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Chapter 5 

Differentiation of a Nerve Cell-Battery Cell 
Complex in Hydra 

ENGELBERT HOBMAYER and CHARLES N. DAVID 

1. Introduction 

Complex cell-cell interactions appeared early in the evolution of metazoans. One of the 
most interesting examples of such complexity is the battery cell in tentacles of 
cnidarians. This cell consists of a modified ectodermal epithelial cell which has 
nematocytes and sensory nerve cells embedded in it. To investigate the formation of 
this complex, we use the simple fresh water cnidarian Hydra. In this organism, 
epithelial cells of the gastric region are continuously displaced into tentacles (Campbell, 
1967; Dübel et al., 1987), where they interact with sensory nerve cells and nematocytes 
to form battery cells. 

Using the monoclonal antibody NV1 as a marker for tentacle-specific nerve cells 
(Hobmayer et al., in preparation) we have investigated formation of tentacle tissue on 
a cellular level. Formation of a NVl-battery cell complex occurs during head formation 
and is stimulated by treatment with the neuropeptide head activator (HA) (Schaller 
and Bodenmüller, 1981), which has been shown to stimulate tentacle (Schaller, 1973) 
and nerve cell formation (Holstein et al., 1986) in Hydra. Differentiation of NV1 
immunoreactive (NV1 + ) nerve cells, however, does not appear to be stimulated 
directly by HA, but rather by cell-cell interactions with battery cell precursors during 
tentacle formation. 

ENGELBERT HOBMAYER and CHARLES N. DAVID · Zoologisches Institut der Universität 
München, Luisenstrasse 14, 8000 München 2, Federal Republic of Germany. 
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2. Morphology of Battery Cells 

Battery cells in the tentacles of Hydra constitute an association of different cell 
types (Hufnagel et id., 1985). As shown schematically in figure IE, 15-20 nematocytes 
and one epidermal sensory nerve cell are embedded in an ectodermal 
epitheliomuscular cell, in a typical arrangement: one stenotele or one or two isorhizas 
he in the center of a ring of desmonemes. The body of the sensory nerve cell is located 
to the side of the central nematocyte. 

Using a monoclonal antibody, NV1, we were able to identify these tentacle-specific 
nerve cells in Η magnipapillata (Hobmayer et al., in preparation). With the exception 
of a few ganglion cells in the lower peduncle, no NV1+ cells occur in the rest of the 
body column. In Η oligactis, the same type of nerve cell is recognized by the 
monoclonal antibody JD1 (Dunne et al., 1985). 

Based on in situ observations, using indirect immunofluorescence, on either 
NVl-stained whole mounts or maceration preparations NV1+ cells can be classified 
as bipolar and multipolar epidermal sensory nerve cells (Fig. 1A; Yu et al., 1986). 
They have an apical cilium which extends to the surface of the surrounding epithelial 
cell. Two or more processes extend laterally from the basal part of the cell body (Fig. 
1C). They run along the base of the battery cell adjacent to the mesoglea and innervate 
several neighboring battery cells; short sidebranches make contact with the battery 
cell's nematocytes (Fig. 1A,B). 

3. Development of NV1+ Nerve Cells During Head 
Formation 

In both budding and head regeneration, the first NV1 + cells appear at the time 
of evagination of short tentacle tips (Fig. 2). Earlier stages of head formation, when the 
prospective head is only discernible as a rounded protrusion, contain no NV1+ cells 
and no battery cells. During outgrowth of tentacles, the density of newly formed NV1 + 
cells remains constant along the entire length of the tentacles. Thus, in general, 
differentiation of NV1+ cells shows a strong correlation with the formation of battery 
cells. 

This dependence of NV1+ differentiation on battery cell formation is also clearly 
demonstrated in a regeneration deficient mutant, reg-16 (Sugiyama and Fujisawa, 
1977). Animals of strain reg-16 are blocked at an early stage of head regeration, and 
do not form tentacles. To investigate whether such animals form NV1 + cells during 
head regeration, it was necessary to introduce interstitial cells of H. magnipapillata 
wild-type strain into reg-16, because reg-16 nerve cells do not express the NV1 antigen. 
Such reg-16/105 chimeras are defective in head regeration, like the reg-16 parent 
(Wanek et al., 1986), but can differentiate NV1+ nerve cells from wild-type strain 105 
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Ε 

