Evolution of the First Nervous Systems

Edited by

Peter A. V. Anderson

University of Florida St. Augustine, Florida

Plenum Press New York and London Published in cooperation with NATO Scientific Affairs Division

Contents

I. INTERCELLULAR COMMUNICATION

Chapter 1

Cnidarian Gap Junctions: Structure, Function and Evolution

• C. R. Green

1.	Introduction.	3
2.	Gap Junction Structure	4
3.	The Biochemistry of Gap Junctions	6
4.	Regulation of Gap Junction Communication	8
5.	The Roles of Gap Junctions.	9
	5.1. Metabolic Cooperation	9
	5.2. Ionic Coupling	10
	5.3. Transfer of Regulatory Molecules and Growth Control	10
	5.4. Development and Patterning	10
6.	Gap Junctions in the Nervous System	11
7.	Gap Junctions in the Cnidaria	13
8.	Gap Junctions and the Evolution of the First Nervous Systems	15
	References	17
Cł	napter 2	
In	tercellular Junctions in Ctenophore Integument	
	• Mari-Luz Hernandez-Nicaise, Ghislain Nicaise	
	and Thomas S. Reese	

1.	Introduction	21
2.	Materials and Methods	23
3.	Results	23
	3.1. Macular Gap-like Junctions	23
	3.2. Apical Belt Junctions	25
	3.3. Annular Junctions	27
4.	Discussion	27
	4.1. Gap Junctions	27
	4.2. Apical Belt Junctions	28
	References	30

Chemical and Electrical Synaptic Transmission in the Cnidaria

	• Andrew N. Spencer	
1.	Introduction.	33
2.	Chemical Synaptic Transmission	34
	2.1. Ultrastructure of Chemical Synapses	34
	2.2. Physiology of Scyphozoan Synapses	35
	2.3. Physiology of Hydrozoan Chemical Synapses	39
3.	Electrical Synaptic Transmission	47
4.	Is Electrical or Chemical Transmission	
	more Primitive?	•••
5.	Conclusions	
	References	50

Chapter 4

	 ontrol of Morphogenesis by Nervous System-derived Factors S. A. H. Hoffmeister and S. Dübel
1.	Introduction
2.	Assay Systems for Head and Foot Factors
3.	Biochemical Characteristics of the Factors
4.	Action of Activators and Inhibitors in Hydra
5.	Activators are Co-released with Carrier Molecules
5.	Action at the Cellular Level
	References
CI	napter 5
	ifferentiation of a Nerva Call Battery Call Complex in Hudra

υ	inerentiation of a Nerve Cen-Battery Cen Complex in Hydra	
	• Engelbert Hobmayer and Charles N. David	
1.	Introduction.	71
2.	Morphology of Battery Cells	72
3.	Development of NV1+ Nerve Cells During Head	
	Formation	72
4.	Requirements for Formation of NV1-Battery Cell	
	Complex	76
	4.1. Formation of NV1+ Nerve Cells Requires	
	Interstitial Cell Differentiation	76
	4.2. Formation of NV1+ Nerve Cells Requires	
	Differentiation of New Battery Cells	76
5.	Stimulation of NV1+ and Battery Cell Differentiation	
	in Head Activator-treated Polyps	78
	References	79

Chemical Signaling Systems in Lower Organisms: A Prelude to the Evolution of Chemical Communication in the Nervous System

1.	Introduction	81
2.	Slime Molds and Yeast: Signal Molecules and their	
	Synthesis	82
3.	Transmembrane Signaling Systems	84
	3.1. Structure of Receptors Coupled to G-proteins	86
	3.2. Structure and Role of G-protein in Signal	
	Transduction	87
4.	Inactivation of Signal Molecules	88
5.	Internalization of Chemical Sensing Machinery	89
6.	Conclusions	89
	References	92

Chapter 7

Neurons and their Peptide Transmitters in Coelenterates

- C. J. P. Grimmelikhuijzen, D. Graff, O. Koizumi,
 - J. A. Westfall and I. D. McFarlane

1.	Introduction.	95
2.	Imunocytochemical Staining of Neurons in	
	Coelenterates	99
3.	Ultrastructural Localization of RFamide-like	
	Peptides	101
4.	Isolation of Neuropeptides from Coelenterates	101
5.	Discussion	106
	References	107

