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Summary. 1. The laryngeal mechanisms for the production of  CF-FM orien- 
tation sounds in the horseshoe bat, Rhinolophusferrurnequinurn, were studied 
with 3 different methods: a) denervation of laryngeal muscles, b) recordings 
of electrical activity of the cricothyroid muscle during vocalization and Dop- 
pler-shift compensation, and c) electrical stimulation of the cricothyroid 
muscles. 

2. Unilateral section of the inferior laryngeal nerve (i.e. denervation of 
the intrinsic laryngeal muscles) had no effect on the sound pattern, the 
frequency of the orientation sounds and the Doppler-shift compensation. 
Bilateral denervation led always to suffocation. 

3. Unilateral section of the superior laryngeal nerve (i.e. the denervation 
of the cricothyroid muscles) did not change the sound pattern, but caused 
a decrease in the frequency of the emitted CF by 4-6 kHz. Doppler-shift 
compensation was possible, but it was unstable and was not accurate. 

4. Bilateral denervation of the cricothyroid muscles introduced several 
strong harmonics in the orientation sounds. The fundamental frequencies 
changed considerably between 12 and 42 kHz after surgery. The frequency 
pattern in each harmonic is the same as in normal orientation sounds (Fig. 1). 

5. The spike number per vocalization of cricothyroid muscle fibres was 
proportional to the frequency of the CF component of the orientation sound 
in a range between the resting frequency and 5 kHz below it (Fig. 2). 

6. Electrical stimulation of the cricothyroid muscles increased the fre- 
quency of the emitted CF. The maximum frequency change due to electrical 
stimulation was about 45 Hz per ms when measured during the CF com- 
ponent of the orientation sound (Fig. 3). 

7. Tetanus fusion frequency of the cricothyroid muscle was about 200 Hz 
for continuous stimulation and 400 Hz for short stimulation applied during 
vocalization. 
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Introduction 

The echolocat ion system consists o f  the vocalization system for  product ion  
o f  orientat ion sound and the audi tory system for reception and processing 
of  echoes. In microchiropterans  the echolocat ion signals are p roduced  in the 
larynx and modified in their spectral composi t ion  by the transmission th rough  
the mou th  (e.g. Vespertilionids) or  the nostrils (e.g. Rhinolophids) .  Vespertilio- 
nids c o m m o n l y  use f requency-modula ted  (FM) sounds for  echolocat ion,  while 
Rhinolophids  use signals each of  which consists o f  a long constant  frequency 
(CF) componen t  and short  F M  components .  The functions o f  the different 
laryngeal muscles and nerves have been studied in different species o f  " F M "  
bats, and it has been found that  denervat ion o f  the cr icothyroid muscles causes 
prominent  decreases in the frequency of  the emitted sounds and the range 
o f  the frequency sweeps (Novick and Griffin, 1961 ; Suthers and Fat tu,  1973). 
N o  experiments, however, have yet  been performed on the laryngeal mechanisms 
of  " C F - F M "  bats. 

In terms of  acoustic behaviour  the greater horseshoe bat  (Rhinolophusferrum- 
equinum) is the best studied animal  a m o n g  " C F - F M "  bats. When  Rhinolophus 
ferrumequinum hears positively Doppler-shif ted echoes it lowers the frequency 
of  subsequent  orientat ion sounds in order  to compensate  the Doppler-shif t  
and stabilizes the echoes at a certain preferred frequency (Schnitzler, 1968). 
This interesting acoustic behaviour  called "Dopple r - sh i f t  compensa t i on"  is 
shown even when the bat  is held in a plastic ba tholder  and is listening to 
electronically produced Doppler-shif ted echoes triggered by its orientat ion 
sounds, which are commonly  emitted at a rate o f  4-5  per s (Schuller et al., 
1974). R. ferrumequinurn is probably  one o f  the best suited animals for  studies 
on the mechanisms in sound product ion.  Thus  experiments with R. ferrumequi- 
num on the peripheral mechanisms for  the emission of  C F - F M  sounds and 
Doppler-shif t  compensa t ion  were performed.  The present paper  describes the 
effect o f  selective denervat ion o f  the laryngeal muscles on orientat ion sounds 
and the activity o f  the laryngeal muscles in relation to Doppler-shif t  compensa-  
tion. 

