suspension (see Chapter 32). Likewise, dissociate sample of untreated hydra tissue. Mix an aliquot of the untreated cell suspension containing an appropriate number of stem cells with ~200,000 NM-treated cells and centrifuge the mixture to form a cell aggregate. During incubation of the aggregate over the next few days (see Chapter 32), stem cells from the untreated sample will proliferate to form interstitial cell clones. To visualize such clones, stain the aggregates with Toluidine Blue. Interstitial cells and differentiating nematoblasts in clones stain darkly and can be easily identified against the lightly stained epithelial cells of the host tissue.

About 0.6% of total hydra cells give rise to interstitial cell clones in NM aggregates (David and Murphy, 1977). Since about 50% of the cells used to form the aggregates are sloughed during the cloning procedure, about 2 times 0.6% or 1.2% of hydra cells are estimated to be stem cells by the cloning assay. Since the fraction of stem cells in intact hydra estimated from cell flow analysis is 4% (David and Gierer, 1974), the apparent cloning efficiency of stem cells in NM feeder layers is about 25%. This estimate is a minimum one since some stem cells differentiate in NM aggregates instead of forming clones.

MATERIALS

Polyethylene centrifuge tubes (0.4 ml) with smooth, conical bottoms and 100-ml pear-shaped centrifuge bottles with graduated tips.

Prepare cell culture medium (Chapter 4) in large batches and store it frozen. Do not sterilize the medium since the tissue used in experiments is not sterile.

"Ecology" dishes are Petri dishes in which hydra have been cultured for 2-3 days. In addition to hydra, they contain amoebae, flagellates, and other protozoa which normally coexist with hydra in our cultures. They are the best "antibiotic" available for developing aggregates.

PROCEDURES

Preparing NM-Treated Host Tissue

Treat about 2000 hydra with 0.01% NM for 10 min. Feed and wash the hydra 1 day after NM treatment and use them for cloning experiments 5–6 days later. By this time the tissue is essentially free of endogenous interstitial cells. Note that the NM treatment must be done very carefully because only one live untreated hydra, which contains 1000 stem cells, among 1000 NM-treated hydra, can contribute a significant background of stem cell clones to the NM host tissue.

Dissociating Cells

Dissociate NM-treated hydra in cell culture medium and collect the cells by centrifuging (200g; 6 min) them in 100-ml pear-shaped centrifuge bottles. Discard the supernatant and resuspend the cell pellet in 30 ml fresh medium per 0.2 ml cell pellet. This suspension corresponds to a cell concentration of about 5×10^5 /ml; 0.4-ml aliquots, on centrifugation, yield aggregates containing 200,000 cells.

To dissociate the small amounts of tissue (5–10 hydra) required for cloning experiments, add 100–200 NM-treated hydra as carrier to the live tissue and dissociate the mixture. Typically such suspensions contain 200–500 clone-forming cells (CFU) per milliliter, so that about 2 μ l of the suspension per aggregate is sufficient to yield an average of one clone per aggregate.

Preparing Aggregates

To prepare aggregates, mix an aliquot of NM host suspension with a sample of the live cell suspension such that the mixture contains ~ 2.5 CFUs/ml. Distribute the mixture to 0.4-ml polyethylene centrifuge tubes with a Pasteur pipet. The suspension is held in the tubes by capillarity so the tubes can be put on their side and otherwise handled rather roughly. Place 15-20 such tubes into large 50-ml tubes and centrifuge them at 100g for 6 min to pellet the cells.

After centrifugation, remove the small tubes from the centrifuge and stand them upside down in a 100-ml beaker. The cell pellets come off the bottom of the tubes after 5–15 min and fall to the meniscus from which they can easily be dropped into a Petri dish with fresh medium. Allowing the pellets to come off the bottom in this matter minimizes cell loss due to handling.

Dilute the cell culture medium in twofold steps over the next 18 hr (see Chapter 32) and then transfer aggregates to "ecology" dishes for further incubation. Two to three hundred aggregates can be conveniently processed in an experiment using the procedure outlined above.

After 5-6 days of clone growth, fix aggregates with ethanol, stain with 0.1% of Toluidine Blue and prepare whole mounts (Diehl and Burnett, 1964). Clones are easily identified as groups of darkly staining interstitial cells and differentiating nematoblasts. By focusing up and down through an aggregate, it is possible to identify clones throughout an aggregate.