Chapter 8

Peptidergic Neurotransmitters in the Anthozoa

	· •																
	• I. D. McFarlane, D. Graff and C	2.	J.	F) .	G	rir	nr	ne	lil	ch	ui	ijz	eı	1		
1.	Introduction	•		•	•	•				•	•		•	•	•	•	111
2.	Organization of the Sea Anemone																
	Nervous System					•	•			•			•	•	•	•	112
3.	Comparison with Other Cnidaria						•							•		•	114
4.	Comparison with Higher Invertebrates			•									•		•		115
5.	Functions of Anthozoan Neuropeptides .						•							•	•		116
6.	Physiology of Other Putative Transmitters										•						121
7.	Conclusions						•										123
	References						•										125

Catecholamines, Related Compounds and the Nervous System in the Tentacles of some Anthozoans

•	J.	Van	Marle
---	----	-----	-------

1.	Introduction	29
2.	The Endodermal Plexus	29
3.	The Ectodermal Plexus	30
4.	Evidence for Cholinergic Mechanisms	32
5.	Evidence for GABA-ergic and	
	Glutaminergic Mechanisms	32
6.	Evidence for Catecholamines	33
7.	Evidence for 5-hydroxytryptamine	34
8.	Cellular Localization of Transmitters	34
9.	Pharmacology	36
	Conclusions	
	References	39

Chapter 10

The Antiquity of Monaminergic Neurotransmitters: Evidence from Cnidaria

٠	Michel	Anctil
---	--------	--------

1.	Introduction.		•	•			•	•	•				•	•	•		141
2.	The Investigated Species: Renilla köllikeri		•						•	•	•		•	•	•	•	142
3.	Evidence for Catecholamines		•	•	•				•	•	•	•	•	•	•	•	144
4.	Evidence for Serotonin					•.					•	•		•		•	147
5.	Functional Implications	•						•					•	•			150
	Evolutionary Implications																
	References																

Chapter 11

Rethinking the Role of Cholinergic Neurotransmitters in the Cnidaria

	• Eliana S	Sce	en	ne	S																										
1.	Introduction	•							•	•	•				•						•	•				•	•	•	•		157
2.	Scyphozoa						•	•			•			•				•	•	•	•	•	•	•		•	•	•	•	•	159
	Anthozoa																														
4.	Hydrozoa					•		•					•			•	•	•	•	•	•		•	•	•	•	•	•	•	•	160
	Discussion																														
	References	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	164

Chapter 12 Wide Range Transmitter Sensitivities of a Crustacean Chloride Channel

• Hanns Hatt and Ch. Franke

1.	Introduction				•			•	•	•	•	•	•		•	•	•	167
2.	Methods							•							•	•	•	168
3.	Results and Discussion	۱.													•	•	•	168
	References																•	175

Chapter 13

Two Pathways of Evolution of Neurotransmitters-Modulators

٠	C.	Ladd	Prosser	
•	C.	Lauu	1103501	

1.	Introduction									•					•	•		•	•	•	•	•	•	•	•	•	•	•	•	177
2.	Amino Acids an	nd	B	lic	ge	eni	c.	Aı	ni	ne	s;	P	uri	ine	es		•	•	•			•	•	•	•	•	•		•	177
3.	Neuropeptides												•					•				•				•			•	181
	Conclusions																													
	References .		•													•	•	•		•	•	•	•	•	•	•	•	•	•	191

Chapter 14

Summary of Session and Discussion on Intercellular Communicati	on
• Michael J. Greenberg	195
References	199

II. ELECTRICAL EXCITABILITY

Chapter 15

Ion Channels of Unicellular Microbes

Ching Kung																						
Introduction	•								•					•	•		•	•		•	•	203
Ion Channels of Paramecium .			•				•				•	•		•		•	•	•	•	•	•	204
Ion Channels of Yeast	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	206
References	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	212
	Ion Channels of <i>Paramecium</i> . Ion Channels of Yeast Ion Channels of Bacteria Solute Senses vs. Solvent Senses	Introduction	Introduction	Introduction. . . . Ion Channels of Paramecium . . . Ion Channels of Yeast . . . Ion Channels of Bacteria . . . Solute Senses vs. Solvent Senses . .	Introduction.	Introduction. <	Introduction. <	Introduction. <	Introduction. <	Introduction. <	Introduction. Introduction. Ion Channels of Paramecium Introduction Ion Channels of Yeast Introduction Ion Channels of Bacteria Introduction Solute Senses vs. Solvent Senses Introduction	Introduction. <	Introduction.	Introduction. Introduction. Ion Channels of Paramecium Introduction Ion Channels of Yeast Introduction Ion Channels of Bacteria Introduction Solute Senses vs. Solvent Senses Introduction	Introduction. Introduction. Ion Channels of Paramecium Introduction Ion Channels of Yeast Introduction Ion Channels of Bacteria Introduction Solute Senses vs. Solvent Senses Introduction	Introduction. <	Introduction. <	Introduction. <	Introduction. Introduction. Ion Channels of Paramecium Introduction Ion Channels of Yeast Introduction Ion Channels of Bacteria Introduction Solute Senses vs. Solvent Senses Introduction	Introduction. <	Introduction. Introduction. Ion Channels of Paramecium Introduction Ion Channels of Yeast Introduction Ion Channels of Bacteria Introduction Solute Senses vs. Solvent Senses Introduction	Ching Kung Introduction.