Material and Methods 

Denervation of Laryngeal Muscles. Denervations of laryngeal muscles were performed in 5 horseshoe 
bats, Rhinolophusferrumequinum. Under ether anesthesia superior and inferior (recurrent) laryngeal 
nerves on the left and right sides were cut in different combinations. The length of the nerve 
cut out was 1-2 mm long in order to prevent quick reinnervation. The wound was desinfected 
with sulfathiazole and than sewed together. All bats recovered quickly, so the postoperational 
tests were started 3 days after the surgery and lasted for 3 weeks to 2 months. In 3 bats an 
additional denervation was performed 3 weeks after the first surgery. 

Recording of Electromyograrns from Cricothyroid Muscles. The skull of the bat was exposed under 
ether anesthesia and a screw was mounted on it with dental cement. Than the screw was locked 
into a metal bar in order to immobilize the head. The animal was placed ventral side up and 
the ventral part of the larynx was exposed after cutting the sternohyoid muscles. The impairment 
of the sternohyoid muscles had no noticeable effect on the vocal performance of the bat. Action 
potentials of the cricothyroid muscles were recorded with chlorided silver electrodes of 0.1 mm 
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diameter which were placed in the ventrolateral part or the ventromedial part of the cricothyroid 
muscle. The electrodes were 10 cm long and very flexible, so that their tips could freely move 
as the larynx moved during vocalization. Action potentials of a few muscle fibres were amplified 
and passed through a window discriminator which was set to pass only the largest action potentials. 
Pulses from the window discriminator were recorded on magnetic tape in parallel to the frequency 
of the CF-component of the orientation sounds picked up 15 cm in front of the bat's head. The 
number of impulses per orientation sound and the frequency of the CF-component of an orientation 
sound were processed off-line with the PDP-12 laboratory computer. 

Electrical Stimulation of the Cricothyroid Muscles. A 0.1 ms long electricai stimulus was bilaterally 
applied at different rates to the cricothyroid muscles with a pair of silver wires of 0.1 mm in 
diameter. The frequency of the CF-component or orientation sounds was simultaneously recorded 
with the electrical stimuli on a magnetic tape and was processed with the laboratory computer 
(POP-12). 

Analysis of Orientation Sounds. In order to study the effect of denervation or electric stimulation 
of the laryngeal muscles on vocalization, orientation sounds emitted by the bats during the delivery 
of artificial echoes with or without Doppler-shifts were detected with a 1/4" microphone (Bruet 
& Kjaer 4135) placed 15 cm in front of the animal. The sounds were recorded on a magnetic 
tape, if necessary, and were analyzed with a Kay sonagraph. The frequency of the CF-component 
in an orientation sound (here after the emitted CF) was determined with a frequency to voltage 
converter and a sample could be picked up by the computer (PDP-12) 15 ms after the onset 
of the sound. The methods for the production of electronically frequency-shifted echoes and the 
measurement of the frequency of the emitted CF had been described in detail elsewhere (Schuller 
et al., 1974). 

Results 

Denervation of  Laryngeal Muscles 

W h e n  the inferior laryngeal nerve was cut uni lateral ly  in 3 bats, no  change 
was observed in the or ien ta t ion  sound and  the rate of sound  emission. Doppler-  
shift compensa t ion  was no t  affected at  all. The bi lateral  t ransect ion of the 
inferior laryngeal nerves always caused suffocation, even if a t rop in  sulphate 
was adminis tered to the bat  pr ior  to the transection.  In one bat  the t ransect ion 
was performed after t racheotomy.  Than  the bat  survived wi thout  any problem 
in respiration.  It  is known  f rom h u m a n  surgery that  bilateral  impa i rmen t  of 
the inferior laryngeal  nerve intails an adduc t ion  of the vocal folds (King and  
Gregg, 1948). 