Quantitatively Estimating Clone-Forming Cells

Before using the NM feeder layer technique to assay CFUs, it is useful to estimate the number of CFUs in the sample to be assayed. To do this, determine the total cell number in a parallel sample of tissue using maceration (Chapter 20) and multiply this number by 0.006 to obtain an estimate of the number of CFUs in the sample. Then prepare several sets of 30 NM aggregates with dilutions of the live cell suspension estimated to yield 0.5–2.0 CFUs/aggregate. Score the total number of clones in each set after 5–6 days of clone growth.

To determine the actual number of CFUs present in the sample, (1) count the total number of clones in a set of 30 aggregates. This value equals the number of CFUs in the sample used to prepare the aggregates. (2) Calculate the fraction of the aggregates which contain clones and use the Poisson distribution to estimate the average CFUs/aggregate (n): (aggregates with clones)/(total aggregates) = $1 - e^{-n}$.

Both methods should yield comparable results. The variability between replicate assays done on the same day and equivalent assays performed on different days is $\pm 30\%$.

Rapid CFU Assay

To improve on the speed and accuracy of the cloning assay, we have developed an alternative procedure in which large numbers of CFUs are seeded in NM aggregates and the total size of the interstitial cell population is determined by maceration after 4 days of clone growth (David and Plotnick, 1980). Since the growth rate of stem cell clones is independent of clone density up to 100 clones per aggregate (Sproull and David, 1979), the number of interstitial cells (1s+2s) on day 4 is linearly proportional to the number of CFU seeded in the aggregates on day 0. The proportionality constant is $19 (1s+2s)_{\text{day 4}}/\text{CFU}_{\text{day 0}}$.

To use this procedure inoculate NM aggregates with 5-50 CFUs each. After 4 days of clone growth (the clones are confluent and individual clones cannot be distinguished), macerate five aggregates (Chapter 20) and count the total number of interstitial cells (1s+2s) per aggregate. Divide this number of 19 to determine the number of CFUs in the inoculum.

PRECAUTIONS

Because bacterial contamination can overtake and destroy aggregates, add streptomycin (50 μ g/ml) to the medium with each daily medium change. In addition, maintain aggregates in "ecology" dishes so that the protozoa present will consume much of the contaminating bacteria.

To achieve good cloning, complete an experiment rapidly. Stem cells are not viable in culture medium for more than a few hours, and the ability of host tissue to form good aggregates also decays with time. It is best to complete an experiment from the start of dissociation to centrifugation of aggregates in less than 1 hour. For this reason the procedure as outlined above contains no cell-counting steps or other delays.

Carry out the entire procedure at 20°C. At higher temperatures cell losses are greater and aggregates survive poorly.

REFERENCES

- David, C. N., and Murphy, S. 1977. Characterization of interstitial stem cells in hydra by cloning. *Dev. Biol.* 58:372-383.
- David, C. N., and Plotnick, I. 1980. Distribution of interstitial stem cells in *Hydra*. *Dev. Biol.* 76:175-184
- Diehl, F., and Burnett, A. L. 1964. The role of interstitial cells in the maintenance of hydra. I. Specific destruction of interstititial cells in normal, sexual and non-budding animals. J. Exp. Zool. 155:253-259.
- Fujisawa, T., and David, C. N. 1981. Commitment during nematocyte differentiation in hydra. J. Cell Sci. 48:207-222.
- Gierer, A., Berking, S., Bode, H., David, C. N., Flick, K., Hansmann, G., Schaller, C., and Trenker, E. 1972. Regeneration of hydra from reaggregated cells. *Nature (London) New Biol.* 239:98-101.

- Sproull, F., and David, C. N. 1979. Stem cell growth and differentiation in *Hydra attenuata*. I. Regulation of self-renewal probability in multi-clone aggregates. *J. Cell Sci.* 38:155–169.
- Venugopal, G., and David, C. N. 1981. Nerve commitment in hydra. I. Role of morphogenetic signals. *Dev. Biol.* 83:353-360.
- Yaross, M., Baca, B., and Bode, H. 1982. Commitment of hydra interstitial cells to nerve cell differentiation must be initiated during S-phase. *Dev. Biol.* (in press).