xviii

	napter 16
10	n Currents of Paramecium: Effects of Mutations and Drugs
	• Todd M. Hennessey
1.	Introduction
2.	Membrane Ion Currents
	2.1. Resting Currents
	2.2. Mechanosensory Currents
	2.3. Hyperpolarization-induced Currents
	2.4. Depolarization-induced Currents
3.	Contributions of Ion Currents of
	Swimming Behavior
	3.1. Changes in Swim Speed
	3.2. Avoiding Reactions (A.R.)
	3.3. Continuous Ciliary Reversal (CCR)
	3.4. Cellular Adaptation
4.	Effects of Mutations on Membrane Ion currents
	4.1. Decreased I_{Ca}
	4.2. Increased I_{Ca}
	4.3. Decreased I_{KCa}
	4.4. Increased I_{KCa}
	4.5. Decreased I_{NaCa}
	4.6. Increased I_{NaCa}
	4.7. Resting Current
	4.8. Other Behavioral Mutants
5.	Effects of Drugs on Membrane Ion Currents
	References
Cł	apter 17
	embrane Excitability and Motile Responses in the Protozoa, with
	articular Attention to the Heliozoan Actinocoryne contractilis
- •	-
	• Colette Febvre-Chevalier, André Bilbaut, Jean Febvre
	and Quentin Bone
1.	Introduction
2.	Cytology of Actinocoryne contractilis
	and the Kinetics of Contraction-Relaxation
3.	Control of Contraction and Stabilization Assays
	in Actinocoryne
4.	Membrane Excitability in Relation to
	Contractile Activity in Actinocoryne
	4.1. Receptor Potential, Action Potential,
	Contractile Activity

Contents

		241
	4.2. Ionic Basis of the Action Potential	241
5.	Correlation between Membrane Excitability	
	and Contraction in Other Protists	242
	5.1. Dinoflagellates	242
	5.2. Acantharians	
	5.3. Contractile Ciliates	
	5.4. Free-living Helizoans	
6.	Correlation Between Membrane Excitability	
	and Locomotion in Protists	246
		246
		246
	6.3. Free-living Ciliates	247
7	Conclusions	
1.		
	References	249

Chapter 18

Ion Channels and the Cellular Behavior of Stylonych	ia
---	----

• Joachim Dietmer

1.	Introduction			•		•	•	•	•	•	•	•	•	•		•	255
2.	Stimulus Reception			•				•	•	•	•	•	•			•	256
	Voltage-dependent Excitability																
	The Ca^{++} -Channels																
5.	The K^+ -channels						•			•		•		•	•		261
6.	Why Such a Diversity of Ion Channels.						•	•	•	•		•		•	•	•	262
	Concluding Remarks																
	References	•	•		•			•	•	•	•	•		•		•	264

Chapter 19

Ionic Currents of the Scyphozoa

	• Peter A. V. Anderson	
1.	Introduction.	267
	Voltage-Activated Currents	
	2.1. Total Membrane Currents in Cyanea Neurons	
	2.2. Inward Currents in Cyanea Neurons	
	2.3. Outward Currents in Cyanea Neurons	
	2.4. Total Membrane Currents in	
	Chrysaora Cnidocytes	276
3.	Ligand-activated Currents	
	Conclusions	
	References	

The	Electrophysiology	of	Swimming	in	the	Jellyfish	Aglantha	digitale
•	Dobart W Mood	h						

	• Robert. W. Meech	
1.	Introduction.	281
	Anatomy	283
	Behavior and Physiology	284
	3.1. Swimming	284
	3.2. Axon Impulses	285
	3.3. Chemical Synapses	287
	3.4. Lateral Neurons	288
	3.5. Current Spread in the Myoepithelium	289
	3.6. Muscle Contraction	289
4.	Ion Channels	291
	4.1. Sodium and Calcium Currents	291
	4.2. Potassium Currents	292
5.	Discussion	293
	5.1. Constraints at a Molecular Level	293
6.	Conclusions	296
	References	296