In  5 bats the cr icothyroid muscles were denervated by cut t ing the superior  
laryngeal  nerve on  one of bo th  sides. The uni la tera l  t ransect ion of the superior  
nerve caused no drastic change in the basic pa t te rn  of the or ien ta t ion  sounds 
emitted. Each sound consisted of a long CF  c o m p o n e n t  followed by a short  
F M  c o m p o n e n t  as the no rma l  or ien ta t ion  sounds did. The frequency of the 
emitted CF,  however, was 1.5 to 4 kHz lower than the resting frequency of 
the intact  animals  (Fig. 1 A, middle  sonagram),  and  fa int  harmonics  were not iced 
in the sounds emit ted by some of these bats only wi thin  a few days after 
the surgery. These bats responded to Doppler-shif ted echoes with an irregular 
lowering of the frequency of the emit ted CF. The a m o u n t  of frequency compen-  
sat ion was no t  strictly p ropor t iona l  to the Doppler-shif t  in t roduced in the echoes, 
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Fig. 1. A Sonagrams of orientation sounds before the transection of the superior laryngeal nerve 
(top) and after the unilateral (middle) or bilateral transection (bottom). B Distribution of frequencies 
of emitted CFs before (upper graph) and after bilateral section of the superior laryngeal nerve 
(lower graph). The upper histogram is represented in the lower graph by the vertical line at about 
84 kHz 

that is, the compensation was not accurate and was not stable and the lowering 
of the emitted CF could reach 5-6 kHz for Doppler-shifts of only 2-3 kHz. 

Cutting both superior laryngeal nerves showed a prominent effect on the 
frequency spectrum of the emitted sounds, which than contained several harmo- 
nics. The frequency pattern within the spectral components was the same as 
in the usual orientation sounds: a long CF-component followed by a short 
FM-component (Fig. 1A, bottom sonagram). The frequencies of the spectral 
components drifted with time. The bottom figure of. Figure 1 A shows one of 
the typical sonagrams of orientation sounds after cutting the superior laryngeal 
nerves on both sides. The spectral components were always harmonically related 
to each other. The fundamental differed among different sounds emitted by 
the same bat. The frequencies of the fundamental components lay between 
12 and 42 kHz for all bats at different postoperational times. Spectral com- 
ponents falling in the frequency range between 35 and 45 kHz were generally 
much weeker in intensity than the other components. No common fundamental 
frequency for all bats could be found. Figure 1 B represents a distribution of 
frequencies of the emitted CFs before and after cutting of both superior laryngeal 
nerves. The postoperational distribution was established for the strongest com- 
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ponent near the resting frequency of the bat for a 5 rain long recording period. 
The scatter in frequency of the emitted CF after surgery was much larger 
(about 4.2 kHz standard deviation) than the preoperational one (less than 
0.2 kHz). These distributions give evidence that compensation for frequency 
shifts covering about a range of 4-6 kHz is not possible in the bats with denervat- 
ed cricothyroid muscles. The frequency pattern within the sounds was usually 
slightly disturbed in the first 2 or 3 days after surgery, and the CF component 
could than show frequency changes of about 2~[ kHz. 

The intensity of the harmonic components with the exception of that around 
80 kHz decreased with time. In two out of four bats, one month after surgery 
the spectral components nearly disappeared and only the harmonic at about 
80 kHz remained. The frequency of this harmonic was not stable but drifted 
in a range of 4-6 kHz below the resting frequency. After sacrificing the bats, 
reinnervation of the superior laryngeal nerves was not found. 

Electrical Activity of the Cricothyroid Muscle 

The experiments described above gave evidence that the cricothyroid muscles 
are controlling the frequency of the emitted orientation sounds and are important 
for Doppler-shift compensation. The electrical activity of these muscles was 
studied in conjunction with the frequency of the emitted CF during Doppler-shift 
compensation. From the cricothyroid muscles, two types of activities were 
recorded at different places. Figure 2 demonstrates the activity as recorded from 
the caudal part of the muscle in A and the activity from the cranio-lateral 
part in B. The activity has been passed through a window discriminator and 
the activity of a few muscle fibers has been filtered out. A sustained activity 
(graph A) begins about 50 ms prior to the onset of the vocalization and continues 
during the sound. In some cases the activity stopped 10-20 ms prior to the 
end of the orientation sound. The activity before the beginning and the end 
of the orientation sound (graph B) starts about 20 ms before the sound onset, 
lasts about 10 ms. The activity at the end of the sound coincides with the 
final frequency-modulated part of the orientation sound. 