Acid fuchsin, 129	Alga, endosymbiotic, 388-411
Acontia thread, 332	introducing into hydra, 399
Acrolein, 89, 90	isolating
Acrylamide gel, 337-338	maltose secretion by, 411
separation gel, 337	measuring numbers by
stacking gel, 337	fluorometric estimation, 403-404
Activation of head, defined, 313	growth kinetics, 402-403
Activation-inhibition model, 246-249	maceration technique, 401-402
chi-square distribution, 247	removing from hydra, 393
gradient, 248	Ammonium alum, 128
level, 247-248	Amputation and regeneration, 218
log-linear model, 246	Analytical procedures, 361-387
optimization method, 248	Anchistropus sp., 18
profile, shape of, 247-249	Anesthesia, 97, 122
test, statistical, 246-247	Aniline blue, 129
Activator, 311	Antibiotics, 79-81, 212
of feeding response, 443-451	Araldite for embedding specimen, 88-92
of head, 313	Artemia salina, 39-46
potency, 447-449	cyst, 39-46
Activity, electrical, 429-441	and bacteria, 41
conduction velocity, 436-439	decontamination, 41
potential	and fungi, 41
spontaneous, 429-435	food for hydra, 39–46
transepithelial, 435-436	hatching
recording, intracellular, 436	apparatus, 43
Advantage of hydra in experiments, 3	method, 42-44
Aggregate, 261-268	by bubbling, 42, 44
development from, 251-259	by floating, 42
from nitrogen mustard treatment, 261-268	hatching solution, 41-42
into pellet, 254–257	incubation, 44
Aiptasia pallida, see Sea anemone	larva, axenic, 39-46
Aldehyde, fixation by, 88-91	nauplii, 2, 39-46, 54, 213, 306, 393, 419

6-Carboxyfluorescein (cont.)
photobleaching with, 139
Cell, 9–14
basal, 14
cloning, 262, 264
composition, 290-291
counting chamber, 178, 251
cycle
analysis, 157-163
doubling time, 158
G2-phase, 160-161
kinetics, 157
S-phase, 159-160
time, 158-159
dissociation, 153, 263
ectodermal, 9, 10
endodermal, 9, 10, 14
interstitial, 11-14, 291-294
absence of, 295-302
eliminating, 299-304
lineage, 11–14
and nitrogen mustard, 299-302
glandular, 14
lineage
epitheliomuscular, 9-11
interstitial, 11-14
loss, monitoring of, 285–286
mucous, 14
of muscle mat, 9
of nerve, 295–297
types, 2, 5–14
zymogen in, 14
see also individual cell types
Chimera formation, 273–277
Chi-square distribution, 247
test for, 312
Chlorella, endosymbiotic, 411
see Alga, endosymbiotic
Chloroform, 374, 375
Chlorohydra sp., 22–24
Cinclide, 332
Cleaning hydra, 81–82, 253
Clone-forming cell, assay for, 264
Clorox, 106
Cnidoblast, see Nematoblast
Cnidocil, see Nematocyte
Cnidocyte, 12
Coelentron, 5
Colchicine, 167, 258, 281–287, 295–303
and cell disappearance, 285
double treatment 284_286