Chapter 21

Ionic Currents in C	enophore Muscle	Cells
• André Bilbaut,	Marie-Lux Herna	andez Nicaise

and Robert W. Meech

1.	Intro	duction	99
		hology of Muscle Cells	
		ed Muscle Cells	
4.	Elect	rophysiology of Muscle Cells	02
	4.1.	Resting Potential	02
	4.2.	Action Potentials	02
	4.3.	Ionic Depenence of Action Potentials	03
		Ionic Membrane Currents in Muscle Cells	05
5. 1	Discus	ssion	10
	5.1.	Cell Membrane Excitability	10
	5.2.	Ionic Currents in Ctenophore	
		Muscle Cell Membrane	10
	5.3.	Diversity of Ionic Currents	12
		rences	

Chapter 22 Polyclad Neurobiology and the Evolution of Central Nervous Systems

	• Ha	arold Koopowitz																					
1.	Intro	duction								•													315
2.	Neur	oanatomy									•			•				•	•			•	316
		The Nature of the Plexus																					316
	2.2.	Cell Anatomy																					317
	2.3.	Glia																					318
	2.4.	Neuromuscular Junctions																					318
3.		ophysiology																					318
		Ion Channels																					319
	3.2.	Graded Potentials																					320
	3.3.																						320
	3.4.	Electrotonic Coupling .																					321
4.		ochemistry.																					321
	Beha																						322
2.		Natural Behavior																					322
		Learning																					323
	5.3.																						
	0.01	Response Decrement																					323
6.	Redi	indancy and the Brain																					324
		ution and Perspectives																					326
		rences																					326
	RUIU		• •	• •	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	

Chapter 23

Enigmas of Echinoderm Nervous Systems

	• James L. S. Cobb	
1.	Introduction	9
2.	Separate Nervous Systems	0
3.	Ultrastructure	0
4.	Lack of Glial Cells	1
5.	Mutability of Connective Tissue	1
6.	Ionic Basis of Action Potentials	2
7.	Centralization, Receptors and Giant Fibers	3
	Speculation	
	References	6

Chapter 24

Summary of Session	and	Dis	cussion	of	Electrical	Excitability	
• Bertil Hille							 339

xxii

III. SENSORY MECHANISMS

Chapter 25

Chemoreception in Unicellular Eukaryotes

	• Judith Van Houten
	Introduction
2.	Olfaction
3.	Gustation
	Unicellular Eukaryotes
	4.1. Dictyostelium
	4.2. Chlamydomonas Gametes
	4.3. Sacchromyces
	4.4. Sea Urchin Spermatozoa
	4.5. Paramecium
5.	Summary
	References

Chapter 26

The Functional Significance of Evolutionary Modifications found in the Ciliate, *Stentor*

	• David C. Wood														
1.	Introduction		•		•	•		•	•	•	•	•	•	•	357
	A Voltage-dependent														
	Mechanoreceptor Channel														
3.	The Function of Action Potentials in Stentor			 •	•	•	•	•	•	•	•	•	•	•	361
	References	•	•	 •	•	•	•	•	•	•	•	•	•	•	369

Chapter 27

Hydromedusan Photophysiology: An Evolutionary Perspective

	• Stuart A. Arkett	
1.	Introduction	3
2.	Trends in Table	5
3.	Hydromedusan Photophysiology Versus Other	
	Metazoan Photophysiology	8
	3.1. Morphology	
	3.2. Extraocular Photosensitivity	
	3.3. Photopigment	
	3.4. Receptor Potential	
	3.5. Electrical Coupling	
	3.6. Transmitters	
4.	Conclusions	
	References	

Chapter 28 Summary of Session and Discussion on Sensory Mechanisms

summary of Session and	Discussion	JII SCHSOLÀ	WICCHAINSHIS	
• M. S. Laverack		• • • • • •		389

IV. PLENARY LECTURE

Chapter 29

Evolution of Cnidarian Giant Axon	Evolution	of	Cnidarian	Giant	Axons
-----------------------------------	-----------	----	-----------	-------	-------

	• G. O. Mackie	
1.	Introduction	9 5
2.	Scyphomedusan Giant	
	Fiber Nerve Net (GFNN)	Ж
3.	Velella Closed System	
	Polyorchis Swimming	
	Motor Neuron Network (SMN)	98
5.		98
		00
		01
		04
		05
		06
C	hapter 30	
С	oncluding Remarks	
	• Peter A. V. Anderson	09
I	udex	15

Differentiation of a Nerve Cell-Battery Cell Complex in *Hydra*

ENGELBERT HOBMAYER and CHARLES N. DAVID

1. Introduction

Complex cell-cell interactions appeared early in the evolution of metazoans. One of the most interesting examples of such complexity is the battery cell in tentacles of cnidarians. This cell consists of a modified ectodermal epithelial cell which has nematocytes and sensory nerve cells embedded in it. To investigate the formation of this complex, we use the simple fresh water cnidarian *Hydra*. In this organism, epithelial cells of the gastric region are continuously displaced into tentacles (Campbell, 1967; Dübel et al., 1987), where they interact with sensory nerve cells and nematocytes to form battery cells.

