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Abstract

Unique parametrizations of models are very important for parameter interpretation and
consistency of estimators. In this paper we analyze the identifiability of a general class of
finite mixtures of multinomial logits with varying and fixed effects, which includes the popular
multinomial logit and conditional logit models. The application of the general identifiability
conditions is demonstrated on several important special cases and relations to previously
established results are discussed. The main results are illustrated with a simulation study
using artificial data and a marketing dataset of brand choices.

Keywords: conditional logit, finite mixture, identifiability, multinomial logit, unobserved het-
erogeneity

1 Introduction

Finite mixtures of multinomial and conditional logit models are part of the GLIMMIX frame-
work (Wedel and DeSarbo, 1995) which covers finite mixtures of generalized linear models. Finite
mixtures of multinomial logit models are applied in many different areas including for example
medicine (Aitkin, 1999) or economics. Finite mixtures of conditional logit models are popular
in marketing to investigate the brand choice of customers in dependency on marketing mix vari-
ables (Wedel and Kamakura, 2001) or in transportation research (Greene and Hensher, 2003). If
individual level estimates are of interest, e.g. for market segmentation, improved estimates can
be obtained using an empirical Bayes procedure instead of the point estimates (Kamakura and
Wedel, 2004).

The importance of the model class is also indicated by the wide variety of software packages
which can be used for estimation: GLLAMM (Rabe-Hesketh et al., 2004), Latent GOLD Choice (Ver-
munt and Magidson, 2003) and LIMDEP (Greene, 2002) with the add-on package NLOGIT. More
limited variants are implemented in GLIMMIX (Wedel, 2002) and Mplus (Muthén and Muthén,
1998–2006).

Despite the popularity of the model class in applications a comprehensible analysis of the pa-
rameter identifiability is still missing to the authors’ knowledge as only special cases have been
considered. The identifiability of finite mixtures of binomial regression models has been discussed
in Follmann and Lambert (1991). Their model only allows the intercept to follow a finite mixture
distribution while for the other covariates fixed effects are assumed. They give sufficient identifia-
bility conditions for mixing at the binary and the binomial level. This paper extends their results
on identifiability to a more general model class of finite mixtures of multinomial logit models.

1



The model allows for varying and fixed effects for the coefficients of the covariates: Coefficients
of varying effects follow a finite mixture, i.e., several groups are present in the population which
have different parameters. Coefficients of fixed effects are constant over the whole population.
This is similar to models with random effects which is also referred to as the mixed multinomial
logit model (Revelt and Train, 1998). Continuous random effects are in general rarely used with
a single replication per case as often the primary focus is to capture the interdependence between
observations from the same individual. By contrast discrete varying effects are used to model het-
erogeneity in the data due to unobserved groups or clusters and therefore these models may also
be applied to data without replications per case which can seriously impact on the identifiability
of the models.

This paper is organized as follows: Section 2 introduces the model. Section 3 analyzes the
identifiability of the model and applies the main theorem to important special cases as, e.g., finite
mixtures of multinomial distributions and choice models. Section 4 illustrates the main results
on artificial data with different numbers of covariate values and repetitions per individual such
that the corresponding model is either identifiable or not identifiable. In Section 5 the application
to marketing data where mixtures of conditional logit models are fitted is demonstrated. All
computations are made in R (R Development Core Team, 2007) using package flexmix (Leisch
2004; Grün and Leisch 2007).

2 Model specification

Assume we have a categorical dependent variable Y ∈ {1, . . . ,K}, and let P(Y = k|z) be the
probability that the dependent variable Y equals k given the covariates z. Two popular regression
models for these probabilities are the multinomial logit and conditional logit model, see e.g.,
Soofi (1992). The multinomial logit model uses a common set of predictors z for all levels of Y
and choice-specific parameter vectors. The conditional logit model on the other hand allows for
alternative-specific predictors zk but uses the same parameter vector for all of them.

The combined multinomial and conditional logit model is given by

P(Y = k|z) =
ez′1,kγ1+z′2γ2,k∑K

u=1 ez′1,uγ1+z′2γ2,u
, k = 1, . . . ,K

such that logit[P(Y = k|z)] = z′
1,kγ1 +z′

2γ2,k. z1,k are the covariates for the conditional logit part
and z2 the covariates for the multinomial logit part. For identifiability different contrasts can be
imposed, as e.g., by defining category K as baseline and constraining γ2,K = 0 and z1,K = 0.

This basic model is extended to account for unobserved heterogeneity in the population by
introducing varying effects which follow a finite mixture distribution. Assume there are S latent
segments with prior probabilities πs > 0,

∑S
s=1 πs = 1. If the observation Y belongs to segment s

the logit model with varying and fixed effects is given by

logit[P(Y = k|x,z, s)] = x′
1,kβs

1 + x′
2β

s
2,k + z′

1,kγ1 + z′
2γ2,k, k = 1, . . . ,K.

x are the covariates and β the coefficients of the varying effects, and z the covariates and γ the
coefficients of the fixed effects.