Colchicine (cont.)	Diethylpyrocarbonate, 374, 375
single treatment, 282, 284	Differentiation, sexual in hydra, 71–77
Collecting specimens, 17–18	by carbon dioxide tension, 73-74
Column, 6	factors affecting, 71–72
twisted mutant, 214, 216	by feeding schedule, 75–76
Computer algorithm, hill-climbing, 246	by temperature drop, 77
Conduction velocity	by temperature rise, 72–73
of axon, 437	3-Dimethylamino acid, 412
of propagated wave, 436	Dimethylsulfoxide, 132
recorded, 437	Disadvantage of using hydra in experiments,
Contamination, see Bacteria, Parasites	2
Copper, as cell poison, 450	Disk, basal, see Foot
Counting cells, see Quantification	Disk electrophoresis, 336
Crab, see Fiddler crab	apparatus, 336
Crayfish, 348, 356–357	stock solutions, 336
desheathing, 357	Dissociating into cells, 153, 263
dissection, 357	medium for, 153, 257
nerve failure, irreversible, 357	Dithioerythritol, 335
Culturing hydra, 17–83	Dithiothreitol, 338, 335
large numbers, 53–62	DMSO, see Dimethylsulfoxide
medium, 29–34	DNA
contaminants, 29	bacterial, 189
ingredients, 31–33	content of hydra, 162
phenol red, 35-37	and hydroxyurea, 292
pure water, 30-31	DNase, 374, 376
tray method, 54-60	Doubling time of cells, 32, 158 see Growth
vertical plate method, 54–56, 60–62	Dye, see Stain
Cytology, quantitative, 153-186	2,0,000 3.4
cell cycle analysis, 157–163	Ecology dish, 263
maceration technique, 153-156	Ectoderm, 5, 108, 138, 267–271
mitotic index, 165-168	autoradiography, 119
numbers of	and carbon particle, 183
nematoblasts, 169-182	-endoderm chimera, 273–277
nematocysts, 169-182	formation, 268
nematocytes, 169-182	isolation, 267–271
• '	by mechanical method, 269-270
DAPI, see 4.6-Diamidino-2-phenylindole-2-	by perfusion method, 269
hydrochloride	Egg. 8
Dehydration, 98	hatching time, 214
Desmosome, 1, 9, 12, 21, 172, 173, 217	stimulating formation, 71
Detergent	Ehrlich's hematoxylin stain, 124, 125, 128
Nonidet P-40, 328	Electrode, 429-433
Sarkosyl NL-97, 328	Electron microscopy
Development from aggregated cells, 251-259	scanning, see Scanning electron microscopy
4.6-Diamidine-2-phenylindole-2-	transmission, 87-94
hydrochloride, 132	preparation for, 87-90
carcinogenic, 135	Electrophoresis on acrylamide gel, 338
method, 135-136	Electrophysiology, 429-451
Diadumene, see Sea anemone	Embedding specimen, 88, 89, 92, 123-124
3-(3,4-dichlorophenyl)-1,1-dimethylurea,	Endoderm, 5, 138, 267-271
394	-ectoderm chimera, 273-277

Endoderm (cont.)	Foot (basal disk), activator (cont.)
formation, 268	defined, 318
isolating, 267-271	purification, 323
peeling off, 270	formation
Endosymbiont, see Alga, endosymbiotic	activation, 238-241, 243
autotrophic, 407	frequency of, 232, 234, 236
Enteron, 101	inhibition, 238-241, 243
see Coelenteron	gradient, 244-245
surface, 109	optimization of activation-inhibition
Enzyme assay, 361-371	level, 244-251
oil-well method, 367-377	uncertainty, statistical, 241-247
Eosin, 123, 128	inhibitor, 318
Epidermis, 5	assay, 319
Ethanol, 117, 118, 122, 123, 128, 174, 198,	defined, 318
199	purification, 323
Epizoötological research, 417-425	sectioning, 124
Evans blue, 132, 133, 136	Formalin, 402
carcinogenic, perhaps, 137	Forced feeding, 304
Everting whole hydra, 270	Fractionation of tissue, 197–203
Extrusion mechanism for nematocyst, 331	Freeze-drying, 362-363
	Freeze-etching, 105-115
Fast green stain, 127	Freeze-fracture, 105–115
Feeder-layer technique, 261	Fructose-1,6-diphosphate, 305-307
Feeding	Fungus, 41
forced, 304	
pipet, 288	G2-Phase, 160-161, 291
radioactive tissue, 194-195	Gastric cavity, 5
response, 443-451	Gastrodermis, 5
activator, 443-451	Gentamicin, 257
potency, 447-449	Glass needle, 225-227
bioassay for, 443-451	Glass suction electrode, 431–432, 439
inhibitor, 443-451	Gluconic acid, 412
competitive, 448-450	Glucose oxidase, 411
noncompetitive, 451	Glucose oxidase and peroxidase, 412
and potassium ion, 450	Glucosidase, 412
quantification, 447	Glutaraldehyde, 89, 90, 96, 106
Ferric alum, 127	Glutathione, 195, 269, 446
Ferritin, 105	and mouth-opening, 269
Feulgen stain, 124, 125, 127, 162, 166	Glutinant
method described, 127	stereoline, 12
and mitotic cell, 118-119	streptoline, 12
reagent, 162	Glycerol, 128, 332, 393–394
Fiddler crab, 342, 345, 348	Gonad development, 213
Film, photographic, 146, 147	Gonocyte, meiotic, 14
Filter, micropore, 197–198, 205–206	Gradient, morphogenic, 234
Fixative, 87–90, 107, 121–129, 166, 174	Grafting, see Transplantation
Fluorescent microscopy, 133	dish, 225–226
Fluorometer, 404	tissue, 1, 2, 225–233, 274, 299, 301
Foot (basal disk), 6–9, 231	Granule, intramembranous, 110, 111, 114
activator	Green hydra, see Hydra
assay, 316-318	Growth