Using the monoclonal antibody NV1 as a marker for tentacle-specific nerve cells (Hobmayer et al., in preparation) we have investigated formation of tentacle tissue on a cellular level. Formation of a NV1-battery cell complex occurs during head formation and is stimulated by treatment with the neuropeptide head activator (HA) (Schaller and Bodenmüller, 1981), which has been shown to stimulate tentacle (Schaller, 1973) and nerve cell formation (Holstein et al., 1986) in *Hydra*. Differentiation of NV1 immunoreactive (NV1+) nerve cells, however, does not appear to be stimulated directly by HA, but rather by cell-cell interactions with battery cell precursors during tentacle formation.

ENGELBERT HOBMAYER and CHARLES N. DAVID • Zoologisches Institut der Universität München, Luisenstrasse 14, 8000 München 2, Federal Republic of Germany.

2. Morphology of Battery Cells

Battery cells in the tentacles of *Hydra* constitute an association of different cell types (Hufnagel et al., 1985). As shown schematically in figure 1E, 15-20 nematocytes and one epidermal sensory nerve cell are embedded in an ectodermal epitheliomuscular cell, in a typical arrangement: one stenotele or one or two isorhizas lie in the center of a ring of desmonemes. The body of the sensory nerve cell is located to the side of the central nematocyte.

Using a monoclonal antibody, NV1, we were able to identify these tentacle-specific nerve cells in *H. magnipapillata* (Hobmayer et al., in preparation). With the exception of a few ganglion cells in the lower peduncle, no NV1+ cells occur in the rest of the body column. In *H. oligactis*, the same type of nerve cell is recognized by the monoclonal antibody JD1 (Dunne et al., 1985).

Based on *in situ* observations, using indirect immunofluorescence, on either NV1-stained whole mounts or maceration preparations NV1+ cells can be classified as bipolar and multipolar epidermal sensory nerve cells (Fig. 1A; Yu et al., 1986). They have an apical cilium which extends to the surface of the surrounding epithelial cell. Two or more processes extend laterally from the basal part of the cell body (Fig. 1C). They run along the base of the battery cell adjacent to the mesoglea and innervate several neighboring battery cells; short sidebranches make contact with the battery cell's nematocytes (Fig. 1A,B).

3. Development of NV1+ Nerve Cells During Head Formation

In both budding and head regeneration, the first NV1+ cells appear at the time of evagination of short tentacle tips (Fig. 2). Earlier stages of head formation, when the prospective head is only discernible as a rounded protrusion, contain no NV1+ cells and no battery cells. During outgrowth of tentacles, the density of newly formed NV1+ cells remains constant along the entire length of the tentacles. Thus, in general, differentiation of NV1+ cells shows a strong correlation with the formation of battery cells.

This dependence of NV1+ differentiation on battery cell formation is also clearly demonstrated in a regeneration deficient mutant, reg-16 (Sugiyama and Fujisawa, 1977). Animals of strain reg-16 are blocked at an early stage of head regeration, and do not form tentacles. To investigate whether such animals form NV1+ cells during head regeration, it was necessary to introduce interstitial cells of *H. magnipapillata* wild-type strain into reg-16, because reg-16 nerve cells do not express the NV1 antigen. Such reg-16/105 chimeras are defective in head regeration, like the reg-16 parent (Wanek et al., 1986), but can differentiate NV1+ nerve cells from wild-type strain 105