As will be shown below repeated measurements for some individuals are valuable information
in order to ensure the identifiability of the model. Therefore, the following notation is convenient,
where T denotes the set of all individuals in the population. All observations for a single individual
t with equal covariate values xi and zj are combined. The observations are sorted such that the
covariates of the varying effects for individual t ∈ T are grouped together in the index set It. In
addition we have a set Ji with the indices of all covariates for the fixed effects where the varying
effects are equal to xi. For each individual t the unique covariate vectors are given by (x′

i,z
′
j)

with i ∈ It and j ∈ Ji. Nij is the number of repeated observations available for this covariate
vector and individual. The dependent variable yij ∈ NK for these unique covariate points is the
vector of counts for each category, i.e. 1′Kyij = Nij , where 1K is the vector of K ones.
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Table 1: Illustration of notation for a given individual t.

It Ji xi zij Nij yij

1 1 1.1 0 4 7 3 2 2
1 2 1.1 0 0 3 1 2 0
1 3 1.1 0 1 1 0 0 1
1 4 1.1 0 2 5 2 1 2
2 1 2.7 1 4 1 0 0 1
2 2 2.7 1 0 1 0 1 0
2 3 2.7 1 2 6 4 0 2

For matrix notation all unique covariate points and the dependent variables are row-wise com-
bined. Let X1,k := (x′

1,k,i : j ∈ Ji, i ∈ It, t ∈ T ), X2 := (x′
2,i : j ∈ Ji, i ∈ It, t ∈ T ),

Xk := (X1,k,X2) and X := (Xk : k = 1, . . . ,K) and let Z1,k, Z2, Zk, Z and Y be analogously
defined. The mixture distribution can now be written as

H(Y |X,Z,Θ) =
∏
t∈T

[ S∑
s=1

πs

∏
i∈It

∏
j∈Ji

F (yij ;Nij ,θ
s
ij)

]
, (1)

where F (·;N,θ) is the multinomial distribution with repetition parameter N and probability pa-
rameter vector θ ∈ (0, 1)K . Please note that the product over the observations for each individual
t is within the sum over the finite mixture components. This signifies that the component mem-
bership is fixed for each individual.

For the probability parameter vectors it holds that

logit[θs
k,ij ] = x′

1,k,iβ
s
1 + x′

2,iβ
s
2,k + z′

1,k,jγ1 + z′
2,jγ2,k.

The total parameter vector Θ is equal to ((πs,βs)s=1,...,S ,γ) where βs = (βs
1, (β

s
2,k)k=1,...,K) and

γ = (γ1, (γ2,k)k=1,...,K). It is assumed that Θ ∈ Ω where Ω defines the parameter space given by
ΣS × R

PS
s=1 |βs|+|γ| where ΣS is the unit simplex of dimension S and | · | gives the length of a

vector.
The notation is illustrated by the following example where the data matrix for a given individual

t is presented.

Example 1. Let the dependent categorical variable have three different categories. The covariates
x of the random effects consist of a numeric variable and a binary variable, whereas the covariate
z of the fixed effects is a categorical variable with 4 categories. For simplicity of presentation these
variables are all for a multinomial logit model. Assume that for individual t 24 trinomial outcomes
are observed at 7 different covariate values. For example, when x = (1.1, 0) and z = 0 3 trinomial
outcomes are observed, a “1” and two “2”s. The varying covariate x assumes two values (1.1, 0)
and (2.7, 1). These have, respectively, 16, and 8 replicates where we allow different z values. The
corresponding data matrix is given in Table 1.

3 Identifiability

Several kinds of identifiability problems arise for finite mixture models, including so-called trivial
problems and generic problems (Frühwirth-Schnatter, 2006). Trivial identifiability problems refer
to problems which occur due to empty components, due to components with the same parameters
and due to the invariability of the likelihood to permutations of the segments. These problems
can be avoided by restricting the feasible parameter space Ω to Ω̃ ⊂ Ω where for all Θ ∈ Ω̃:
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� πs > 0 for all s = 1, . . . , S,

� βs 6= βt for all s 6= t; s, t ∈ {1, . . . , S}, and

� imposing a suitable ordering constraint, e.g., πs < πt, for all 1 ≤ s < t ≤ S if all segments
have pairwise different sizes.

With respect to generic identifiability it has been shown that mixtures of binomial distributions
(Teicher, 1963; Blischke, 1964; Titterington et al., 1985) are identifiable if the condition N ≥ 2S−1
is fulfilled where N denotes the number of repetitions for a given individual. This constraint is
necessary and sufficient for the model class of all mixtures with a maximum of S segments. Lindsay
(1995, p. 48, Prop. 6) obtains the same result for the more general class of mixtures of discrete
exponential family densities with N + 1 points of support and the same condition applies for
mixtures of multinomial distributions (Grün 2002; Elmore and Wang 2003).

The identifiability of mixtures of Gaussian regression models is analyzed in Hennig (2000).
The results indicate that requiring a covariate matrix of full rank is not sufficient. Contrarily, it is
necessary to check a coverage condition in order to ensure identifiability. We extend Hennig’s work
to mixtures of multinomial and conditional logit models. We also allow varying and fixed effects for
the coefficients and repeated observations where the segment membership is fixed. Supplementary
results for finite mixtures of Gaussian regression models with two components where only local
identifiability is considered are derived in Meijer and Ypma (2008).