Growth (cont.)	Hoechst 33258, 133-135
count, 49-50	carcinogenic, 134
curve, 158	Hydra, epithelial, 281
rate, 32, 47-52	cloning, 286
calculation, 51	culturing, 287-290
clonal, 48-52	definition, 287
doubling time, 32, 158	feeding technique, 288, 289
precautions, 51-52	by force, 288-290
Gut, 5	formation, 287
see Coelenteron, Enteron	by colchicine, 287
	by gamma-irradiation, 287
Hair point, 362	by inbreeding, 287
Handling hydra, 17-83	inserting shrimp into, 288
Hatching time of egg, 214	maintaining, 290
Head, 6, 7, 231, 311	mouth-opening, 288
activation-inhibition model, 238	Hydra, green
defined, 313	
gradient, 233, 235	oxygen evolution, 383–387
optimization level, 244–251	photosynthesis, 386
	respiration, 383–387
uncertainty, statistical, 241–247 activator	Hydra species, 19–28
	H. americana, 23, 25
assay	H. attenuata, 22, 26, 154, 175, 235,
fast, 313–314	281–286, 292, 295–297, 299, 304
standard, 321–313	312, 450
purification, 321, 323	H. braueri, 23, 25
formation, frequency of, 232, 234,	H. canadiensis, 25
236, 238	H. carnea, 23, 26, 27
inhibitor	H. cauliculata, 23, 26, 27
assay	H. circuminata, 25
alternative, 315–316	H. fusca, 25
standard, 314–315	H. hadleyi, 22–24
defined, 315	H. hymanae, 22–25
purification, 323	H. littoralis, 23, 27, 31, 32, 235-237,
reduced, 231	336–337, 341–346, 419, 445
Heidenhain Susa fixative, 125	H. magnipapillata, 26, 211, 213, 281
Hemacytometer, 404	H. minima, 23, 25
Hematoxylin, 128, 166	H. oligactis, 23-26, 267, 373
Ehrlich's, 124, 125	H. ovata, 25
iron, 124–127	H. parva, 25
Hemolysis	H. pirardi, 26, 299, 450
assay, 349-353	H. pseudoligactis, 23-26, 267, 299, 329,
curve, 352	418, 419
data, plotted, 352-353	H. robusta, 25, 26
microtitration, 353	H. rutgerensis, 23, 26, 27
percentage of, 352	H. stellata, 25
plotting data, 352-353	H. utahensis, 23, 25
spectrophotometry of, 351	H. viridis, 22, 154, 213, 244, 247, 267,
treatment, mathematical, 351-353	281, 295–297, 329, 394–396, 411.
see Rat red blood cells	412, 418, 419, 450
Hexadecane, 368	H. viridissima, 22–24
Histology, 87-140	H. vulgaris, 23, 26, 27