Figure 1. Tentacle-specific NV1+ nerve cells in Hydra magnipapillata visualized by indirect 
immunofluorescence. (A). NV1+ nerve cells in tentacles in situ. (B). Double staining with the 
nematocyte-specific monoclonal antibody H22 shows innervation of nematocytes of several battery cells 
by one NV1 + sensory cell (arrows indicate NV1 + cell body (A) and battery cell's stenoteles (B)). (C). 
Single NV1+ nerve cell in maceration preparation. D. Surrounding battery cell in phase-contrast. E: 
Schematic representation showing the location of a NV1 + nerve cell within the battery cell. Nv, NV1 + 
nerve cell; N, battery cell nucleus; S, stenotele; D, desmonemes; M, mesoglea. Bars: 25 μιη. 
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Figure 2. Reappearance of NV1 + nerve cells during head regeneration. Typical stages of head formation 
at the times indicated are given as schematic drawings. 

interstitial cells. When chimeric animals were decapitated below the tentacle ring and 
allowed to regenerate, three types of regenerates were observed (Table 1): regenerates 
with completely normal heads (about 50%), incomplete regenerates having less than 
four tentacles per head (about 5%), and regenerates showing no regeneration of 
tentacle structures (about 45%). In the latter case, head formation was terminated by 
a rounded cap at the site of head removal. 

In regenerates with normal heads, formation of NV1+ nerve cells was comparable 
to regeneration of the wild-type strain (Table 1). Tentacles contained normal numbers 
of NV1+ cells and the kinetics of appearance of these NV1+ cells was comparable to 
wild-type 105 (see Fig. 2). No NV1+ cells appeared in the regenerating tips of animals 
in which tentacle formation was inhibited (Table 1). NV1+ nerve cells formed, 
however, in partially inhibited animals with reduced numbers of tentacles (Fig. 3). 
There, NV1+ cells appeared only in tentacle tissue. Thus, formation of NV1+ nerve 
cells is tightly coupled with formation of tentacle morphology. 
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Table 1. Head Regeneration in Regeneration 
Deficient reg-16/105 Chimeras 

regeneration of number of head development of 
head structures regenerates NV1 + nerve cells 

complete 86 wild-type like 
reformation of 
NV1 + nerve cell 
pattern 

incomplete 7 appearance of 
NV1 + nerve cells 
in tentacle 
structures 

inhibited 66 no appearance of 
NV1 + nerve cells 

Chimeras were decapitated below the tentacles, allowed to 
regenerate, and analyzed 7 days after head removal. Sample 
size: 159 head regenerates. 

Figure 3. Camera lucida drawing showing NV1 + nerve 
cells in a partially inhibited reg-16/105 chimera 7 days 
after head removal. Inset indicates orientation of 
drawing. 
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Figure 4. Camera lucida drawings showing a tentacle regenerating head (A) and an intact (B) NVl-free 
head, 4 days after transplantation. Black spots represent NV1 + cell bodies; stippled areas indicate the 
position of ink marked cells. 

4. Requirements for Formation of a NVl-Battery Cell 
Complex 

4.1. Formation of NV1+ Nerve Cells Requires Interstitial Cell 
Differentiation 

Cell proliferation occurs continuously in the body column of Hydra. The new 
tissue is displaced into buds and into the head (tentacles) and foot, at either end of the 
body column (Campbell, 1967). During this displacement process, nerve cells from the 
body columnn become part of the head. Additional head-specific nerve cells also 
differentiate from interstitial cells at this time (Yaross et al., 1986). Thus, nerve cells 
in the head and tentacles are derived from two sources. These two sources can be 
distinguished by analyzing nerve cell formation in interstitial cell-free animals. Nerve 
cells, which appear in newly formed heads of such animals arise from nerve cells pre
existing in the body column; nerve cells which fail to form under these conditions must 
arise in normal animals by differentiation from interstitial cells. 

To differentiate the source of NV1+ cells in head tissue interstitial cell-free polyps 
(Diehl and Burnett, 1964) were allowed to regenerate heads. After six days of 
regeneration no NV1+ cells appeared in the regenerated tentacles; other types of 
nerve cells could be recognized in these tentacles using a different monoclonal antibody 
(NV4; Hobmayer et al., in preparation). Thus, tentacle-specific NV1+ nerve cells arise 
only by differentiation from interstitial precursor cells. 
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4.2. Formation of NV1 + Nerve Cells Requires Differentiation of New 
Battery Cells 

Since differentiation of NV1+ nerve cells is closely correlated to differentiation of 
tentacle structures, it appeared possible that NV1 formation only occurs during 
differentiation of new battery cells. To investigate this, we grafted NVl-free heads 
onto the body columns of normal animals and followed the appearance of newly 
differentiated NV1+ nerve cells in the NVl-free tentacles. To permit tracking of 
epithelial cell movement from the body column into tentacles, ectodermal epithelial 
cells in the body column were labelled with India Ink at the site of transplantation 
(Campbell, 1973). Some experimental animals were left intact; in others, the tentacles 
were excised to follow formation of new tentacle cells. 