Please note that the sufficient identifiability conditions imply that any mixture distribution
function from the specified model class can be uniquely parameterized, i.e. the parameters can be
uniquely determined given infinitely many observations. By contrast, if a mixture distribution is
not identifiable the parameters can still not be uniquely determined even if an infinite amount of
data is available.

3.1 Conditional logit

We first present sufficient conditions for identifiability of the conditional logit model with varying
and fixed effects, results for the combined model are then derived in a second theorem.

Theorem 1. The model defined by (1) where

ln
[

θs
k,ij

θs
K,ij

]
= x′

k,iβ
s + z′

k,jγ

is identifiable if the following conditions are fulfilled:

1. (a) for all k ∈ {1, . . . ,K − 1} there exists an Ĩk which is not empty and a subset of
⋃

t∈T It

and for which it holds that∑
i∈Ek,i∗

∑
j∈Ji

Nij ≥ 2S − 1 for all i∗ ∈ Ĩk.

Ek,i∗ is given by {i ∈ It(i∗) : xk,i = xk,i∗}. It(i∗) is defined as the index set of all
observations for the individual t with covariate vector xk,i∗ .

(b) q∗ > S with

q∗ := min
{

q : for all i∗ ∈
K−1⋃
k=1

Ĩk : there exists an Hj ∈ {H1, . . . ,Hq}

with {xk,i : i ∈ It(i∗) ∩ Ĩk, k = 1, . . . ,K − 1} ⊆ Hj ∧Hj ∈ HU

}
,

where HU is the set of H(α) := {x ∈ RU : α′x = 0} where α 6= 0.
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2. rk(X,Z) = U + V where rk(·) determines the rank of a matrix.

3. xK,i = 0 and zK,j = 0 for all j ∈ Ji, i ∈ It and t ∈ T .

The proof is given in the Appendix. Condition (1) guarantees that no intra-component label
switching is possible. Intra-component label switching refers to the identifiability problem where
even if the labels are fixed in one covariate point according to some ordering constraint, the labels
may switch in other covariate points for the different possible parameterizations of the model.

As the segment membership is fixed for each individual only those hyperplanes are feasible
where the covariate points from the same individual lie on the same hyperplane. Condition (1a)
implies that there exists a t ∈ T with at least 2S − 1 observations. For these observations the
covariates for the varying effects have to be constant, but they can vary for the fixed effects. The
inclusion of the set Ek,i∗ is possible, because the covariates are allowed to change in the other
categories of the multinomial distribution. Condition (1b) corresponds to the coverage condition
in Hennig (2000) for mixtures of Gaussian regressions which ensures that no intra-component
label switching is possible. While in Hennig (2000) only the case of one repetition per individual is
considered we generalize the condition for the case where repeated observations per individual are
available. The coverage condition implies that the maximum number of segments for the mixture
has to be smaller than the minimum number of feasible hyperplanes which are necessary to cover
the covariate points for all k = 1, . . . ,K where enough repetitions are available to guarantee
marginal identifiability. Hyperplanes are feasible if (1) they go through the origin and (2) they
cover all observations from the same individual which are marginally identifiable. This is a stronger
condition than to have full rank of the corresponding covariate matrix.

Condition (2) and (3) correspond to conditions which are necessary for a model without varying
effects in order to uniquely determine the coefficients. Condition (2) also ensures that the partition
between fixed and varying effects is unique.

3.2 Multinomial and conditional logit

The following theorem gives sufficient identifiability conditions for the combined model presented
in Section 2. The proof is straight-forward given Theorem 1 and using that the multinomial logit
part can be transformed to a conditional logit model (Agresti, 1990, pp. 316–317).

Theorem 2. The model defined by (1) where

ln
[

θs
k,ij

θs
K,ij

]
= x′

1,k,iβ
s
1 + x′

2,iβ
s
2,k + z′

1,k,jγ1 + z′
2,jγ2,k

is identifiable if the following conditions are fulfilled:

1. (a) for all k ∈ {1, . . . ,K − 1} there exists an Ĩk which is not empty and a subset of
⋃

t∈T It

and for which it holds that∑
i∈Ek,i∗

∑
j∈Ji

Nij ≥ 2S − 1 for all i∗ ∈ Ĩk.

Ek,i∗ is given by {i ∈ It(i∗) : x1,k,i = x1,k,i∗ ∧ x2,i = x2,i∗}.
(b) q∗ > S with

q∗ := min
{

q : for all i∗ ∈
K−1⋃
k=1

Ĩk : there exists an Hj ∈ {H1, . . . ,Hq}

with {(x′
1,k,i,x

′
2,i) : i ∈ It(i∗) ∩ Ĩk, k = 1, . . . ,K − 1} ⊆ Hj ∧Hj ∈ HU

}
,

where HU is the set of H(α) := {x ∈ RU1+U2 : α′x = 0} where α 6= 0.

2. rk(X,Z) = U + V

3. x1,K,i = 0 and z1,K,j = 0 for all j ∈ Ji, i ∈ It and t ∈ T , and β2,K = γ2,K = 0.
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3.3 Special cases

In the following we illustrate which sufficient identifiability constraints can be derived from The-
orem 2 for important special cases.