Hydra species (cont.)	Lead nitrate stain, 171-176
criteria for identifying, 19	preparation, 172, 174
literature on systematics, 20	L-α-Lecithin, 354
see specific aspects of hydra	Leeuwenhoek, Anthony van, 1
Hydramoeba hydroxena, 18, 417-418	Lethality
growth, 420-421	bioassay, crustacean, 348-349
host mortality, 421	LD ₅₀ , 349
hydra system, 417	Light microscopy, 117–130
infection rate, 423	Log-linear model, 246
stock culture, 418–419	Lyophilization, see Freeze
survivorship curve method, 422-423	
Hydranth, 5, 6	M solution, 31
count of, 49–50	Maceration technique, 153-156, 166, 401
Hydroxyurea, 281, 291–294	autoradiography, 155
and cell population, 293	counting cells, 154–155
and DNA, 292	fixative, 153
Hypostome, 5, 6, 92, 100, 102, 112, 113,	for single cells, 153–156
124, 231	solution for, 153, 402
121, 231	staining, 156
Immunofluorescence, indirect, 138-139	Macrophotography, 143–149
Immunoglobulin (goat anti-mouse), 133	Maertin's solution, 412
Inbreeding, 287	Magnesium uranyl acetate, 89
depression, 2, 3	Mallory's triple stain, 124, 125, 129
sexual, 211–221	one-step method, 129
see Mutant	Maltose
India ink marker, 183–186, 274	of alga, endosymbiotic, 411
Infection, bacterial, see Bacteria	assay, spectrophotometric, 411–413
Inhibition, see Foot, Head	McIlwaine's buffer, 412
Injecting hydra, 189, 400	Medium, see Culture solution
Interference microscopy, 119	Membrane, 110, 111
Iron hematoxylin stain, 124, 125, 127	Mercaptoethanol, 335, 338
Irradiation	Mesolamella, 2, 5, 102, 103, 112–114, 186,
gamma-ray, 287, 303-304, 396	281
Isocitrate dehydrogenase, 368	isolation, 327–329
microassay for, 368	properties, 327–329
Isorhiza, 217	sticky, 328
atrichous, 12, 173	Mesoglea, see Mesolamella
holotrichous, 12, 173	Methanol, 318, 321, 404
Isotope technique, 189–203	3-Methyl-2-benzothiazolinone hydrazone
	hydrochloride, 412
Kerona pediculus, 18, 424	Methylene blue staining, 131
10, 12,	of nematocyst, 119
Labeling	Methylphenyldiazenecarboxylate, 450
double, 160	Methylsalicylate, 123
by feeding, 193	Metridium sp., see Sea anemone
by injection, 193–196	Microassay, 367
radioactive, 158–159, 189–207	precautions, 370
with ¹⁴ CO ₂ , 196	Microelectrode, glass capillary as, 429–432,
N-Lauroyl sarcosine, 328	435
Lavdowsky's fixative, 118, 119, 122, 124,	Microinjection pipet, 399-400
166	Micropipet, 184
- + +	

Microscalpel, 362	Mutant (cont.)
Microscopy	regeneration-deficient, 215
bright field, 181	twisted column, 214, 216
electron, 87-104	Mycostatin, 212
fluorescent, 133	Myoneme, 102, 103, 112, 114
interference, 119	
light	Narcosis, see Anesthesia
phase, 169, 251	Nauplii, see Artemia salina
polarization, 119	Neck, 6, 7
scanning electron, 95-104	Nematoblast, 11, 160, 219, 291-294, 299,
transmission electron, 87-94	300
Microtitration	lead nitrate-thioacetic acid stain, 171-176
dilution, 353	and microtubule, 2
plate, 353	numbers of, 169-182
Microtubule, 1, 2	Nematocyst, 24, 90, 91, 96, 98, 108, 304,
Mineral oil, 368	305, 327–387
Mitosis	assay for
duration, 161	hemolysis, 349-353
index, 161, 165-168	lethality, 348-349
labeled as a technique, 160-161	phospholipase, 353–355
Mitotic index, 161, 165-168	capsule, 2, 177, 335-339
defined, 165	composition, 337-338
for growth estimation, 165	discharged, 331–333
and growth rhythm, 167	mechanism for, 331
Morphogen, 311–324	dissolution, 337
assay, biological, 312-318	examination, 20-21
for activator, 312-314, 316-318	extrusion, 331
for inhibitor, 314–316, 318	medium for, 331
purification on column, 318-323	isolation, 327–328
Morphogensis, 311–324	isorhiza, holotrichous, 21
control, chemical, 311-324	number, 169–182
Morphology, 5–14	properties, 327–387
Mount, whole, 117-120, 166-167, 174-175	in sea anemone, 331-333
Mouse, 345	suspension, 176–178
CAF strain, 342	in tentacle, 217
lethality bioassay, 349	thread protein, 335
LD ₅₀ , 349	toxin, 331
liver, radioactive, 195	type
tissue, radioactive, 195	desmoneme, 21
Mouth, 7	isorhiza
-opening, 269, 288	atrichous, 21
Muscle mat, 9	holotrichous, 21
Mutant, 211-221	photomicrograph, 170
cell types in altered proportions, 215, 219	stenotele, 21
developmental, 211	undischarged, 331-333
inbred, 211–221	venom, 341, 347–358
male, sterile, 270	Nematocyte, 12, 162, 219, 301, 305-307
maxi, 214	on body column, 179–181
mini, 214	and interference microscopy, 119
multiheaded, 215–216	and microscopy, bright-field, 181
nematocyst-deficient, 215, 217	numbers, 169–182