The relation between the frequency of the emitted CF and the number 
of spikes per sound was established for the sustained activity during Doppler- 
shift compensation. Slow transitions in emitted frequency (2-5 kHz in 10 20 s) 
yielded clear dependence of the number of spikes per sound on the emitted 
frequency. As the larynx moves considerably at every vocalization the recording 
situation could change in a long recording period. The measurements of the 
spike number per sound were therefore made with transitions of frequency 
lasting not longer than 20 sec rather than with long lasting constant Doppler- 
shifts. 

Figure 2C gives an example of the spike count versus frequency function ob- 
tained when the frequency of the emitted CF changed from 5 kHz below the 
resting frequency to the resting frequency. The measurements did in general 
not cover such a large frequency span of 5 kHz, but the dependence measured 
with smaller frequency spans fit in the curve represented in the figure. The 
maximum muscle activity was recorded when the bat emitted the CF signal 
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Fig. 2 A-C. Action potentials of the cricothyroid muscle fibres recorded from its caudal part 
A and cranio-lateral part B. These action potentials are the largest ones in the gross activity, 
which were selected with a window discriminator. C Relationship between the number of spikes 
per orientation sound of the cricothyroid muscle fibres and the frequency of the emitted CF. 
The frequency of the emitted CF varied with the Doppler-shift introduced in artificial echoes. 
Note that the action potentials were not recorded from a single fibre, but from a few fibres 
(see text) 

a t  its rest ing frequency.  W h e n  the emi t t ed  C F  was lowered  dur ing  compensa t ion ,  
the muscle  act ivi ty  decreased  l inear ly  wi th  it. In  different  ba ts  the slope o f  
the curve in F igure  2 C  was different  wha t  is due to different  record ing  condi t ions  
as the n u m b e r  o f  muscle  f ibers  con t r ibu t ing  to the record ing  can change.  The 
l inear  dependence  of  the spike rate on  frequency,  however ,  was a lways  found.  

Stimulation of Cricothyroid Muscles 

The denerva t ion  exper iments  and  the recordings  o f  the electr ical  act ivi ty  o f  
the c r i co thyro id  muscles  ind ica ted  tha t  these muscles  con t ro l l ed  the f requency 
o f  the emi t t ed  C F  dur ing  Dopp le r - sh i f t  compensa t ion .  Electr ical  s t imula t ion  
of  the c r i co thyro id  muscle  should  therefore  change  the f requency o f  the emi t ted  
CF.  The electr ical  s t imuli  were con t inuous ly  del ivered a t  cer ta in  rates o r  de- 
l ivered as a shor t  t ra in  o f  pulses t r iggered at  the beginning  o f  the emi t ted  
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orientation sound. The frequency of the emitted CF could be altered either 
by the acoustical playback of frequency-shifted echoes or by electrical stimuli. 
When the bat emitted the CF signal at its resting frequency and got no Doppler- 
shifts in echoes, the electrical stimuli induced a limited rise of the outgoing 
frequency which was 500 Hz at maximum. This upper limit of the frequency 
of the emitted CF corresponds well to the behavioural finding that the 
bat cannot raise its emission frequency in order to compensate for negative 
Doppler-shifts. 

When the bat emitted a sound with a CF lower than its resting frequency, 
induced by positive Doppler-shifts in its echoes, the electrical stimuli of the 
cricothyroid muscles increased the frequency of the emitted CF. The rise in 
frequency by the electrical stimuli depended on the intensity and the rate of 
the stimuli. Figure 3 A shows how the frequency changed during the CF component 
of the orientation sound. The frequency started to change 10-20 ms after the 
beginning of the stimulation and reached the maximum after another 20 ms. 