Mixtures of multinomial distributions: The simplest case are mixtures of multinomial dis-
tributions without a regression part where only a segment specific intercept needs to be
estimated such that x2,i ≡ 1 for all i ∈ I and U1 = V = 0:

ln
[

P(Yr = k)
P(Yr = K)

]
= βs

2,k for all k = 1, . . . ,K.

Condition (1a) ensures that the number of observations N is for at least one individual larger
or equal to 2S−1. Hence we have the same results as in Grün (2002) and Elmore and Wang
(2003): The class of mixtures of multinomial distributions with a maximum of S segments
is identifiable if N ≥ 2S − 1 where again N denotes the number of repetitions for a given
subject.

Model in Follmann and Lambert (1991): Theorem 2 generalizes the first set of sufficient
conditions in Follmann and Lambert (1991). They considered mixtures of binomial logit
distributions where only the intercept followed a finite mixture distribution and all other
coefficients were constant. Hence for our model this signifies K = 2, x1,1,i ≡ 1 for all i ∈ I,
U2 = 0 and V arbitrary.

As the multinomial and conditional logit model are equivalent in the binomial case the model
is given by

ln
[

P(Yr = 1|zr)
P(Yr = 0|zr)

]
= βs

1 + z′
rγ.

The conditions in Follmann and Lambert (1991) are:

� There exists an i ∈ I with a j ∈ Ji such that Nij ≥ 2S − 1, and

� rk(1,Z) = 1 + V .

For condition (1a) to be fulfilled the number of repetitions N for a given individual has
to be at least 2S − 1. In contrast to Follmann and Lambert (1991) the covariates for the
fixed effects are allowed to vary, i.e. we require only that there exists an i ∈ I such that∑

j∈Ji
Nij ≥ 2S − 1. The other condition which has to be checked is condition (2) which

corresponds to the rank condition of Follmann and Lambert (1991). Our conditions are less
restricting as we take repeated observations for individuals with different covariate points
into account.

Choice models: Conditional logit models are often applied as choice models in marketing re-
search based on random utility theory (McFadden, 1974). Kamakura and Russell (1989)
estimated a finite mixture of conditional logit models assuming that the price elasticity of
the consumers varies over the consumer population but is fixed for each consumer over the
different brands. This model can be specified within our framework by setting U2 = 0 and
V = 0. The conditional logit model with only varying effects is given by

ln
[

P(Yr = k|x1,k,i)
P(Yr = K|x1,k,i)

]
= x′

1,k,iβ
s
1 for all k = 1, . . . ,K.

An application of the sufficient identifiability conditions to a real dataset is demonstrated in
Section 5.
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4 Illustration

In the following the identifiability of mixture distributions which are induced by the same pa-
rameterization, but differ with respect to the covariate matrix and the number of repetitions is
analyzed. Each mixture distribution has a binomial dependent variable with categories 0 and 1 and
two regressors consisting of the intercept and a univariate variable x. The probability of observing
a 1 is used as the binomial parameter and in the following referred to as choice probability. The
mixture distributions have two segments which are of equal size and the regression coefficients of
the two segments are given by β1 = (−2, 4)′ and β2 = (2,−4)′, i.e., varying effects are assumed
for the intercept and the covariate x.

Each mixture distribution is either defined on 2 or 5 different covariate points x which are
equidistantly spread across the interval [0, 1] (i.e. #x ∈ {2, 5}). The mixture distributions where
only 2 covariate points are available are not identifiable. In this case intra-component label switch-
ing is possible and the regression coefficients of the second solution are given by β

(2)
1 = (−2, 0)′ and

β
(2)
2 = (2, 0)′. The number of repetitions N is fixed over all individuals and repetitions are only

available for the same covariate point. The parameter N takes the values 1 or 10 for the different
mixture distributions. The condition N ≥ 2S − 1 implies that the mixture is not identifiable for
N = 1.

In Figure 1 the observed relative frequencies of choices of 1 are given for random samples with
100 observations from each of the mixture distributions. A balanced sampling design with an equal
number of observations in each covariate point is used. The symmetry of the specified model is not
entirely reflected in the observed values as the sample sizes are rather small. The solid curves are
the choice probabilities for each segment of the true underlying model. For N = 1 the mixture is
observational equivalent to a degenerate mixture with only one segment. The probabilities of the
degenerate model are given by the dashed line. Following the principle of parsimonity in the model
fitting process, the degenerate mixture would be selected as solution. In addition to the degenerate
mixture all mixtures with two segments are observationally equivalent where (1) the aggregated
marginal choice probabilities are equal to those of the true model for each covariate point and
(2) the relationship between the logit of the choice probabilities and x is linear. For N = 10 it
can be seen that intra-component label switching is possible if only two different covariate points
are available, whereas the mixture is identifiable for five different covariate points. The choice
probabilities of each segment of the observational equivalent mixture for two covariate points are
given by the dotted lines.

100 samples with 100 observations each are drawn from each mixture distribution given by
all possible combinations of N and #x. To each sample a mixture with two segments is fitted
using the EM algorithm. The stopping criterion is the difference in log-likelihood. Even in the
degenerate case where a manifold of solutions exist and the parameter estimates do not converge
the observed log-likelihood values converge as the log-likelihood has the same value for parameter
estimates implying observational equivalent mixture distributions (Wu, 1983).