Nematocyte, numbers (cont.)	Phenol (cont.)
reduced, 305-307	-chloroform extraction of RNA, 373-37
suspension, 176-178	Phenol red, 35-37
in tentacle, 176-178	Phospholipase
and toluidine-blue stain, 179	assay
Nembutal, 122	manometric, 353-355
Nerve	titrimetric, 355
cell, 13, 295-297	carbon dioxide release, 354
net, 14	thin-layer chromatography, 355-356
Neubauer cell counting chamber, 178, 251	in venom, 353
Neuron, sensory, 13	Phosphorus method, 356
Neutral red, 131	Phosphotungstic acid, 129
Nile blue sulfate, 131, 132	Photobleaching, 394–395
Nipple, 7	Photography, see Macrophotography
	Photoöxidation, 338
Nitrogen mustard, 258, 261–268, 275–276,	
299–302	Photosynthesis of green hydra, 386
and cell cycle, 299–302	Phototaxis, 18
precautions, 277	in an eyeless animal, 1
treatment, 276	Physalia sp. venom, 347
	Poisson distribution, 264
Oöcyte, 8, 14	Polarization microscopy, of muscle process
Oögonium, 14	119
Operculum, 108	Polyethylene needle, 190–191
Optimization method, 244	Polyp, 5, 68, 69
Orange G, 129	Pore, aboral, 7
Osmium tetroxide, 344	Portugese man-of-war, see Physalia sp.
dangers of, 345	Potassium ion, and feeding response, 450
Ovum, 14	Potassium acetate, 374–376
Ovary, 7	Potential
Oxygen	spontaneous, 429-435
consumption measured, 383-386	transepithelial, 435-436
electrode, 383	Procamborus clarkii, see Crayfish
calibration, 384	Procedures, analytical, 361-387
chamber, 387	Pronematocyst, 11
instability, 386	Protein
evolution, 386-387	analysis, colorimetric (Lowry et al.),
of green hydra, 383-387	379-381
and photosynthesis, 386	Protozoön, 257, 263
	Pyridine nucleotide fluorescence, 367
Paraffin, 121, 133	- , ,
Paraformaldehyde, 89, 90, 97, 106	Quantification (numbers), 175
Parasites of hydra, 18	and feeding response, 447
see also Anchistropus, Hydramoeba,	pipetimetric, 64–65
Kerona, Trichodina	turbidimetric, 64
Peduncle, 6, 7	Quartz fiber ultramicrobalance, 363–367
	calibration, 366
Pelmatohydra oligactis, 32	·
P. pseudoligactis, 32	precaution, 367
Penicillin G, 212	use, 366
Phagocytosis, 183, 300	Quartz filter, 365
Phase microscopy, 169, 251	Dadia atina hadaa 102 106
Phenol. 374	Radioactive hydra, 193–196

Radioactivity	Sodium cacodylate, 89, 90, 106, 171
assay, 199, 202	Sodium citrate, 332
calculation, 200, 202	Sodium dodecyl sulfate, 374, 403
percentage, 202	Sodium pentobarbital, 106
Radioautography, see autoradiography	Sodium thiosulfate, 300
Rat red blood cell, 349	Solutions, culture, 30-31
Razor blade fragment as knife, 226, 228	Species of Hydra, see Hydra species
holder for, 228	Specimen chamber, 147-148
Reaggregation, 299, 301	for photography, 148
Red blood cell	for shock, electric, 307
absorbancy unit, 351	Spermatid, postmitotic, 14
hemolysis, 349-353 see Hemolysis	Spermatocyte, 14
preparation, 349, 350	Spermatogonium, 14
standardizing, 350-351	Spermatozoa, 14
washing, 350	S-phase of cell cycle, 159-160, 291
Reflex camera, 144	Spurr's embedding medium of low viscosity,
Regeneration, 1, 299	88
after amputation, 218	Square wave
Relaxant, 122	pulse, 357
Reproduction, asexual, 1, 53	stimulator, 306
Respiration of green hydra, 383-387	Squash preparation, 336-337
Rifampicin, 212, 257, 282, 288	Stacking gel of acrylamide, 337
RNA, 373–377	Staining, 88, 124–125
buffer, 374	maceration for, 156
electrophoresis, 376	procedures, 118
extraction by phenol-chloroform, 373-377	of tissue, 174
fractionation, 87, 88, 376	vital, 1, 131–140
purification, 375–376	by feeding
ribosomal, 374	colloidal carbon, 132
RNase, 375	colored food, 131
0	fluorescent dye, 132
Scanning electron microscope, 95–104	Stains
resolution, 95	acid fuchsin, 129
x-ray microanalysis, 95	aniline blue, 129
Schiff reagent, 119, 127	Biebrich scarlet, 128
Sea anemone, acontiate, 331–333	eosin, 123, 128
Aiptasia pallida, 332, 333, 347, 353	Evans blue, 132, 133, 136, 137
Diadumene sp., 332	fast green, 127
Metridium sp., 332	Feulgen, 118, 162
nematocyst venom, 347	application, 118–119, 124–125, 127,
neurotoxin, 356	166
sodium current, 356	fluorescent, 132
Sectioning hydra, 123–124	hematoxylin, 124, 125, 128, 166
SEM, see Scanning electron microscopy	India ink, 274
Separation gel of acrylamide, 337	iron hematoxylin, 124–127
Sesame oil, 344	lead nitrate, 171–176
Sexually differentiated hydra, 71–77	Mallory's triple, 124, 125, 129
methods for, 73–76	methylene blue, 119, 131
Shock, electric, 306	neutral red, 131
chamber for, 307	Nile blue sulfate, 131, 132
Size of hydra, 67–70	orange G, 129