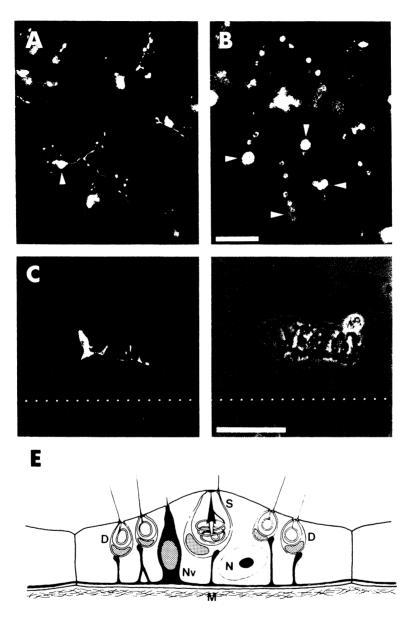


Figure 1. Tentacle-specific NV1+ nerve cells in *Hydra magnipapillata* visualized by indirect immunofluorescence. (A). NV1+ nerve cells in tentacles *in situ*. (B). Double staining with the nematocyte-specific monoclonal antibody H22 shows innervation of nematocytes of several battery cells by one NV1+ sensory cell (arrows indicate NV1+ cell body (A) and battery cell's stenoteles (B)). (C). Single NV1+ nerve cell in maceration preparation. D. Surrounding battery cell in phase-contrast. E: Schematic representation showing the location of a NV1+ nerve cell within the battery cell. Nv, NV1+ nerve cell; N, battery cell nucleus; S, stenotele; D, desmonemes; M, mesoglea. Bars: 25 μ m.

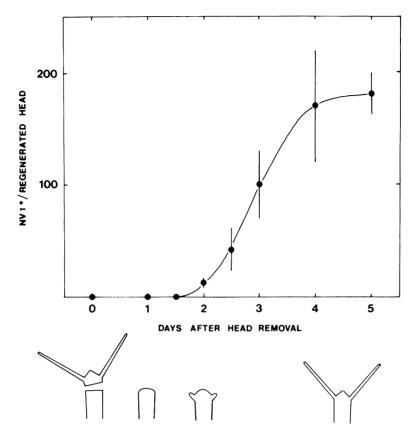
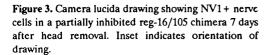
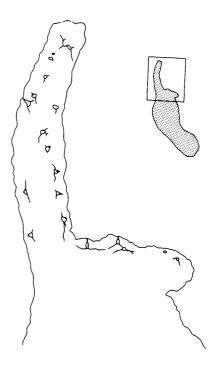


Figure 2. Reappearance of NV1 + nerve cells during head regeneration. Typical stages of head formation at the times indicated are given as schematic drawings.


interstitial cells. When chimeric animals were decapitated below the tentacle ring and allowed to regenerate, three types of regenerates were observed (Table 1): regenerates with completely normal heads (about 50%), incomplete regenerates having less than four tentacles per head (about 5%), and regenerates showing no regeneration of tentacle structures (about 45%). In the latter case, head formation was terminated by a rounded cap at the site of head removal.


In regenerates with normal heads, formation of NV1+ nerve cells was comparable to regeneration of the wild-type strain (Table 1). Tentacles contained normal numbers of NV1+ cells and the kinetics of appearance of these NV1+ cells was comparable to wild-type 105 (see Fig. 2). No NV1+ cells appeared in the regenerating tips of animals in which tentacle formation was inhibited (Table 1). NV1+ nerve cells formed, however, in partially inhibited animals with reduced numbers of tentacles (Fig. 3). There, NV1+ cells appeared only in tentacle tissue. Thus, formation of NV1+ nerve cells is tightly coupled with formation of tentacle morphology.

regeneration of head structures	number of head regenerates	development of NV1+ nerve cells	
complete	86	wild-type like	
		reformation of	
		NV1+ nerve cell	
		pattern	
incomplete	7	appearance of	
•		NV1+ nerve cells	
		in tentacle	
		structures	
inhibited	66	no appearance of	
		NV1+ nerve cells	

Table 1. Head Regeneration in RegenerationDeficient reg-16/105 Chimeras

Chimeras were decapitated below the tentacles, allowed to regenerate, and analyzed 7 days after head removal. Sample size: 159 head regenerates.

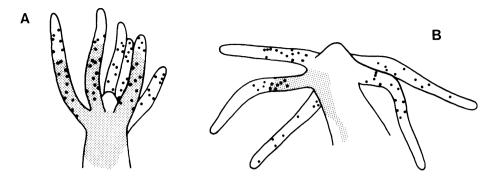


Figure 4. Camera lucida drawings showing a tentacle regenerating head (A) and an intact (B) NV1-free head, 4 days after transplantation. Black spots represent NV1+ cell bodies; stippled areas indicate the position of ink marked cells.