In order to avoid local maxima the best solution of 5 runs of the EM algorithm with different
random initializations is reported. The choice of 5 repetitions seems to be reasonable as only for
3% of the fitted models the best model is not already detected in runs 1–4. In most of the cases
(86%) the best model is already found in the first and second repetition, in 81% of the cases the
detected global maximum value of the log-likelihood is achieved at least twice.

In Figure 2 parallel coordinate plots (Wegman, 1990) are used to investigate the estimated
parameters for all combinations of N and #x. For an identifiable mixture with two segments the
parallel coordinate plot should contain two “bundles” corresponding to the parameters of each of
the segments. The parallel coordinate plot is robustified by rescaling the parameter estimates for
each dimension so that 95% of the observations are shown and that the 2.5% of observations with
lowest and highest values for each dimentsion are outside the plotting region.

For N = 1 only one large bundle can be discerned but with a wide variability of the parameter
estimates for #x = 5. For N = 10 it depends on #x if two or four bundles can be distinguished.
Intra-component label switching occurs for #x = 2. For the intercept the parameter estimates
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Figure 1: Observed values for the artificial example with N = {1, 10} and where the number of
different x values is 2 or 5.

cluster around two different values and the coefficients of x cluster around three different values.
This induces four different bundles. For #x = 5 two bundles can be distinguished which correspond
to the parameter vectors for each segment of the true model. An extended version of this illustrative
example is described in Grün (2006).

5 Application

A dataset on brand choice is analyzed in order to illustrate how the sufficient identifiability con-
straints can be used to gain insights into potential identifiability problems before and after the
data analysis. These findings are compared to those derived using the parametric bootstrap to
analyze the fitted finite mixture (Grün and Leisch 2004). The optical-scanner panel dataset is
from Jain et al. (1994) where finite mixtures of conditional logit models are fitted. 2798 purchases
of a single product category made by 300 households over the data-collection period of about two
years are available. The purchases of 4 catsup brands are included: Hunt’s 32, Heinz 40, Heinz 32
and Heinz 28. The available marketing mix informations are price, feature and display. The model
which is preferred as the best in Jain et al. (1994) is a 4-component mixture where all coefficients
are allowed to vary between the components.

Two factors are crucial in order to guarantee identifiability: (1) the number of repetitions
in each covariate point for each individual and (2) the number of different covariate points for
each individual and over all individuals. Identifiability problems would occur if the purchases
were observed without the household information. In this case only binary observations would be
available and it would therefore be possible to separate the four brands with a mixture with four
components so that in each component only the purchases of one single brand are contained.

The specified model class is also not generically identifiable if no observations with different
values for the marketing mix variables feature or display were available for the households. While
this is in practice an unlikely problem, possibly other binary variables could be included which
depend on the specific shop or region and where it is less likely that purchases with different
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Figure 2: Parallel coordinate plots of the estimated parameters for 100 samples from the artificial
example with different repetition parameters N and number of covariate points x.

values for these variables are observed for the same household. In this case identifiability problems
occur for certain parameterizations from this model class. This signifies that it might again not
be a problem for a specific fitted mixture. An unidentified model from this model class would for
example be given by a mixture where two equally sized components are homogeneous with respect
to all covariates except for this binary variable. Then the components can be arbitrarily combined
between the two values of the binary variable.

An overview on the number of observations per household and covariate point for the dataset
is given in Figure 3. As observations are collected over a rather long period multiple observations
are available for each household with a minimum of 5, a maximum of 44 and a mean of 9.33
observations. In order to analyze the number of different covariate points with the corresponding
repetitions per individual a modified model matrix is used: The continuous price variable is split
into an ordered categorical variable consisting of three equally sized classes labelled “cheaper”,
“about the same” and “more expensive” with Hunt’s 32 as baseline. For this modified model
matrix observations from the same individual with similar price values are combined in order to
increase the number of repetitions in each covariate point. As a monotone relationship between
the associated utility and the price is assumed, the underlying mixture model generating this data
is similar to the original model. Even after categorizing the price variable only one repetition per
individual is available for most of the covariate points (1422 out of 3010; 47%). For 263 (9%) of
the covariate points there are at least 7 repetitions per individual available which means that they
are identifiable for a mixture with at most 4 components.

The availability of different covariate points for the same individual reduces the feasible hy-
perplanes. For all respondents there are observations for at least 5 different covariate points
available with a mean of 10.03 covariate points. With respect to the number of different covariate
points which are also identifiable most households (179 out of 300; 60%) have again no covariate
points where this condition is fulfilled. However, there are 44 households (15%) with two covariate
points, 29 households (10%) with three covariate points and 48 households (16%) with four and
more covariate points.

This investigation indicates that the available data allows to uniquely identify a mixture with
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Figure 3: Information to assess the risk of identifiability problems to occur.

four components as there are several covariate points where enough repetitions are available to
ensure identifiability in these points and in addition there are several households where this holds
for two or more covariate points which ensures that the coverage condition is fulfilled.