Stains (cont.)	Tissue radioactive (cont.)
phenol red, 35-37	fractionation, 197-203
thiolactic acid lead, 119, 171-176	regeneration, 1
toluidine blue, 118, 124, 125, 129, 179,	transplanting, 225-249
180	Toluidine blue stain, 118, 124, 125, 129,
see also Dye	179, 180
Stalk, 6	and interstitial cell, 118
see Peduncle	Track plate, nuclear, 205, 206
Stenotele, 12, 21, 172, 173, 178, 217	Transection, 81–82
dissolution, 337	Translocation, of reduced organic carbon
reduction in number, 306	compounds, 407-409
Stereoline glutinant, 12	Transplantation
Streptoline glutinant, 12	axial, 231
Streptomycin, 265	experiments, 235-236
Succinoxidase inhibitor, 341-346	of foot, 231
Susa fixative, 122	of head, 231
Symbiont, green alga, 394, 401-405	lateral, 230, 231
Symbiosis, 388-413	property, intrinsic, 234
	quantitative interpretation, 233-249
Taeniola, 9	Tray method for culturing hydra, 54, 56-60
Tannic acid, 92	cleaning, 56-58
Teflon block, 368	feeding, 56
Tentacle, 7, 231	precaution, 59-60
isolation, 176-177	Treatment, chemical, 258
whorl, 6	Trembley, Abraham, 1
Testis, 7, 8I	Memoires(1744), 1
induce formation, 71	Trichloracetic acid, 198-199
Theca, 8	Trichodina pediculus, 424
Thioglycolate, 335, 338	Trimethoprim, 395
Thiolactic acid lead staining, 171-176	t-Test, 312
of nematoblast, 119	TX, see 6-Carboxyfluorescein
Thiol solution, 336, 337	•
Thymidine, labeled, 132, 158-162	Uca pugilatov, see Fiddler crab
injected into hydra, 189	Uncertainty, statistical, 241-248
Tissue	Urethane, 122, 174
chimera, preparation of, 275-279	,
culturing stem cells, 261-266	Vital staining, 131-140
dissociation, 154, 251-259	review of, 131-132
ectoderm, 267-271	see also Dye, Stain
endoderm, 267-271	Van Harreveld solution, 356
enzyme assay, 361-271	Variable, redundant, 245
grafting, 1, 2, 225-233, 274, 299, 301	Vertical plate method for culturing hydra,
layer, viable	54-56,60-62
separating, 267-271	care of tank, 61
maceration, 153-156	feeding, 61
manipulation, 225-279	precaution, 61-62
microgram quantities, weighed out,	seeding, 60
361–371	Villus, endodermal, 11
organization, 225-279	Volvent, 12
pieces of, 155	****
radioactive, 193-196	Warburg flask, 194
•	· • · · · · · · · · · · · · · · · · · ·

X-ray microanalysis, 95 Xylene, 117, 118 Zenker fixative, 122 Zymogen, 14

Bayerische Staatsbibliothek München