4. Requirements for Formation of a NV1-Battery Cell Complex

4.1. Formation of NV1+ Nerve Cells Requires Interstitial Cell Differentiation

Cell proliferation occurs continuously in the body column of *Hydra*. The new tissue is displaced into buds and into the head (tentacles) and foot, at either end of the body column (Campbell, 1967). During this displacement process, nerve cells from the body columnn become part of the head. Additional head-specific nerve cells also differentiate from interstitial cells at this time (Yaross et al., 1986). Thus, nerve cells in the head and tentacles are derived from two sources. These two sources can be distinguished by analyzing nerve cell formation in interstitial cell-free animals. Nerve cells, which appear in newly formed heads of such animals arise from nerve cells pre-existing in the body column; nerve cells which fail to form under these conditions must arise in normal animals by differentiation from interstitial cells.

To differentiate the source of NV1+ cells in head tissue interstitial cell-free polyps (Diehl and Burnett, 1964) were allowed to regenerate heads. After six days of regeneration no NV1+ cells appeared in the regenerated tentacles; other types of nerve cells could be recognized in these tentacles using a different monoclonal antibody (NV4; Hobmayer et al., in preparation). Thus, tentacle-specific NV1+ nerve cells arise only by differentiation from interstitial precursor cells.

4.2. Formation of NV1+ Nerve Cells Requires Differentiation of New Battery Cells

Since differentiation of NV1+ nerve cells is closely correlated to differentiation of tentacle structures, it appeared possible that NV1 formation only occurs during differentiation of new battery cells. To investigate this, we grafted NV1-free heads onto the body columns of normal animals and followed the appearance of newly differentiated NV1+ nerve cells in the NV1-free tentacles. To permit tracking of epithelial cell movement from the body column into tentacles, ectodermal epithelial cells in the body column were labelled with India Ink at the site of transplantation (Campbell, 1973). Some experimental animals were left intact; in others, the tentacles were excised to follow formation of new tentacle cells.

The appearance of newly differentiated NV1+ cells was the same in both intact and tentacle regenerating transplants, and the amount of tentacle tissue containing

 Table 2. Stimulation of NV1+ and Tentacle Epithelial Cell Differentiation

 in HA Treated Tentacle Regenerates

NV1+/	HA treated	111 ± 45	160 ± 28	158 ± 28	161 ± 23
tentacle ring	control	113 ± 44	133 ± 27	127 ± 25	130 ± 29
Epi/	HA treated	1185 ±427	1878 ±570	1805 ±238	1934 ± 289
tentacle ring	control	1178 ±338	1478 ±259	1510 ±252	1527 ± 339

Hydra were incubated in 1 pM HA for 18 hr. Pieces of different size (heads, distal 1/4, distal 1/2, and whole animals) were then cut, as shown above. Tentacles were excised from all pieces and the pieces were incubated in hydra medium for 2 days to permit tentacle regeneration. The regenerated tentacles were scored in whole mounts for NV1+ cells, by antibody staining, and for epithelial cells by staining their nuclei with the DNA-specific fluorochrome DAPI. The numbers in the Table refer to the total number of cells in all tentacles of a regenerate (the number of tentacles per regenerate varied from 4-7). The means of HA-treated and control animals differ (95% confidence limit, Students t-test) for distal 1/4, distal 1/2 and whole animal pieces.

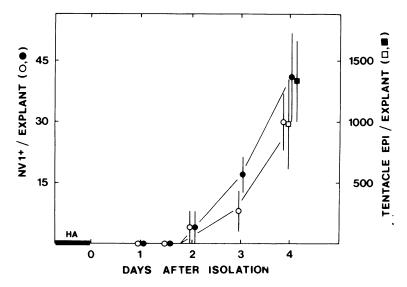


Figure 5. Kinetics of NV1+ and tentacle epithelial cell differentiation in distal gastric region explants of Hydra treated with 1 pM HA for 18 hr (closed symbols). Open symbols represent untreated control animals.

NV1+ cells was roughly the same. NV1+ cells filled almost the entire length of regenerated tentacles (Fig. 4A), while in intact animals there was a well defined distal boundary of NV1+ cells and an essentially empty area at the ends of the tentacles which corresponded to "old" tentacle tissue present at the time of grafting (Fig. 4B). Thus, NV1 precursors did not differentiate in association with already differentiated battery cells. Rather, it appears that the NV1-battery cell complex can only be formed by interaction between an interstitial cell precursor and a battery cell precursor.