This conclusion is verified using the parametric bootstrap. In addition the influence of the
number of repeated observations for each household on identifiability and the occurence of local
maxima is analyzed by modifying the household information of the original dataset. The observa-
tions of each real household are as evenly as possible assigned to 1, 2, 4 and 8 different “artificial”
households. This simulates the situation that a dataset of the same overall size and structure is
collected over shorter periods of time, such that each individual household shops less often. As
we are not interested in the effects of sample size on parameter estimation here, we keep the over-
all sample size constant. 100 parametric bootstrap samples are drawn from the originally fitted
mixture with the modified model matrix, where the household information is changed. Mixture
models with 4 components are fitted to each bootstrap sample with the EM algorithm using 5
different random initializations and the log-likelihood as convergence criterion.

Again, the choice of 5 EM-repetitions seems to be reasonable, as only for 2% of the bootstrap
samples the best model is not already detected in runs 1–4, and in most of the cases (82%) the
best model is already found in the first or second repetition. In addition the global maximum
value of the log-likelihood is detected at least two times during the 5 runs and for 95% of the
bootstrap samples the global maximum value is detected either 4 or 5 times. A unique labelling
of the components for all fitted models is attempted by relabelling the components in order to
minimize the Euclidean distance to the parameters of the originally fitted mixture. This approach
is similar to the relabelling procedure proposed in Marin et al. (2005) for Bayesian modelling where
the distance to the maximum a-posteriori estimate (MAP) is minimized.

In Figure 4 the increase in variability of the parameter estimates in dependence of the decrease
in household information is illustated. The top row in Figure 4 indicates that no identifiability
problems are present as the estimated values cluster around the parameter estimates of the orig-
inally fitted model which are indicated by the white lines. Table 2 illustrates the difference in
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Figure 4: Parameter estimates for the 100 parametric bootstrap samples.

convergence behaviour and stability of induced clusterings. The columns indicate if the observa-
tions of each single household are assigned to 1, 2, 4, or 8 different households. The rows for “#
global maximum” indicate how often the detected global maximum of the likelihood is reached
during the 5 repetitions of the EM algorithm. While for 75% of the bootstrap samples where the
household information is unchanged the same global maximum of the log-likelihood is detected in
each run of the EM algorithm, this goes down to 3% of the bootstrap samples where the observa-
tions of one household are assigned to 8 different households. By contrast the global maximum of
the log-likelihood is only detected once during the 5 runs for 67% of the samples. This suggests
the presence of several local maxima and a flatter likelihood.

The Rand index corrected by chance (Hubert and Arabie, 1985) is used to analyze the stability
of the clusterings induced by assigning each observation to the component with the maximum
a-posteriori probability. The induced clustering of the original data using the estimated solution
is compared to those predicted by the models fitted to the bootstrap samples. A decrease in
stability can clearly be observed if the observations per household are reduced. This analysis
indicates that with only half of the information per household the results are still comparable with
respect to convergence behaviour and stability of classifications, but the performance deteriorates
considerably if less information per household is available.
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Table 2: Convergence behaviour and stability of classification in dependence of the number of
repetitions per household.

Household info
1/1 1/2 1/4 1/8

# global maximum 5 75 66 32 3
4 20 10 10 6
3 2 8 15 10
2 3 9 17 14
1 0 7 26 67

corr. Rand index Mean 0.97 0.96 0.94 0.87
Std.Dev. 0.01 0.02 0.03 0.06

6 Conclusions and future work

Generic identifiability is defined for a given model class and it only ensures that the model can be
uniquely determined given an infinite number of observations. In the finite sample case empirical
identifiability problems are also of concern, where in fact the question is if the given dataset is
informative enough to distinguish between different mixture models.

The sufficient identifiability constraints guarantee the identifiability of a general model class
such that no two parameterizations are included which induce the same mixture model. However,
if a certain model class is not identifiable this does not signify that for each finite mixture included
in the model class there exist two or more different parameterizations. Even if the model class
suffers from identifiability problems, a given mixture from this class might be identifiable and
hence have a unique parameterization.

In the future the identifiability conditions should be extended to include concomitant variables
(Dayton and Macready, 1988). This is not straight-forward if the concomitant variables and the
regressor variables are not independent. The identifiability of mixture regression models where
the cluster membership is not independent of the covariate values is analyzed in Hennig (2000)
and special identifiability conditions apply. Furthermore, it might be interesting to investigate if
the second set of sufficient identifiability conditions given in Follmann and Lambert (1991) can be
generalized to mixtures of multinomial logit models.

A Proof of Theorem 1

If the model is not identifiable, there exist two different parameterizations Θ and Θ̌ with at
most S segments such that H(· |X,Z,Θ) ≡ H(· |X,Z, Θ̌), where Θ = (πl,βl,γ)l=1,...,s and
Θ̌ = (π̌m, β̌m, γ̌)m=1,...,š

With condition (1a) we show that the binomial distributions with alternatives {k, K} are
identifiable for all i∗ ∈ Ĩk for all k (Step (a) and (b)). The covariate points where binomial
identifiability was shown can be used to prove that no intra-component label switching is possible
(Step (c)). This gives that the coefficients of the fixed and varying effects are identical up to
arbitrary constants. The rank condition is needed to prove that the constants are equal to zero
(Step (d)).