The diagram in Figure 3 C gives the dependence of the maximum frequency 
change during the CF component on the number of stimuli delivered during 
14 msec in the first part of the orientation sound. The maximum frequency 
change that could be induced by such stimuli was about 1,200 Hz. 

Whereas stimuli triggered by the orientation sound changed the frequency 
within the constant frequency component, the sound frequency as a whole 
could be shifted when continuous electrical stimuli were applied. This was done 
while the bat was compensating for a positive 3 kHz-Doppler-shift. Switching 
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Fig. 3A-C.  Effect of  the electrical stimulation of  the cricothyroid muscies on the frequency of 
the emitted CF during the Doppler-shift compensation of 3 kHz. A An orientation sound which 
compensated a Doppler-shift of  3 kHz without (upper graph) and with a train of electrical stimuli 
(lower graph). B Change in the frequency of  the emitted CF due to a long train of electrical 
stimuli delivered at a rate of 400 Hz during the compensation of a 3 kHz Doppler-shift. C Relation- 
ship between the frequency of  the emitted CF and the number of electrical stimuli delivered during 
the first 14 ms of  the sound 
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on the continuous electrical stimulus train (400 Hz stimulus rate) induced a 
rapid change of the emitted frequency as illustrated in Figure 3 B. It was not 
possible to establish a clear functional dependence of the frequency rise on 
the intensity and the rate for continuous stimulation, as small intensities produced 
frequency rises with relatively big fluctuations and at higher intensities the 
frequency rise ranged always between 1.6 and 2.5 kHz and gave no reproducible 
functional dependence on the stimulus rate. Qualitatively the stronger stimula- 
tion (intensity or rate) led always to larger frequency rises in the emitted fre- 
quency. 

In most cases the frequency of the orientation sounds rised immediately 
upon electrical stimulation (within 100-300 ms), i.e. the first sounds after the 
onset of stimulation were emitted at higher frequencies. The maximum frequency 
step between two sounds due to electrical stimulation was 2.2 kHz. After the 
stimulation ceased, the frequency of the orientation sounds came back to the 
initial value (3 kHz below the resting frequency) rather slowly, but the time 
course was not at all stereotypical and ranged between 1 and 10 s. 

The tetanus fusion frequency was tested either by trains of electrical stimuli 
delivered only during the orientation sounds or by giving continuous electrical 
stimuli. In both situations the tetanus fusion frequency was determined as the 
lowest rate of the stimuli at which the frequency modulation of the emitted 
CF due to each stimulus evoked muscle contraction was not detectable. The 
continuous stimulation yielded a tetanus frequency of about 200 Hz, whereas 
bursts of stimuli during the orientation sounds gave a tetanus fusion frequency 
of about 400 Hz. 

Discussion 

The denervation experiments in the CF-FM bat, Rhinolophus ferrumequinum, 
yielded similar results as Novick and Griffin (1961) found in FM-bats and 
some CF-FM bats. The inferior laryngeal nerve innervating the intrinsic muscles 
of the larynx could be cut without effects on the orientation sounds and Doppler- 
shift compensation. In humans the inferior laryngeal nerve is very important 
in speech control and section leads to heavy impairment of the speech produc- 
tion. Bilateral section of the inferior laryngeal nerve, however, caused always 
suffocation probably due to adduction of the vocal cords in horseshoe bats 
as known also from human surgery (King and Gregg, 1948), so that its functional 
role in the emission of the orientation sound was not adequately studied. After 
bilateral section of the superior laryngeal nerve innervating the cricothyroid 
muscles, orientation sounds emitted showed a high instability in the frequency 
of the orientation sound and contained several harmonics. However its frequency 
pattern was maintained the same as in the normal orientation sound. The 
fundamental frequency differed widely in different sounds and in different bats 
in a range from 12 to 42 kHz. Doppler-shift compensation was not possible. 
The cricothyroid muscles are therefore necessary for maintenance of a stable resting 
frequency and to control the frequency of the orientation sounds for Doppler- 
shift compensation. In addition they may be involved in the control of sound 
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transmission, so that only one strong harmonic at about 83 kHz is emitted. 
The role of the cricothyroid muscles in the Doppler-shift compensation was 
also demonstrated by the recordings of the activity of these muscles during 
compensation of frequency shifts in the echoes. A linear dependence of the 
number of spikes per sound in multiple fiber recordings and the transmitted 
frequency was found for a range from the resting frequency to 5 kHz below 
it. The muscle action potentials began about 50 ms before the vocalization. 
During these 50 ms the tension necessary to emit the CF probably builds up 
in the muscles and is then maintained throughout the orientation sound. The 
experiments give no direct answer to the question whether the phasic activities 
recorded from the cranio-lateral part of the cricothyroid muscle before the 
onset and at the end of the sounds are functionally related to the emission 
of FM-components in the orientation sound. 