The appearance of newly differentiated NV1+ cells was the same in both intact 
and tentacle regenerating transplants, and the amount of tentacle tissue containing 

Table 2. Stimulation of NV1+ and Tentacle Epithelial Cell Differentiation 
in HA Treated Tentacle Regenerates 

u 
NV1 + / 
tentacle 
ring 

HA treated 

control 

111 

113 

± 45 

± 44 

160 ± 28 

133 ± 27 

158 

127 

± 28 

± 25 

161 

130 

± 23 

± 29 

Epi/ 
tentacle 
ring 

HA treated 

control 

1185 

1178 

±427 

±338 

1878 ±570 

1478 ±259 

1805 

1510 

±238 

±252 

1934 

1527 

±289 

±339 

Hydra were incubated in 1 pM HA for 18 hr. Pieces of different size (heads, distal 1/4, distal 1/2, and 
whole animals) were then cut, as shown above. Tentacles were excised from all pieces and the pieces were 
incubated in hydra medium for 2 days to permit tentacle regeneration. The regenerated tentacles were 
scored in whole mounts for NV1 + cells, by antibody staining, and for epithelial cells by staining their 
nuclei with the DNA-specific fluorochrome DAPI. The numbers in the Table refer to the total number 
of cells in all tentacles of a regenerate (the number of tentacles per regenerate varied from 4-7). The 
means of HA-treated and control animals differ (95% confidence limit, Students t-test) for distal 1/4, 
distal 1/2 and whole animal pieces. 
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Figure 5. Kinetics of NV1 + and tentacle epithelial cell differentiation in distal gastric region explants of 
Hydra treated with 1 pM HA for 18 hr (closed symbols). Open symbols represent untreated control 
animals. 

NV1+ cells was roughly the same. NV1+ cells filled almost the entire length of 
regenerated tentacles (Fig. 4A), while in intact animals there was a well defined distal 
boundary of NV1 + cells and an essentially empty area at the ends of the tentacles 
which corresponded to "old" tentacle tissue present at the time of grafting (Fig. 4B). 
Thus, NV1 precursors did not differentiate in association with already differentiated 
battery cells. Rather, it appears that the NVl-battery cell complex can only be formed 
by interaction between an interstitial cell precursor and a battery cell precursor. 

5. Stimulation of NV1+ and Battery Cell Differentiation in 
Head Activator-treated Polyps 

In order to characterize signals which control battery cell formation and to localize 
the site of their action in Hydra we have analyzed the effect of HA (Schaller, 1973) on 
differentiation of tentacle-specific NV1+ nerve cells and battery cells. Whole animals 
were incubated in 1 pM HA for 18 hr. Then tentacles were excised and after two days 
of regeneration in Hydra medium, the number of newly differentiated NV1+ nerve 
cells and tentacle epithelial cells was scored. In some animals, various amounts of 
proximal body column tissue were also removed. The results in Table 2 show that HA-
treated animals contained about 25% more NV1+ nerve cells and tentacle epithelial 
cells than untreated control animals. Thus, HA stimulates formation of battery cells. 
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Truncated 1/4 and 1/2 animals differentiated the same number of NV1+ cells as 
intact animals and also showed the same HA effect (Table 2). In contrast, isolated 
head pieces regenerated reduced numbers of battery cells and showed no stimulation 
of NV1+ differentiation in HA treated animals (Table 2). Thus, head tissue itself is 
insensitive to HA. 

Table 2 shows that pieces of Hydra which contained the distal gastric region 
responded to HA treatment with increased tentacle differentiation; head pieces which 
lacked this tissue did not respond. This suggests that tissue in the distal gastric region 
is the site of formation of the NVl-battery cell complex. To test this directly, we 
treated whole animals with 1 pM HA for 18 hr and then isolated the distal gastric 
region. Each isolated piece regenerated a small polyp with a head and tentacles. The 
first tentacle-specific NV1+ nerve cells appeared two days after isolation, coincident 
with the outgrowth of tentacle tips in both treated and untreated explants (Fig. 5). 
The number of NV1 + cells and the number of tentacle epithelial cells was about 30% 
higher in HA-treated animals than in control animals on day four. 

In contrast, isolates from the proximal body column showed no stimulation of 
NV1+ differentiation by HA. From this we conclude that battery cell formation does 
not occur in this region. The distal gastric region seems to be the only site of battery 
cell formation in normal animals. In this region NV1 precursors and epithelial cell 
precursors interact to form a complex, which then differentiates to a battery cell during 
movement into the base of the tentacles. 
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