(a) We show that for all k = 1, . . . ,K and for all i∗ ∈ Ĩk:

z′
k,j(γ − γ̌) = ck,i∗ for all j ∈

⋃
i∈Ek,i∗

Ji. (2)
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(b) We show that given an arbitrary k ∈ {1, . . . ,K− 1} it holds for all i∗ ∈ Ĩk that š(i∗) = s(i∗)
and that there exists a suitable ordering of the segments such that for all l = 1, . . . , s(i∗) :

αl
k,i∗ = α̌l

k,i∗ + ck,i∗ (3)

with αl
k,i∗ ∈ {x′

k,i∗βu : u = 1, . . . , s} and α̌l
k,i∗ analogously defined.

(c) We show with condition (1b) analogously to Hennig (2000) that š = s and that for a suitable
ordering of the segments it holds for suitable δ ∈ RU that for all l = 1, . . . , s:

π̌l = πl and β̌l = βl + δ. (4)

(d) We show δ = 0 and γ = γ̌.

ad (a): The equation trivially holds for k = K and the following holds for all k = 1, . . . ,K − 1.
If the mixture distributions are equivalent, this equivalence must also hold for a subset of the
covariate points. Hence, we have for all i∗ ∈ Ĩk:

s∑
l=1

πl

∏
i∈Ek,i∗

∏
j∈Ji

F (yij ;Nij ,θ
l
ij) =

š∑
m=1

π̌m

∏
i∈Ek,i∗

∏
j∈Ji

F (yij ;Nij , θ̌
m
ij ).

The following holds for all u ∈ Ek,i∗ and v ∈ Ju where (yij)j∈Ji,i∈Ek,i∗ is given by yk,ij = δiu,jv

and yK,ij = Nij − yk,ij . δiu,jv is the Kronecker delta, i.e. it is one if i = u and j = v and zero
otherwise. The multinomial coefficients on both sides are cancelled and the terms which do not
depend on l or m are taken out of the sums and separated on one side of the equation:

ez′k,v(γ−γ̌) =

š∑
m=1

π̌m

[
eα̌m

k,i∗
∏

i∈Ek,i∗

∏
j∈Ji

(
K∑

h=1

eα̌m
h,i+z′h,j γ̌)−Nij

]
s∑

l=1

πl

[
eαl

k,i∗
∏

i∈Ek,i∗

∏
j∈Ji

(
K∑

h=1

eαl
h,i+z′h,jγ)−Nij

] .

As the right hand side does not depend on index v the left hand side is constant for all v ∈⋃
u∈Ek,i∗

Ju given i∗. This constant can be given by eck,i∗ . Hence, we have shown equation (2).
ad (b): For a given k and i∗ we define yk,.. :=

∑
i∈Ek,i∗

∑
j∈Ji

yk,ij . In the following we insert

the dependent variable where yK,ij = Nij − yk,ij . Then it holds for all i∗ ∈ Ĩk:

s∑
l=1

πl
e
yk,..α

l
k,i∗+

P
i∈Ek,i∗

P
j∈Ji

yk,ijz′k,jγ

∏
i∈Ek,i∗

∏
j∈Ji

( K∑
h=1

eαl
h,i+z′h,jγ

)Nij
=

š∑
m=1

π̌m
e
yk,..α̌

m
k,i∗+

P
i∈Ek,i∗

P
j∈Ji

yk,ijz′k,jγ+yk,..ck,i∗

∏
i∈Ek,i∗

∏
j∈Ji

( K∑
h=1

eα̌m
h,i+z′h,jγ+ch,i∗

)Nij
. (5)

As the denominator on the left hand side only depends on i∗ and l and not on j and yk,ij , we
define:

λl
k,i∗ :=

πl∏
i∈Ek,i∗

∏
j∈Ji

( K∑
h=1

eαl
h,i+z′h,jγ

)Nij
.

λ̌m
k,i∗ is analogously defined.
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Substituting λl
k,i∗ and λ̌m

k,i∗ into equation (5) and eliminating the equal terms on the left and
right hand side gives for all i∗ ∈ Ĩk:

s∑
l=1

λl
k,i∗

(
eαl

k,i∗

)yk,..

=
š∑

m=1

λ̌m
k,i∗

(
eα̌m

k,i∗+ck,i∗

)yk,..

(6)

with yk,.. ∈ {0, . . . ,
∑

i∈Ek,i∗

∑
j∈Ji

Nij}.

With condition (1a) it follows that the sum over the unique elements in equation (6) has only
the trivial solution for all i∗ ∈ Ĩk. This implies that equation (3) holds. This also means that the
kth marginal binomial distribution with alternatives {k, K} is identifiable in point xk,i∗ .

ad (c): We assume that there can be a β̃l defined for all l such that X̃k,iβl + Z̃k,iγ = X̃k,iβ̃l +
Z̃k,iγ̌ holds for all i ∈ Ĩk and k ∈ {1, . . . ,K − 1}. X̃k,i := (x′

k,i)j∈Ji and Z̃k,i are analogously
defined. The existence of β̃l is guaranteed because (1) the inverse logit function is a one-to-
one mapping (due to condition (3)) and (2) all marginal binomial distribution with alternatives
{k, K} are identifiable for all k = 1, . . . ,K − 1. These two conditions imply that for all i ∈ Ĩk:

X̃Ĩ

( s∑
l=1

πlβl −
š∑

m=1

π̌mβ̌m

)
= Z̃Ĩ(γ̌ − γ),

where X̃Ĩ := (X̃k,i)i∈Ĩk,k=1,...,K−1 and Z̃Ĩ is analogously defined.