Morphologically the structure of the cricothyroid muscles in R. ferrumequinum 
is only known from gross preparations (Beissmann, 1975). After this work 
the muscles devide into two muscle bundles : one bundle stretching in cranio-cau- 
dal direction on the ventral surface of the larynx (pars recta), which covers 
the other muscle bundle originating at the medio-ventral portion of the cricoid 
and radiating in cranio-lateral direction to the thyroid cartilage (pars obliqua). 
The sustained activity was recorded from the surface of the pars recta, whereas 
the phasic activity before the onset and the end of orientation sounds came 
probably from the pars obliqua. A detailed functional description of these 
muscle bundles in frequency control or Doppler-shift compensation is not possi- 
ble on the basis of the present experiments. 

Electrical stimulation of the cricothyroid muscles resulted in an increase 
in the frequency of the emitted CF as was expected from the recording experi- 
ments. The frequency of emitted CF was never higher than 400-500 Hz above 
the resting frequency even at strong stimulus intensities or high stimulus rates. 
This corresponds well to the behavioural results showing that the Doppler-shift 
compensation system compensates only for positive frequency shifts and that 
the bat cannot be caused to emit frequencies above the resting frequency when 
negative frequency-shifts are played back in the echoes (Schuller et al., 1975). 
The unidirectional compensation mechanism for Doppler-shift is paralleled by 
the inability of the larynx to produce frequencies higher than the resting fre- 
quency as long as the superior laryngeal nerves are intact. 

During Doppler-shift compensation the electrical stimulus rate was quantita- 
tively related to the rise of the frequency of the emitted CF. But the resting 
frequency was never fully reached upon electrical stimulation, which may be 
due to the small size of the stimulation electrodes. The stimulation did probably 
not reach all the muscle fibres involved in the frequency control. 

The contraction speed of the cricothyroid muscles in terms of the possible 
speed of frequency change in the orientation sounds is much higher than the 
speed needed to follow high repetition rates in sound bursts or to track quick 
frequency-shift changes in the echoes. The control system for Doppler-shift com- 
pensation shows an amplitude response with a cut-off frequency of about 0.65 Hz 
modulation frequency for positive frequency-shifts of 1 kHz (Schuller et al., 
1975), which is a much slower response than could actually be followed by 
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the contraction speed of the cricothyroid muscles. The larynx is definetely not 
the speed limiting component of the Doppler-shift compensation system. 

Suthers and Fattu (1973) report that the mechanical response of the cricothy- 
roid muscles shows partial relaxation between stimuli up to a repetition rate 
of 240 per s applied to the motor nerve. We did not measure the mechanical 
response but the frequency change during the CF component of the orientation 
sounds upon repetitive electrical stimulation. The tetanus fusion frequency was 
about 200 Hz when the stimuli were applied continuously to the muscle but 
it was about 400 Hz when the stimuli were present only during the vocalization. 
Continuous stimulation caused quicker fatigue of the muscles than the inter- 
rupted stimulation did. In comparison with other mammalian larynx, the crico- 
thyroid muscle of this bat contracts about 4-5 times faster than for example 
that of the dog (Hast, 1966). 
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