5. Stimulation of NV1+ and Battery Cell Differentiation in Head Activator-treated Polyps

In order to characterize signals which control battery cell formation and to localize the site of their action in *Hydra* we have analyzed the effect of HA (Schaller, 1973) on differentiation of tentacle-specific NV1+ nerve cells and battery cells. Whole animals were incubated in 1 pM HA for 18 hr. Then tentacles were excised and after two days of regeneration in *Hydra* medium, the number of newly differentiated NV1+ nerve cells and tentacle epithelial cells was scored. In some animals, various amounts of proximal body column tissue were also removed. The results in Table 2 show that HAtreated animals contained about 25% more NV1+ nerve cells and tentacle epithelial cells than untreated control animals. Thus, HA stimulates formation of battery cells. Truncated 1/4 and 1/2 animals differentiated the same number of NV1+ cells as intact animals and also showed the same HA effect (Table 2). In contrast, isolated head pieces regenerated reduced numbers of battery cells and showed no stimulation of NV1+ differentiation in HA treated animals (Table 2). Thus, head tissue itself is insensitive to HA.

Table 2 shows that pieces of *Hydra* which contained the distal gastric region responded to HA treatment with increased tentacle differentiation; head pieces which lacked this tissue did not respond. This suggests that tissue in the distal gastric region is the site of formation of the NV1-battery cell complex. To test this directly, we treated whole animals with 1 pM HA for 18 hr and then isolated the distal gastric region. Each isolated piece regenerated a small polyp with a head and tentacles. The first tentacle-specific NV1+ nerve cells appeared two days after isolation, coincident with the outgrowth of tentacle tips in both treated and untreated explants (Fig. 5). The number of NV1+ cells and the number of tentacle epithelial cells was about 30% higher in HA-treated animals than in control animals on day four.

In contrast, isolates from the proximal body column showed no stimulation of NV1+ differentiation by HA. From this we conclude that battery cell formation does not occur in this region. The distal gastric region seems to be the only site of battery cell formation in normal animals. In this region NV1 precursors and epithelial cell precursors interact to form a complex, which then differentiates to a battery cell during movement into the base of the tentacles.

References

- Campbell, R. D., 1967, Tissue dynamics of steady state growth in *Hydra littoralis*, II. Patterns of tissue movement, J. Morph. 121:19.
- Campbell, R. D., 1973, Vital marking of single cells in developing tissues: India Ink injection to trace tissue movements in hydra, J. Cell Sci. 13:651.
- Diehl, F. A., and Burnett, A. L., 1964, The role of interstitial cells in the maintenance of hydra, I. Specific destruction of interstitial cells in normal, asexual, non-budding animals, J. Exp. Zool. 155:253.
- Dübel, S., Hoffmeister, S. A. H., and Schaller, C. II., 1987, Differentiation pathways of ectodermal epithelial cells in hydra, *Differentiation* 35:181.
- Dunne, J. F., Javois, L. C., Huang, L. W., and Bode, H. R., 1985, A subset of cells in the nerve net of *Hydra oligactis* defined by a monoclonal antibody: Its arrangement and development, *Dev. Biol.* 109:41.
- Holstein, T., Schaller, C. H., and David, C. N., 1986, Nerve cell differentiation in hydra requires two signals, *Dev. Biol.* 115:9.
- Hufnagel, L. A., Kass-Simon, G., and Lyon, M. K., 1985, Functional organization of battery cell complexes in tentacles of *Hydra attenuata*, J. Morph. 184:323.
- Schaller, H. C., 1973, Isolation and characterization of a low-molecular-weight substance activating head and bud formation in hydra, J. Embryol. exp. Morph. 29:27.
- Schaller, H. C., and Bodenmüller, H., 1981, Isolation and amino acid sequence of a morphogenetic peptide from hydra, *Proc. Natl. Acad. Sci. USA* 78:7000.
- Sugiyama, T., and Fujisawa, T., 1977, Genetic analysis of developmental mechanisms in hydra, I. Sexual reproduction of Hydra magnipapillata and isolation of mutants, Development, Growth and Differentiation 19:187.

- Wanek, N., Nishimiya, C., Achermann, J., and Sugiyama, T., 1986, Genetic analysis of developmental mechanisms in hydra, XIII. Identification of the cell lineages responsible for the reduced regenerative capacity in a mutant strain, reg-16, *Dev. Biol.* 115:459.
- Yaross, M. S., Westerfield, J., Javois, L. C., and Bode, H. R., 1986, Nerve cells in hydra: monoclonal antibodies identify two lineages with distinct mechanisms for their incorporation into head tissue, *Dev. Biol.* 114:225.
- Yu, S.-M., Westfall, J. A., and Dunne, J. F., 1986, Use of a monoclonal antibody to classify neurons isolated from the head region of hydra, J. Morph. 188:79.