As because of condition (1b) X̃Ĩ has full column rank we can define

β̃l := βl + δ with δ :=
(

X̃ ′
Ĩ
X̃Ĩ

)−1

X̃ ′
Ĩ
Z̃Ĩ(γ − γ̌).

We assume without loss of generality that

π1 6= π̌1 and s ≥ š, (7)

where π̌1 is the a-priori probability for β̃1 with π̌1 ≥ 0.

As the marginal binomial mixture distributions for k = 1, . . . ,K − 1 with alternatives {k, K}
are identifiable for all i ∈ Ĩk, the following must hold for all i ∈ Ĩk given an arbitrary k ∈
{1, . . . ,K − 1}: ∑

{l=1,...,š: x′
k,iβ̌l=x′

k,iβ̃1}

π̌l =
∑

{h=1,...,s: x′
k,iβh=x′

k,iβ1}

πh. (8)

The assumption S < q∗ is in contradiction to the existence of some β̃ ∈ {β̃u : u = 1, . . . , s} such
that there exists an l ∈ {1, . . . , s} with

β̃ 6= β̌l ∧ x′
k,iβ̃ = x′

k,iβ̌l for all k ∈ {1, . . . ,K − 1} ∧ i ∈ It(i∗) ∩ Ĩk,

because then q∗ ≤ s ≤ S would hold.

Thus it holds for all β̃l l = 1, . . . , s— and in particular for β̃1—that there exists a k∗ = k(β̃l)
and i∗ = i(β̃l) ∈ Ĩk such that for all β̌ ∈ {β̌m : m = 1, . . . , š}:

x′
k∗,i∗ β̃l = x′

k∗,i∗ β̌ ⇒ β̃l = β̌.

Considering the marginal mixture distribution for k∗ := k(β̃1) and i∗ := i(β̃1), we have for all
l ∈ {1, . . . , š}:

β̌l 6= β̃1 ⇒ x′
k∗,i∗ β̌l 6= x′

k∗,i∗ β̃1. (9)
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Thus, using condition (8),
π̌1 =

∑
{h=1,...,s: x′

k∗,i∗βh=x′
k∗,i∗β1}

πh

implying π̌1 > 0.

Because of (7) — π1 6= π̌1 — it must hold that there exists a h ∈ {2, . . . , s} with

βh 6= β1 ∧ x′
k∗,i∗βh = x′

k∗,i∗β1. (10)

Without loss of generality one can assume that this h equals 2.

Consider xk,i = xk(β̃2),i(β̃2)
and apply the arguments above again to get that there exists an

l with β̌l = β̃2. This leads to a contradiction between (9) and (10). Hence we have shown
equation (4).

ad (d): As equality of distributions implies equality of means we have

s∑
l=1

πl
ex′

k,iβl+z′k,jγ∑K
h=1 ex′

h,iβl+z′h,jγ
=

s∑
l=1

πl
ex′

k,iβl+z′k,j γ̌+x′
k,iδ∑K

h=1 ex′
h,iβl+z′h,j γ̌+x′

h,iδ

for all k = 1, . . . ,K, j ∈ Ji and i ∈ I. The equation can be transformed to:

s∑
l=1

πle
x′

k,iβl+z′k,jγ

[( K∑
h=1

ex′
h,iβl+z′h,jγ

)−1

−

( K∑
h=1

ex′
h,iβl+z′h,jγ+(xh,i−xk,i)

′δ+(zh,j−zk,j)
′ϑ

)−1]
= 0

for all k = 1, . . . ,K, j ∈ Ji and i ∈ I with ϑ := γ̌ − γ.

For every j ∈ Ji and i ∈ I there can be a ũij defined with ũij = arg maxk=1,...,K{x′
k,iδ + z′

k,jϑ}.
We will contradict the assumption that there exists a k ∈ {1, . . . ,K} such that

x′
k,iδ + z′

k,jϑ 6= 0. (11)

This assumption together with the normalization condition (3), which implies x′
K,iδ+z′

K,jϑ = 0,
gives that there exists a ṽij ∈ {1, . . . ,K} for which x′

ũij ,iδ + z′
ũij ,jϑ > x′

ṽij ,iδ + z′
ṽij ,jϑ holds.

Therefore we get
∑K

h=1 ex′
h,iβl+z′k,jγ >

∑K
h=1 ex′

h,iβl+z′k,jγ+(xh,i−xũij ,i)
′δ+(zh,j−zũij ,j)

′ϑ for all
l = 1, . . . , s. This leads to a contradiction of assumption (11), because a linear combination of
negative numbers using only positive coefficients cannot give 0. This means that x′

k,iδ−z′
k,jϑ = 0

for all k = 1, . . . ,K, j ∈ Ji and i ∈ I. Because of condition (2) δ = ϑ = 0 follows. Hence we get
γ̌ = γ and β̌l = βl for all l = 1, . . . , s and k = 1, . . . ,K.
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